
A

Belief merging by examples

PAOLO LIBERATORE, Sapienza University of Rome

A common assumption in belief revision is that the reliability of the information sources is either given,

derived from temporal information, or the same for all. This article does not describe a new semantics for
integration but studies the problem of obtaining the reliability of the sources given the result of a previous
merging. As an example, corrections performed manually on the result of merging some databases may
indicate that the relative reliability of their sources is different from what previously assumed, helping

subsequent data mergings.

CCS Concepts: rComputing methodologies → Nonmonotonic, default reasoning and belief revi-
sion;

Additional Key Words and Phrases: Belief merging, reliability estimation

1. INTRODUCTION
When integrating information coming from different sources, a distinction is made be-
tween revision [Gärdenfors 1988; Darwiche and Pearl 1997; Jin and Thielscher 2007;
Peppas 2008; Delgrande 2012] (new information more reliable than old) and merg-
ing [Liberatore and Schaerf 1998; Chopra et al. 2006; Konieczny and Pérez 2011] (same
reliability). More generally, priorities or weights are assigned to the sources to indicate
their reliability [Nebel 1992; 1998; Rott 1993; Delgrande et al. 2006]. Measures and
aggregation functions allow for fine-grained policies of integration [Konieczny et al.
2004; Everaere et al. 2010; Konieczny and Pérez 2011]. Families of operators are then
defined, all depending in a way or another from the relative reliability of the sources.
The two basic cases of non-iterated revision and merging result from giving priority
to the new information or the same to all pieces of information to be incorporated, re-
spectively. The strength of information sources has been studied in the field of cognitive
psychology, where it was determined to depend on the order in which the information
is given [Wang et al. 2000], on the size of the group generating it [Mannes 2009] and
other social factors [See et al. 2011].

The first time merging is done, the relative reliability of the pieces of information
to be integrated cannot come other than from sources external to the merging process.
However, subsequent mergings may then take advantage of the previous results. The
following example shows such a situation.

Example 1.1. Three different databases related to the same domain are to be
merged. In lack of information about their relative reliability, this operation is done
assuming them equally reliable. The result is then checked and found out to be in-
consistent. The programmers go over the database and fix the problems using direct
knowledge of the domain. The resulting database is later found out to be equal to that
obtained by merging under the assumption that the second database is more reliable

Author’s address: DIAG, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy. Email:
paolo@liberatore.org
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c⃝ YYYY ACM. 1529-3785/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74321501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A:2 Paolo Liberatore

than the first and the third. When other data comes from the same sources, this infor-
mation is used to merge it.

The lack of meta-information regarding reliability shows up in other contexts. For
example, the reliability of some sensors may depend on where they are used (e.g.,
some are reliable indoor but mostly useless outdoor); an ordering among them may be
obtained when other data confirms or contradicts the result of merging their output.

The problem considered in this article is to estimate the reliability of formulae
K1, . . . ,Km so that their integration produces a given other formula R. Contrary to
most work in belief revision, no new semantics for merging are introduced, and this is
because the point is not how to obtain R from K1, . . . ,Km, but how to reckon the reli-
ability of K1, . . . ,Km from R. This formula R is given, not the outcome of the process:
it is the corrected merged database in the first example and the information compared
to the result of merging data coming from the sensors in the second.

— two sources provide a and ¬a ∧ b; lacking information about their reliability, the
result is the disjunction a ∨ (¬a ∧ b) = true;

— the actual state of the world is detected to be ¬a ∧ b;
— this formula ¬a∧b is the result of merging a and ¬a∧b when the source of the second

is assumed more reliable;
— other two formulae a∧ c and b∧¬c arrive from the same sources; since the second is

more reliable, merging produces b ∧ ¬c.

The procedure looks straightforward because it involves only two very simple formu-
lae under a trivial semantics of merging by taking either one of them or their disjunc-
tion, depending on their relative reliability. If none of these possible outcomes coincide
with the given formula then one may (more details are in Section 5):

(1) assume that R is not equal to the expected result of merging but a “more precise”
formula, or that it represents incomplete information;

(2) take into account that some sources produce reliable information on some aspects
of the domain and unreliable in others, so they may be split for example on the
variables;

(3) check whether the result can be obtained using a different method of integration.

The present article analyzes the problem for two existing merging semantics: min-
imal sum of distances [Konieczny and Pérez 2011; Konieczny et al. 2002; 2004] and
prioritized base merging [Nebel 1992; 1998; Rott 1993], also called discrimin merg-
ing [Delgrande et al. 2006]. However, any other of the several existing merging seman-
tics can be used [Konieczny and Pérez 2011; Delgrande et al. 2006]. These two has
been chosen not only because they are of interest by themselves, but also because they
are at the extreme opposite of the range of merging semantics: the first one is based
on a numeric evaluation of the distance of models from the knowledge bases; the sec-
ond hinges on formulae rather than models and employs a notion of priority that is
qualitative rather than quantitative.

For merging based on sums of distances [Konieczny and Pérez 2011; Konieczny et al.
2002; 2004], a necessary and sufficient condition for R to be the result of merging K1

and K2 with some weights is given. This result allows to easily derive upper bounds
on the complexity of obtainability, which is in Πp

i+1 whenever checking distance is in
Πp

i or in Σp
i . This implies that the problem is in coNP for the drastic distance and in Πp

2
for the Hamming distance. Hardness for these cases is proved. A tractable case for the
Hamming distance is determined. Using the same necessary and sufficient condition,
a local search algorithm for determining the weights is shown.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:3

Prioritized base merging [Nebel 1992; 1998; Rott 1993] depends on the maxsets of
the formulae K1, . . . ,Km, which are the maximally consistent subsets of them. The
properties proved for this semantics are: some formulae R cannot be obtained from
K1, . . . ,Km; this may happen even if R is the disjunction of some of their maxsets;
however, this is impossible if m ≤ 3; some formulae R can be obtained as the result of
merging only if the priority ordering has at least n classes, and this holds for ever n; if
the maxsets form a Berge-acyclic graph and R is the disjunction of some of them, then
R is always obtainable; an algorithm for producing the priority ordering in this case is
given.

If all maximally consistent subsets have size two or less the problem becomes a
problem on graphs, where weights are to be assigned to nodes in such a way some
edges are selected and some other are excluded. This belief revision problem requires
a (quite long) argument on graph transformations to obtain a simple necessary and
sufficient condition: non-obtainability is the same as the presence of alternating cycles
of edges.

Surprisingly, complexity turns out not to be higher than that of computing the result
of merging [Eiter and Gottlob 1992; 1996; Liberatore 1997a; 1997b; Nebel 1998; Libe-
ratore and Schaerf 2001; Delgrande et al. 2013], at least in some cases. For example,
given a consistent R and K1, . . . ,Km with constant m or with maximally consistent
subsets of size two or less, checking whether R is obtainable is only coNP-complete,
thus solvable within a reasonable size of formulae by modern SAT-solvers.

The article is organized as follows: a section introduces the basic settings, the fol-
lowing the definitions and results using the sums of distances and prioritized base
merging, respectively, including an algorithm each. Then, the question of what to do if
a given formula is not obtainable is considered. A final section draws some conclusions.

2. PRELIMINARIES
The knowledge bases to be merged are denoted by K1, . . . ,Km throughout this article.
They are assumed to be consistent propositional formulae. The same for the expected
result R, unless explicitly indicated otherwise.

Two merging semantics are considered in this article, the first based on the weighted
sum of distances, the second on a priority ordering. Formula R is obtainable from
K1, . . . ,Km if it is the result of merging these formula with some weights or priorities.
Using the first semantics, this amounts to checking the existence of weights such that
R is the result of merging K1, . . . ,Km with these weights. For the second semantics,
the definition is the same with a priority ordering instead of the weights.

Obtainability means that R is the result of merging K1, . . . ,Km with some relative
reliability among these knowledge bases. Determining this reliability ordering is the
aim of two algorithms, one for each of the considered merging semantics. What to do if
R is not obtainable is considered in Section 5.

3. WEIGHTED SUM
Model-based merging operators [Konieczny and Pérez 2011; Konieczny et al. 2002;
2004] work from a measure of the distance between models, selecting only the ones
that are at minimal total distance from the knowledge bases. Different semantics
result from different distances measures and different methods for combining them.
Two measures of interest are [Konieczny et al. 2002; Revesz 1997; Lin and Mendelzon
1999]:

Drastic distance: d(I, I) = 0, d(I, J) = 1 if J ̸= I;
Hamming distance: d(I, J) is the number of variables evaluated differently by I and J .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Paolo Liberatore

Distance measures extend to knowledge bases: d(I,K) is the minimal value of d(I, J)
for J |= K. The drastic distance from a model to a knowledge base is therefore 0 if
the model satisfies the base and 1 otherwise. The Hamming distance is the minimal
number of variables that are assigned different values by the model and by a model of
the knowledge base.

Distances can be further extended from one to more knowledge bases in various
ways. One is to define d(I,K1, . . . ,Km) to be the sum of the distances d(I,Ki); other
methods exist [Konieczny and Pérez 2011]. If the sources of the knowledge base differ
in reliability, a weighted sum can be used in place of the sum [Konieczny et al. 2002;
2004]. Let {w1, . . . , wm} be the weights, which are assumed positive integers (null,
negative or real values can also be of interest, but are not considered in this article).
The weighted distance from I to {K1, . . . ,Km} is:

d(I,K1, . . . ,Km) =
∑

1≤i≤m

wi × d(I,Ki)

Alternatively, the distance vector of I is the array (d(I,K1), . . . , d(I,Km)) and the
weighted distance is obtained by multiplying it with the weight vector (w1, . . . , wm).
Either way, merging selects the models of minimal weighted distance from the knowl-
edge bases [Revesz 1997; Lin and Mendelzon 1999; Konieczny et al. 2002; 2004].

The problem of obtainability is that of finding positive integers w1, . . . , wm such that
the result of merging K1, . . . ,Km is a given formula R. As usual, the complexity analy-
sis is done on the decision version of this problem, that of checking the existence of such
weights. The algorithm in Section 3.2 searches for actual values. Some considerations
on what to do if they do not exist are in Section 5.

The following restriction is considered in this section: two knowledge bases only.
In other words, m = 2. The knowledge bases are K1 and K2 only. This restriction
simplifies the definition of d to:

d(I,K1,K2) = w1 × d(I,K1) + w2 × d(I,K2)

For every model I, its distance vector from {K1,K2} is (d(I,K1), d(I,K2)).
Obtainability is the existence of weights that produce the given result R. Weights

(1, 2) produce the same results as (2, 4): the weighted distance of the first pair is double
that of the second for every model; therefore, the minimal models are the same. Instead
of a pair of weights w1 and w2 it suffices to search for the value of their ratio w1

w2
.

This is a simpler problem because such a value can be obtained by simple algebraic
manipulation from two models of R in most cases. Otherwise, some constraints on its
value derive from models of ¬R.

The following expression is useful for relating models, as it often coincides with w1

w2

if I and J both satisfy R and gives a bound to this fraction if I does and J does not.

p(I, J ;K1,K2) =
d(J,K2)− d(I,K2)

d(I,K1)− d(J,K1)

Since the two knowledge bases are always K1 and K2 in this section, p(I, J ;K1,K2)
is shortened to p(I, J). The value of p(I, J) can be used to determine whether some
models can be in the result of merging and some others cannot. The formal conditions
are shown in a following theorem, but an example may in the meantime help clarifying
how it is useful.

Let R be a formula having models I, J and L but not M , and let the distance from
each of the models I, J , L and M to the two knowledge bases be as in the following
table:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:5

K1 K2

I 1 5
J 2 3
L 3 1
M 4 2

By definition, p takes the following values:

p(I, J) =
3− 5

1− 2
=

−2

−1
= 2

p(I, L) =
1− 5

1− 3
=

−4

−2
= 2

p(I,M) =
2− 5

1− 4
=

−3

−3
= 1

A necessary condition for R being obtainable is that p has the same value for all pairs
of models of R, like p(I, J) = p(I, L). Another necessary condition is that p is different
if a model of a pair does not satisfy R, like p(I,M) ̸= p(I, J). These are only necessary
conditions, the full sufficient and necessary condition is in Theorem 3.1.

PROPERTY 1. Two models I and J have the same distance from {K1,K2} weighted
by w1 and w2 if and only if either d(I,K1) = d(J,K1) and d(I,K2) = d(J,K2) or
d(I,K1) ̸= d(J,K1) and w1

w2
= p(I, J).

Proof. The distance from I and J to K1 and K2 weighted by w1 and w2 is:

d(I,K1,K2) = w1 × d(I,K1) + w2 × d(I,K2)

d(J,K1,K2) = w1 × d(J,K1) + w2 × d(J,K2)

If these amounts coincide, then:

w1 × d(I,K1) + w2 × d(I,K2) = w1 × d(J,K1) + w2 × d(J,K2)

w1 × (d(I,K1)− d(J,K1)) = w2 × (d(J,K2)− d(I,K2))

This equation is true if d(I,K1) = d(J,K1) and d(I,K2) = d(J,K2). Otherwise, both
sides can be divided by d(I,K1) − d(J,K1) and by w2, which by assumption is larger
than zero, obtaining:

w1

w2
=

d(J,K2)− d(I,K2)

d(I,K1)− d(J,K1)

The right-hand side of this equation is p(I, J).

This property expresses a condition for I and J to have the same weighted distance
from the knowledge bases. If R is the result of merging with weights w1 and w2, this
condition holds for every two models I and J of R. In particular, I, J and L satisfy
the result of merging only if p(I, J) and p(I, L) both coincide with w1

w2
, which implies

p(I, J) = p(I, L). This could be checked by first calculating p(I, J) = w1

w2
and then check-

ing whether every other p(I, L) coincides with this value.

PROPERTY 2. Model I is closer than model M to {K1,K2} with weights w1 and w2

if and only if either:

— d(I,K1) = d(M,K1) and d(I,K2) < d(M,K2); or

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Paolo Liberatore

— d(I,K1)− d(M,K1) > 0 and w1

w2
< p(I,M); or

— d(I,K1)− d(M,K1) < 0 and w1

w2
> p(I,M).

Proof. The distance is w1×d(I,K1)+w2×d(I,K2) for I and w1×d(M,K1)+w2×d(M,K2)
for M . Therefore, I is closer than M to {K1,K2} if:

w1 × d(I,K1) + w2 × d(I,K2) < w1 × d(M,K1) + w2 × d(M,K2)

w1 × (d(I,K1)− d(M,K1)) < w2 × (d(M,K2)− d(I,K2))

By assumption, w2 is strictly positive. Therefore, both sides of this inequation can be
divided by it. Instead, d(I,K1) − d(M,K1) may be positive, negative or zero. In latter
case, d(I,K1) = d(M,K1), which implies that I is closer than M to the bases if and only
if d(I,K2) < d(M,K2), regardless of the weights.

If d(I,K1)− d(M,K1) is positive, both sides of the inequation can be divided by it:

w1

w2
<

d(M,K2)− d(I,K2)

d(I,K1)− d(M,K1)
if d(I,K1)− d(M,K1) > 0

The inequation is w1

w2
< p(I,M). In the other case, dividing both sides by the negative

number d(I,K1)− d(M,K1) changes < into >:

w1

w2
>

d(M,K2)− d(I,K2)

d(I,K1)− d(M,K1)
if d(I,K1)− d(M,K1) < 0

The inequation is w1

w2
> p(I,M).

These properties show that most pairs of models constrain the value of w1

w2
. In par-

ticular, two models of R are enough to uniquely fix it, unless they are at the same
distance from K1. Models that do not satisfy R only generate inequations. If there are
at least two models of R at different distances from K1 this is not a problem, as they
determine w1

w2
and what is left to do is check the inequations.

Otherwise, more complex constraints among models not satisfying R may result. As
an example, if all models of R are at distance (4, 4) and two models not of R at distance
(1, 8) and (8, 1), then R is obtainable with w1 = w2 = 1. Two other models not in R at
distance (1, 5) and (5, 1) make R unobtainable.

If I, J, L are all models of R, then both p(I, J) and p(I, L) coincide with w1

w2
, and

therefore coincide with each other: p(I, J) = p(I, L). For the same reason, if I |= R,
J |= R and L ̸|= R, then p(I, J) < p(I, L) or p(I, J) > p(I, L), depending on the sign of
d(I,K1)− d(L,K1).

These constraints are enough if R has at least two models with differing distance
from K1. Otherwise, R does not set a value for w1

w2
, which can therefore be varied to

exclude models not satisfying R. In particular, two inequations of opposite comparison
can be combined: if I |= R, M ̸|= R, N ̸|= R, d(I,K1) − d(N,K1) > 0 and d(I,K1) −
d(M,K1) < 0, then w1

w2
< p(I,N) and w1

w2
> p(I,M), leading to p(I,M) < p(I,N).

THEOREM 3.1. A satisfiable formula R is obtainable from {K1,K2} if and only if
for all models I, J, L that satisfy R and all M,N that do not, the following conditions
hold:

(1) if d(I,K1) ≥ d(J,K1) then d(I,K2) ≤ d(J,K2)
(2) if d(I,K1) ≥ d(M,K1) then d(I,K2) < d(M,K2)
(3) p(I, J) = p(I, L)

if d(I,K1)− d(J,K1) ̸= 0 and d(I,K1)− d(L,K1) ̸= 0

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:7

(4) p(I, J) < p(I,M)
if d(I,K1)− d(J,K1) ̸= 0 and d(I,K1)− d(M,K1) > 0

(5) p(I, J) > p(I,M)
if d(I,K1)− d(J,K1) ̸= 0 and d(I,K1)− d(M,K1) < 0

(6) p(I,N) < p(I,M)
if d(I,K1)− d(M,K1) > 0 and d(I,K1)− d(N,K1) < 0

Proof. Assuming the conditions true, we derive values of w1 and w2 that make the
result of merging being exactly R. Two cases are possible: in the first, all models of R
have the same distance to K1 and the same distance to K2; in the second, at least two
models of R have different distances.

If all models of R are at the same distance from K1 and from K2, then every pair
of weights makes them having the same weighted distance. Therefore, the problem is
only with models not satisfying R, which must be at a greater distance. Let I, M and
N be:

— I is a model of R;
— M is one of the models not satisfying R with a minimal value of p(I,M) among the

ones with d(I,K1)− d(M,K1) > 0, if any;
— N is one of the models not satisfying R with a maximal value of p(I,N) among the

ones with d(I,K1)− d(N,K1) < 0, if any.

By the sixth condition of the lemma, under these conditions p(I,N) < p(I,M). If
w1

w2
is between p(I,N) and p(I,M), then w1

w2
is smaller than p(I,M ′) for every M ′ ̸|= R

with d(I,K1) − d(M ′,K1) > 0, thanks to the minimality of M . By Property 2, this
implies that M ′ is further from the bases than I. The same applies to models N ′ with
d(I,K1) − d(N ′,K1) < 0, thanks to the maximality of N . For the models L such that
d(I,K1) − d(L,K1) = 0, the second condition of the lemma implies that d(I,K2) <
d(L,K2), proving that they are further from the bases than I regardless of the weights.

If no such M or no such N exist, the corresponding constraint is void. This can be
formalized by replacing p(I,N) with 0 and p(I,M) with the number of the variables.

If p(I,N) is negative, w1

w2
is determined as follows. Since M is such that d(I,K1) −

d(M,K1) > 0, it holds d(I,K1) > d(M,K1). By the second condition of the lemma
d(I,K2) < d(M,K2), which ensures that p(I,M) is strictly positive. By definition of
this expression, its minimal positive value is 1

n , obtained by taking the minimal value
of the numerator (1 or −1) and the maximal value of the denominator (n or −n). Since
p(I,N) is negative, a value between it and 1

n is 1
n+1 .

If p(I,N) is positive, this value may not work, but the average between it and p(I,M)
is positive, and can therefore be used as w1

w2
. Let p(I,M) = a

b and p(I,N) = c
d .

p(I,N) + p(I,M)

2
=

a
b + c

d

2

=
a

2b
+

c

2d

=
ad

2bd
+

cb

2bd

=
ad+ cb

2bd

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Paolo Liberatore

Since this is the average between two positive values, it is positive. The numerator
and the denominator may both be negative, but their absolute values produce the same
fraction. Since this is w1

w2
, the weights can be taken to be:

w1 = |(d(N,K2)− d(I,K2))× (d(I,K1)− d(M,K1)) +

(d(M,K2)− d(I,K2))× (d(I,K1)− d(N,K1))|
w2 = |2× (d(I,K1)− d(M,K1))× (d(I,K1)− d(N,K1))|

Using such weights, every model not satisfying R is further from the bases than all
models satisfying R, which proves that if all models of R have the same distances from
K1 and K2, then R is obtainable if the conditions in the statement of the lemma are
true.

If there exists I and J such that d(I,K1) ̸= d(J,K1), then w1

w2
is uniquely determined

by Property 1 to be p(I, J):

w1

w2
=

d(J,K2)− d(I,K2)

d(I,K1)− d(J,K1)

Two values producing this fraction are:

w1 = |d(J,K2)− d(I,K2)|
w2 = |d(I,K1)− d(J,K1)|

By the first assumption of the lemma, if d(I,K1)−d(J,K1) is negative then d(I,K2)−
d(J,K2) is positive, and vice versa. As a result, w1

w2
is d(J,K2)−d(I,K2)

d(I,K1)−d(J,K1)
despite the absolute

values.
Let L be another model of R. If d(I,K1) = d(L,K1), by the first condition of the

lemma d(I,K2) = d(L,K2), which implies that I and L are at the same weighted dis-
tance from the bases regardless of the weights. Otherwise, d(I,K1) ̸= d(L,K1), and
Property 1 applies: if w1

w2
= p(I, L) then I and L are at the same distance from the

bases. But w1

w2
has been proved to be equal to p(I, J), and by the third assumption of

the lemma p(I, J) = p(I, L).
Let M ̸|= R. By the assumptions of the lemma, p(I, J) < p(I,M) if d(I,K1) −

d(M,K1) > 0 and p(I, J) > p(I,M) if d(I,K1) − d(M,K1) < 0. By Property 2, the
distance from M to {K1,K2} is greater than that of I. That concludes the proof that
the conditions of the lemma imply that R is obtainable.

If some of the conditions of the lemma are falsified, then R is not obtainable from
{K1,K2} with any weights. This is proved for each condition at time.

The first condition is false if d(I,K1) ≥ d(J,K1) but d(I,K2) > d(J,K2). In such
conditions the weighted distance of I is less than that of J regardless of the weights,
implying that J is not in the result of the merging in spite of J |= R.

The second condition is false if d(I,K1) ≥ d(M,K1) and d(I,K2) ≥ d(M,K2), which
imply that the weighted distance of I is greater than or equal to that of M regardless
of the weights, implying that either M is in the result of merging or I is not, while
I |= R and M ̸|= R.

The third condition is false if p(I, J) ̸= p(I, L) for some I, J, L that are models of R
with d(I,K1) ̸= d(J,K1) and d(I,K1) ̸= d(L,K1). By Property 1, I and J are at the
same distance only if w1

w2
is p(I, J); I and L are at the same distance only if it is p(I, L).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:9

These are different, showing that no pair of weights makes I, J and L to be at the same
weighted distance from the bases.

The fourth condition is false if d(I,K1) ̸= d(J,K1), d(I,K1) > d(M,K1) and p(I, J) ≥
p(I,M). The first implies w1

w2
= p(I, J) by Property 1 and I |= R, J |= R, the second

that w1

w2
< p(I,M) by Property 2 and I |= R and M ̸|= R. Therefore, p(I, J) < p(I,M),

contradicting p(I, J) ≥ p(I,M).
The fifth condition is similar, with d(I,K1) < d(M,K1) implying w1

w2
> p(I,M), which

together with w1

w2
= p(I, J) contradicts p(I, J) ≤ p(I,M).

The sixth condition is false if d(I,K1) − d(N,K1) > 0, d(I,K1) − d(M,K1) < 0 and
p(I,M) ≥ p(I,N). Since I |= R, M ̸|= R and N ̸|= R, Property 2 applies: p(I,M) < w1

w2
<

p(I,N), contradicting p(I,M) ≥ p(I,N).

In the particular case K1 = K2, Condition 1 implies d(I,K1) = d(J,K1), which nul-
lifies Conditions 3–5. In a similar way, Condition 2 implies d(I,K1) < d(M,K1), which
nullifies Condition 6. As a result, obtainability simplifies to all models of R being at
the same distance from K1 and all other models being at a greater distance.

Another particular case of interest is when R is the result of merging K1 and K2

with w1 = w2 = 1. In this case, p(I, J) is 1 for all pairs of models I and J of R, which
means d(I,K1)− d(J,K1) = d(J,K2)− d(I,K2). A model M that does not satisfy R may
be closer to K1 than I or not, leading to Condition 4 or to Condition 5, respectively.

In the example after the definition of p(I, J), the value p(I, J) = 2 implies that R
can only be obtained by setting weights such that w1

w2
= 2. This implies that p(I, L) = 2

was also necessary to obtainability. The value p(I,M) = 1 does not alone support the
obtainability of R; by Theorem 3.1, since M does not satisfy R the value of p(I,M) has
not only to be different from p(I, J), but also less or greater than it depending on the
sign of d(I,K1) − d(M,K1). In this particular case this difference is 1 − 4; since it is
negative, by Condition 4 it should be p(I,K1) > p(I,M) which is indeed the case.

3.1. Complexity
Theorem 3.1 expresses obtainability in terms of a universally quantified condition con-
taining d(I,Ki). If determining such a value is polynomial, the problem is in coNP. Two
cases where this happens are:

— d is the drastic distance;
— d is the Hamming distance and both K1 and K2 are conjunctions of literals.

If determining the value of d(I,Ki) is in some complexity class harder than
polynomial-time, the complexity of obtainability is in an higher level of the polyno-
mial hierarchy than coNP. This is the case for example for the Hamming distance in
general, since in this case d(I,Ki) is the minimal number of literals that differ from I
and a model of Ki. Obtainability can be rewritten as:

∀IJ . . . ∀d1Id2Id1J . . .

(
(∃I ′ |= K1 . d(I, I ′) ≤ d1I)∧
(∀I ′′ |= K1 . d(I, I ′′) ≥ d1I)

)
∧ · · · → (conditions in Theorem 3.1)

Since the quantifiers ∃I ′ and ∀I ′′ are inside the premise of an implication, they
are negated. However, they are still two independent quantifiers. Therefore, this is
a ∀∃QBF , which hints that obtainability is in Πp

2. The same happens if checking
d(I,Ki) ≤ x is in NP or in coNP. More generally, the complexity of obtainability is one
level over the complexity of calculating the distance between a model and a knowledge
base.

There is however a limit case to keep into account: if d(I,Ki) is a number so large
that exponential space is required to represent it, then d(I,Ki) ≤ x is true (and hence

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Paolo Liberatore

trivial to check) for every value of x of size comparable to I and Ki. In such cases,
d(I,Ki) ≤ x may take polynomial time in the total size of I, Ki and x, but only because
the enormous size of x dwarfs the computation on I and Ki, which may be superpoly-
nomial in the size of I and Ki only. While this can be considered a limit case, it is still
to be taken into account.

THEOREM 3.2. If determining d(I,K) ≤ x is in the complexity class Πp
i or Σp

i and
d(I,K) is representable in space polynomial in that of I and K, then obtainability of a
satisfiable formula from two formulae with a weighted sum of distances is in Πp

i+1.

Proof. By Theorem 3.1, obtainability can be expressed as formula with some universal
quantifiers in the front ∀I, J, L,M,N and a formula F containing d(I,K1), d(I,K2),
d(J,K1), etc. Equivalently:

∀I, J, L,M,N ∀d1I , d2I , d1J , d2J , . . .
(d(I,K1) ≤ d1I) ∧
¬(d(I,K1) ≤ d1I − 1) ∧
(d(J,K1) ≤ d1J) ∧
¬(d(J,K1) ≤ d1J − 1) ∧
...
→ F [d(I,K1)/d

1
I , d(I,K2)/d

2
I , d(J,K1)/d

1
J , d(J,K2)/d

2
J , . . .]

Quantification over d1I , d2I , etc. can be done because by assumption d(I,K1), d(I,K2)
etc. are bounded in size by a polynomial in the size of the models and of the formulae.
In other words, these values can be be represented with a polynomial amount of bits.

If d can be calculated in polynomial time, the whole problem is in coNP. Otherwise,
subformulae d(I,K1) ≤ d1I occur in the premise of an implication, so they are in fact
negated. However, if each is in Πp

i or in Σp
i , they can be expressed as an alternation of i

quantifiers. The whole problem, with the universal quantifier in the front, is therefore
in Πp

i+1.

This theorem implies the three ad-hoc complexity results obtained above: that ob-
tainability is in coNP for the drastic distance and for the Hamming distance when the
knowledge bases are conjunctions of literals, and is in Πp

2 in the general case for the
Hamming distance. A general hardness result can be given from some assumptions
about the distance function.

A pseudodistance is a function such that d(I, J) = d(J, I), d(I, I) = 0 and d(I, J) > 0
for every J ̸= I. Its extension to a distance from a knowledge base obeys: d(I,K) = 0
if I |= K and d(I,K) > 0 otherwise. If K1 and K2 have some common models, these
have weighted distance 0 regardless of the weights. Since merging selects minimal
models, in this case the result comprises exactly the common models. In particular,
if K1 and K2 coincide, merge produces a formula equivalent to them. This holds for
every pseudodistance, and can be used to prove that obtainability is coNP-hard for
every pseudodistance.

THEOREM 3.3. Obtainability of a consistent formula from two knowledge bases is
coNP-hard for every pseudodistance.

Proof. The claim is proved by reduction from propositional unsatisfiability. Let F be
a propositional formula. The corresponding obtainability problem is defined by K1 =
K2 = y and R = y ∨ F , where y is a variable not in F . Since K1 and K2 coincide, the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:11

result of merging is y. If F is satisfied by a model I then R has a model I ∪ {¬y} that
does not satisfy y. Vice versa, if F is unsatisfiable then R coincides with y.

Since obtainability for drastic distance and Hamming distance from conjunctions of
literals is in coNP, and these are pseudodistances, obtainability using them is coNP
complete. The unrestricted problem with the Hamming distance is Πp

2-hard. This is
proved by reduction from the problem of establishing the validity of a formula ∀X∃Y.F .
The translation is based on two main ideas:

(1) separate models having different evaluations of X by a large distance;
(2) for each evaluation of X, K1 and R contain the subformula Y ¬ ∧ Y ′¬ that sets all

variables in Y and a copy of it Y ′ to false; K2 instead contains F ∧ (Y ̸≡ Y ′).

The second property makes the model of K1 being at distance n from K2, but only if
R is satisfiable, and such models are in the result of merging with w1 ≪ w2. Formal
proof follows.

THEOREM 3.4. Obtainability with the weighted sum of Hamming distance from two
knowledge bases is Πp

2-complete.

Proof. Membership follows from Theorem 3.2, since checking d(I,K) ≤ x is in NP
for the Hamming distance. Indeed, d(I,K) ≤ x holds if there exists J |= K such that
d(I, J) ≤ x, and the distance between two models can be determined in polynomial
time.

Hardness is proved by reduction from the problem ∀∃QBF .
First, the problem of checking the validity of ∀X∃Y.F remains hard even if F is

known to be satisfiable. This is proved by reduction from the problem without the
restriction: ∀X∃Y.G is valid if and only if ∀z∀X∃Y.G ∨ z is valid, where z is a new
variable: indeed, this formula is equivalent to (∀X∃Y.G ∨ ⊤) ∧ (∀X∃Y.G ∨ ⊥); the first
part of this conjunction is tautological, the second is equivalent to the original QBF.

Second, the problem of checking the validity of ∀X∃Y.F with F satisfiable is reduced
to obtainability. Let n = |X| = |Y | and Y ′, X1, . . . , X2n be each a set of n new variables.

K1 = (X ≡ X1 ≡ · · · ≡ X2n) ∧ Y ¬ ∧ Y ′¬

K2 = (X ≡ X1 ≡ · · · ≡ X2n) ∧ (Y ̸≡ Y ′) ∧ F

R = K1

That the reduction works is proved by first proving three preliminary claims:

(1) the distance between models of K1 or K2 differing on the evaluation of X is 2n or
more;

(2) no model has distance vector (0, k) with k < n;
(3) the models that have distance vector (0, n) are exactly the models of K1 that satisfy

F by changing the values of Y in some way;

Since both K1 and K2 contain X ≡ X1 ≡ · · · ≡ X2n, if two of their models differ even
on a single variable in X they also differ on all its 2n copies. Therefore, models of K1

and K2 with different evaluations of X are at least 2n apart.
To prove that no model is at distance (0, k) with k < n, it suffices to consider the

models of K1, since these are the only ones with 0 in the first position of the distance
vector. Let I be a model of K1. By the previous property, models of K2 with a different
evaluation of X are at distance 2n or more. The models of K2 with the same evaluation
of X differ only on the values of Y and Y ′. However, since K2 contains Y ̸≡ Y ′, all
models of K2 have exactly n positive literals in Y ∪ Y ′. Since K1 contains Y ¬ and Y ′¬,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Paolo Liberatore

its models assign false to all Y ∪ Y ′. As a result, the distance between these models is
n, leading to a distance vector (0, n).

A model has distance vector (0, n) only if it is a model of K1. Let I be model of K1,
and IX its restriction to the variables X only. By the above point, the distance between
I and a model of K2 with a differing evaluation of X is (0, 2n) or more. Therefore, these
models of K2 can be excluded from consideration: it suffices to consider models of K2

with the same evaluation IX on the variables X. Since K2 implies F , such models exist
if and only if F can be satisfied by adding a suitable evaluation of the variables Y to
IX . If this is the case, a model of K2 has the same values of I on X and all its copies
Xi, while it assigns exactly n among Y and Y ′ to true. Since I has the same values of
X but sets false all variables Y and Y ′, its distance from that model is exactly (0, n).

Let F be a satisfiable formula over variables X and Y .
If ∀X∃Y.F is true, then for every evaluation IX over X some evaluation over vari-

ables Y makes F true. This means that every model I of K1 has distance vector (0, n).
Formula K1 is obtained by merging K1 and K2 with weights w1 = n + 1 and w2 = 1:
models with distance vector (0, n) have weighted distance n, all other models have
distance vector (k, k′) with k > 0 and weighted distance n+ 1 or more.

If ∀X∃Y.F is false, then an evaluation IX over X makes F true for no evaluation of
Y . Let I be the model of K1 with IX as its evaluation of X; the values of all Xi are
by definition the same and Y, Y ′ all false. By what proved above, since IX cannot be
extended to satisfy F , the distance vector of I is (0, k) with k > n. Since some models
have distance vector (0, n), this model I is in the result of merging for no choice of w1

and w2.

3.2. Local search algorithm
An algorithm using local search is shown. It employs two elements of the proof of The-
orem 3.1 to obtain w1

w2
or some bounds on its value. No assumption is made over d(I,K)

other than the availability of a procedure to determine it; for the drastic distance this
is straightforward, as it amounts to check whether I |= K; for the Hamming distance,
since the problem is NP-complete, an approximate method can be used instead. Once
w1

w2
is determined, the knowledge bases are merged and the result checked for equiva-

lence to R. This final check is necessary because the value of w1

w2
is not determined with

certainty: not all models of R and of ¬R are checked.
Property 1 ensures that if two models of R are such that the denominator of p(I, J)

is not null, then w1

w2
= p(I, J). Two such models can be looked upon using local search.

During the run of the procedure, models that do not satisfy R are used to establish or
refine bounds on the value of w1

w2
. This is useful because, as Property 2 shows, even if

for all pairs of models of R the denominator of p(I, J) is zero, the models that do not
satisfy R still constrain w1

w2
.

Summing up, the algorithm does two things at the same time:

(1) looks for two models I and J of R such that p(I, J) has a non-zero denominator;
(2) if a model I of R has been found, for every model M of ¬R found during the search

p(I,M) is used to refine two bounds.

In the following algorithm, conditions involving I are to be considered false if I is
unassigned, for example when the algorithm starts. The result is w1

w2
or the special

value “unobtainable”; the first is assumed to be returned as a pair of integers, rather
than a (possibly truncated) rational value. The maximal distance between two models
is denoted by n; this is 1 for the drastic distance and the number of variables for the
Hamming distance. This is also the maximal value of p(I, J) and the reason why a is

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:13

initialized to n + 1. The algorithm depends on a parameter that is common to local
search algorithms, the maximal number of iterations before giving up, here named
maxiter.

ALGORITHM 1.

(1) a = n+ 1; b = −n− 1
(2) iter = 0
(3) if iter mod restart = 0 set O=random model
(4) change O by local search for a model of R (see below)
(5) if O |= R and I is unassigned set I = O
(6) if O |= R and p(I,O) has a non-zero denominator, then:

— if p(I,O) is positive and between a and b then return p(I,O)
— otherwise return unobtainable

(7) if O ̸|= R and d(I,K1)− d(O,K1) > 0 then a = min(a, p(I,O))
(8) if O ̸|= R and d(I,K1)− d(O,K1) < 0 then b = max(b, p(I,O))
(9) if a < 0 or a ≤ b return unobtainable

(10) iter = iter + 1
(11) if iter < maxiter go to Step 3
(12) return a+b

2

Point 4 is a step of a local search for a model of R: for example, if F is in CNF it
may change the value of a single variable in such a way the number of clauses that are
satisfied by the current interpretation is increased as much as possible. More refined
methods can be employed, such as making random moves with a certain probability,
which may remain constant or decrease with the number of iterations.

This algorithm returns w1

w2
as a pair of integer numbers, which can be used as the

weights w1 and w2. If merging with these weights produces R, then they are the
searched weights. Otherwise, if the value is returned from Step 6 then R is not obtain-
able. If it is returned from Step 12, then one may attempt some other value between a
and b, or keep searching some more.

Several variants may be considered.

(1) Step 4 looks for a model of R, but after a number of iterations without finding one
that makes the denominator of p(I,O) different than zero, it makes sense to aim
at minimizing a and maximizing b instead;

(2) models with a distance vector strictly greater than others cannot be in the result
of merge; therefore, if they satisfy R then R is not obtainable; if they are not in R
they can be neglected;

(3) instead of returning immediately after determining p(I, J) in Step 6, one may pro-
ceed with local search and check whether some other models of R and of ¬R satisfy
the conditions of Theorem 3.1.

The main idea of the algorithm can also be carried to some other methods for propo-
sitional satisfiability. Other algorithms can indeed find two models of R to determine
w1

w2
and some interpretations not satisfying R to set bounds on this fraction. All that is

needed is the possibility of continuing after finding the first model, and the ability to
identify interpretations not satisfying the formula during the search. DPLL [Nieuwen-
huis et al. 2006] and propositional tableau [d’Agostino 1999] can be used in place of
local search.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Paolo Liberatore

3.3. Tractable case
This section shows a tractable case of obtainability: the measure is the Hamming dis-
tance, the knowledge bases are conjunctions of literals and the expected result of merg-
ing is a Horn or Krom formula.

THEOREM 3.5. If K1 and K2 are conjunctions of literals, determining whether a
Horn or Krom formula R is obtainable by the weighted sum of the Hamming distances
is in P.

Proof. For a model I and a variable x, let I · x denote a model that is identical to I
except that x is assigned the value true. I · ¬x is the same with value false. The first
step of the proof is a property of d(I,Ki) when Ki entails a literal or does not mention
a variable.

— if Ki entails x then d(J · x,Ki) < d(J · ¬x,Ki); since Ki entails x, all its models set x
to true; this hold in particular for every model J that is one of the closest to I; since
I · ¬x and I · x have the same differing literals from J except for x, which is positive
in J , then d(I · x,Ku) < d(I · ¬x,Ki); the same property holds when Ki entails ¬x;

— if Ki does not contain x then d(I · x,Ki) = d(I · ¬x,Ki); since Ki does not mention x,
it it is satisfied by J · x if and only if it is satisfied by J · ¬x for every interpretation
J ; therefore, if J is a model at a minimal distance from I then J · x is at minimal
distance from I · x; the same holds for ¬x; therefore, d(I · x,Ki) = d(I · ¬x,Ki).

The second step of the proof relates merge result to the weighted distance of I · x
and I · ¬x. Both are based on merge being defined from the set of models of minimal
weighted distance.

(1) if every model I · ¬x has greater weighted distance from {K1,K2} than I · x then
the merge result implies x, and the same for ¬x; indeed, since every model where
x is false is further than the same one where x is true, minimal models all have x
true;

(2) if every model I is at the same weighted distance from {K1,K2} as I · x and I · ¬x
then the merge result does not mention x; indeed, if this is true then minimal mod-
els are symmetric with respect to x and ¬x; the value of x is therefore irrelevant to
the satisfaction of the merge result.

The claim can now be proved. Variables are divided in the three groups: those men-
tioned neither in K1 nor in K2; those occurring in a base but not with the opposite sign
in the other; those occurring with opposite signs.

If neither K1 nor K2 mention x then for every I it holds d(I · x,K1) = d(I · ¬x,K1)
and d(I ·x,K2) = d(I · ¬x,K2), which imply that I ·x and I · ¬x have the same weighted
distance regardless of the weights. This implies that the merge result does not mention
x.

If x is in K1 and is not mentioned in K2, then d(I · x,K1) < d(I · ¬x,K1) and d(I ·
x,K2) = d(I · ¬x,K2), which imply that I · x has lower weighted distance than I · ¬x.
If x is also in K2 then d(I · x,K2) < d(I · ¬x,K2), and the result is the same. In both
cases, the result of the merge entails x.

If K1 |= x and K2 |= ¬x, then d(I ·x,K1) < d(I ·¬x,K1) and d(I ·x,K2) > d(I ·¬x,K2).
The result of merge depends on the weights. If w1 > w2 then I · x has lower weighted
distance than I · ¬x, proving that the merge result entails x. The same holds for all
other literals that are in K1. In other words, if w1 > w2 then the result of merge
contains all literals in K1 that occur with the opposite sign in K2. The same holds in
reverse if w1 < w2: the result of merge contains all literals of K2. If w1 = w2 then I · x

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:15

and I · ¬x have the same weighted distance, proving that the result of merge does not
mention x.

As a result, if w1 > w2 then the result of merge contains not only the literals that
are in K1 and do not occur negated in K2, but also the ones that occur negated in K2.
The contrary happens if w1 < w2. If w1 = w2 then the result of merge does not contain
the variables with opposite sign in K1 and K2. Each of these three possible results can
be checked for equivalence with R in polynomial time because of the Horn or Krom
restriction.

4. PRIORITY BASE MERGING
Priority base merging [Nebel 1992; 1998; Rott 1993; Delgrande et al. 2006] is a seman-
tics that selects groups of formulae based on a priority ordering over them. Such an
ordering over the knowledge bases K1, . . . ,Km can be defined as an ordered partition
P of them (this representation is similar to the one used by Rott [1993] for orderings
over formulae); the classes of the partition are denoted P (1), P (2), P (3), . . . and are not
empty. The lower the class Ki belongs to, the higher its reliability is. Such a partition
allows comparing two sets of formulae: L ≡ N if and only if L and N are equal; L < N
if and only if P (1)∩L = P (1)∩N , . . .P (i−1)∩L = P (i−1)∩N and P (i)∩L ⊃ P (i)∩N
for some number i, possibly 1.

The maxsets of a set of formulae K1, . . . ,Km are its maximally consistent subsets.
Formally, M is a maxset of K1, . . . ,Km if M is consistent, M ⊆ {K1, . . . ,Km} and
M ∪ {Ki} is inconsistent for every Ki ∈ {K1, . . . ,Km}\M . Maxsets can be recast in
terms of base remainder sets [Alchourrón et al. 1985; Booth et al. 2011].

Merging K1, . . . ,Km according to a priority ordering is disjoining the maxsets that
are minimal according to the ordering [Nebel 1992; 1998; Rott 1993; Delgrande et al.
2006]. This is equivalent to disjoining the minimal consistent subsets, including the
ones that are not maximally consistent.

By definition, the result of merging is always an or-of-maxsets. However, not all
possible or-of-maxsets are produced by merging: some are not generated by any prior-
ity partition. Given an or-of-maxsets of K1, . . . ,Km, the maxsets it contains are called
selected, the others excluded. The aim is to find an ordering, if any, that makes the
selected maxsets minimal and the other ones non-minimal.

A formula R is obtainable from K1, . . . ,Km if it can be obtained by merging these
formulae. For the merging based on priority orderings, this amount to checking the
existence of an ordering that makes the result of merging K1, . . . ,Km equal to R. This
condition is equivalent to the existence of an ordering such that the minimal maxsets
are exactly the selected ones. The difference between “selected” and “minimal” is that
the first one is a requirement (the maxset is in the expected result R) while the second
is a condition over a specific ordering (it makes the maxset minimal). Not all formulae
are obtainable, and this will be formally proved.

Given formulae R and K1, . . . ,Km, the problem of obtainability is that of finding
(search problem) or deciding the existence of (decision problem) a priority ordering
such that R is the result of merging K1, . . . ,Km with that ordering.

As usual, the complexity analysis is carried over the decision version of the problem,
but the algorithm in Section 4.4 is aimed at finding the actual priority ordering, if
one exists. Otherwise, Section 5 describes some possible courses of actions in case of
unobtainability.

A number of properties related to obtainability are shown. The first ones are about
maxsets in general, the following about the specific problem of obtaining a formula as
the result of merging with an appropriate priority ordering.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Paolo Liberatore

4.1. Properties of maxsets
A general property of maxsets is that they are pairwise inconsistent. This is quite a
folklore result, and is proved here only for the sake of completeness.

LEMMA 4.1. Two different maxsets of the same set of formulae are mutually incon-
sistent.

Proof. To the contrary, assume that M and N are two differing maxsets such that
M ∪ N is consistent. Since M and N differ, either M\N or N\M is not empty. In the
first case, since M∪N = N∪(M\N), then N is consistent with other formulae not in N .
This contradicts the assumption that N is a maxset: no formula can be be consistently
added to N . A similar line proves the impossibility of the other case.

LEMMA 4.2. If M is a maxset of K1, . . . ,Km and I one of its models, then M =
{Ki | I |= Ki}.

Proof. I is a model of M if it is a model of all formulae of M , that is, the formulae of
M are a subsets of those satisfied by I. This proves that M ⊆ {Ki | I |= Ki}. If such a
containment were strict, the formulae Ki that are not in M would be consistent with
M because they are satisfied by I, contradicting the assumption that M is a maxset.

When checking minimality using a priority ordering, considering all consistent sub-
sets or the maxsets obly does not make difference, as the following lemma shows.

LEMMA 4.3. If N ⊂ M then M is less than N according to every priority ordering,
where N and M are two sets of formulae.

Proof. If N ⊂ M then N ∩ P (i) ⊆ M ∩ P (i) for every i. Since the containment is strict,
M\N is not empty. Let Ki be an element of it, and j its class. Containment N ∩ P (i) ⊆
M ∩ P (i) holds for all i’s, including i = j. For this index, however, Ki ̸∈ N ∩ P (j) while
Ki ∈ M ∩ P (j), proving that M is strictly less than N according to the ordering.

A consequence of this lemma is that the consistent subsets that are minimal accord-
ing to an arbitrary ordering are also maxsets. Also, a maxset is minimal if and only if
is not less than another consistent subset.

LEMMA 4.4. A maxset is not minimal if and only if some other consistent subset of
the same set of formulae is less than it according to the priority ordering.

Proof. Let M be a maxset and N a consistent subset that compares less than it ac-
cording to the ordering. If N is also maximally consistent, the claim holds. Otherwise,
some formulae can be added to it to obtain a maxset. Adding formulae only makes N
lesser according to the ordering P , by Lemma 4.3. This proves that if some consistent
subset of formulae is less than M , then M is not a minimal maxset.

Vice versa, if M is not minimal then another maxset N is less than it according to
the ordering. Since N is by definition of maxset a consistent subset of formulae, the
claim holds.

The following lemma helps in identifying the minimal maxsets.

LEMMA 4.5. For every maxset M that is minimal according to priority P it holds
M ∩ P (1) ̸= ∅.

Proof. To the contrary, assume that M ∩ P (1) = ∅. By definition of priorities, P (1) is
not empty. Let K be a formula of it. By the assumption that all formulae are consistent,
{K} is consistent. Moreover, P (1)∩M ⊂ P (1)∩{K}, which by definition implies {K} <
M , contradicting the assumption that M is minimal.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:17

In words, minimal maxsets have at least a formula in the first class of the priority
partition. This result depends on all formulae being consistent and no priority class
being empty, both of which are assumed in this article.

The next lemma is useful for producing maxsets with some given property. It tells
how to build formulae that have some given maxsets. In particular, the maxsets are
specified on letters A,B,C,D, . . ., which are just arbitrary symbols. Given some sets
of them, such that {A,B}, {B,C,D}, etc., one can build a formula for A, a formula for
B, etc., in such a way the maxsets of these formulae are exactly the given sets {A,B},
{B,C,D}, etc. The only requirements is that none of these sets is contained in another:
for example, if {A,B} is given then {A,B,C} cannot.

For example, given the sets of letters {A,B}, {A,C} and {B,C}, the next lemma
shows which formulae to use in place of the letters: x for A, y for B and x ̸≡ y for C.
Their maxsets are indeed {x, y}, {x, x ̸≡ y} and {y, x ̸≡ y}.

LEMMA 4.6. Given some sets of letters, none of these sets contained in another, there
exists a formula for each letter so that the maxsets of these formulae correspond to the
given sets of letters.

Proof. For n sets, ⌈log n⌉ propositional variables are required. Each set of letters is as-
sociated a unique propositional interpretation; this is possible because by construction
there are at least n propositional interpretations over these variables.

For each such interpretation, one can build a formula that is satisfied only by it. For
example, if the interpretation makes x and y false and z true, the formula is ¬x∧¬y∧z.
Since each set of letters is associated a propositional interpretation, is also associated
to the corresponding formula.

If letter L is in the sets S1, S2, . . ., and these sets corresponds to formulae F1, F2, . . .,
the formula of L is their disjunction F1∨F2∨· · ·. As a result, the formula corresponding
to the letter L is satisfied exactly by the interpretations of the sets S1, S2, . . ..

By construction, if a set of letters is associated to the interpretation I, the formulae
corresponding to the letters in the set are satisfied by I. This proves that each set of let-
ters corresponds to a consistent set of formulae. This set is also maximally consistent
because: a. no other formula is satisfied by that interpretation; and b. if all formulae
of the set plus some others are satisfied by another interpretation, then the set corre-
sponding to that interpretation strictly contains the considered one, contradicting the
assumption that none of the sets strictly contains another.

To conclude the proof, the formulae do not have other maxsets. This is because the
formulae are only satisfied by some of the interpretations corresponding to the sets of
letters, and each of them is the only model of a maxset.

Intuitively, this lemma proves that letters can be used in place of formulae, and sets
of letters for their maxsets. Provided that no set is contained in another, it is always
possible to build a set of formulae to use in place of the letters, and the sets of letters
will be their maxsets. This method can be used for example to show that maxsets may
form a sort of “cycles”. The first step is to define the sets of letters:

(1) {A,B}
(2) {A,C}
(3) {B,C}

Binary sets can be drawn as edges of a graph, a graphical representation that will
be used also in the rest of this article:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Paolo Liberatore

f f
fT

TT �
��

C

A B

Instead of showing formulae with maxsets having the given property, the maxsets
are expressed as sets of letters, each representing a formula. Lemma 4.6 tells that such
formulae exist, its proof how to build them. In this case, three sets require two vari-
ables, like x and y. The interpretations associated to the sets can be chosen arbitrarily,
for example:

— {A,B} ⇒ {x, y}
— {A,C} ⇒ {x,¬y}
— {B,C} ⇒ {¬x, y}

Since A is in {A,B} and in {A,C}, its formula is one satisfied by the models of these
two sets: {x, y} and {x,¬y}. For example, A is (x ∧ y) ∨ (x ∧ ¬y), which simplifies to x.
In the same way, B = y and C = (x ̸≡ y).

These formulae x, y, x ̸≡ y have the required maxsets, each composed of exactly two
formulae over three. From now on, this explicit construction of formulae from sets of
letters representing their maxsets is generally not done, with Lemma 4.6 referenced
as evidence that it is possible. This is first done in the proof of Lemma 4.10, showing
that a formula that is an or of some maxsets may not be obtainable with any ordering.

The next two lemmas show that some results are easy to obtain: selecting all
maxsets or just a single one.

LEMMA 4.7. The priority ordering that gives maximal priority to all formulae
makes all maxsets minimal.

Proof. A maxset M could be non-minimal only if there exist another maxset N such
that N < M . Since all formulae are in P (1), the definition of ordering of maxsets
simplifies to: N < M if M ⊂ N . This contradicts the assumption that M is maximally
consistent.

LEMMA 4.8. The priority ordering that gives maximal priority to exactly the formu-
lae of a maxset makes it the only minimal one.

Proof. By contradiction, if M is not minimal then N < M for some other maxset N .
This implies either P (1)∩M ⊆ P (1)∩N or P (1)∩M ⊂ P (1)∩N . The latter contradicts
P (1) = M . The former implies M ⊆ P (1) ∩ N , which is only possible if M = N or
M ⊂ N , and a maxset is never contained in another.

4.2. Properties of obtainability
The following lemma expresses equivalent conditions for a maxset to be a disjunct of
the result of merging.

LEMMA 4.9. If R is obtainable by priority base merging from some formulae and
M is a maxset of them, the following conditions are equivalent:

— M is consistent with R;
— M |= R;
— M is selected in all orderings that generate R.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:19

Proof. Since the maxsets are mutually inconsistent by Lemma 4.1, each model of R
is contained in exactly a maxset M . Therefore, M is one of the disjuncts that form R if
and only if it is consistent with R, and this holds in every ordering that generate R.

By definition, merging produces a disjunction of some of the maxsets, the minimal
ones according to the priority ordering. A first question is whether all disjunctions of
maxsets are obtainable with an appropriate ordering. The following lemma shows that
the answer is no.

The counterexample uses four maxsets, of which two are selected and two excluded.
“Selected” and “excluded” indicates whether a maxset is in the disjunction that is the
expected result of merging. In other words, the required ordering would have the se-
lected maxsets as the minimal ones. If maxsets are binary, they can be depicted as a
graph, where a crossed edge represents an excluded maxset:

f f
f f@@����@@

A B

CD

LEMMA 4.10. No priority ordering selects {A,B} and {C,D} while excluding {B,C}
and {D,A}.

Proof. By Lemma 4.6, letters and sets of letters can be used in place of formulae and
their maxsets, respectively. The following maxsets are proved not be obtained by any
ordering:

(1) {A,B} selected
(2) {B,C} excluded
(3) {C,D} selected
(4) {D,A} excluded

In words, no priority ordering makes the first and third maxsets minimal out of
these four.

To the contrary, assume that such an ordering exists. By Lemma 4.5, since {A,B} is
selected, either A or B is in the first class of the priority partition. For the same reason,
either C or D is.

The first class cannot include both A and D, as otherwise {A,D} would be minimal.
For the same reason, it cannot include both B and C, since {B,C} is excluded. The
only remaining cases are A and C in the first class, or B and D. The second case is
omitted by symmetry: it is the same as the first swapping A with B and C with D.

In the first case, B and D are not in the first class of the priority partition. Since
both {A,B} and {C,D} are selected, if one of them is not in the second class either, so
is the other. Since classes cannot be empty, B and D are in the second class:

A C
B D

This ordering selects {A,B} and {C,D} as required, but also {B,C}. This contradicts
the assumption that {B,C} is excluded.

By Lemma 4.6, letters A,B,C,D can be replaced by formulae in such a way the four
sets in the lemma represent their maxsets. The impossibility of selecting the first and
third while excluding the second and fourth proves that the disjunction of the first and
third maxsets is not obtainable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Paolo Liberatore

COROLLARY 4.11. There exists R and K1, . . . ,Km such that R is the disjunction of
some of the maxsets of K1, . . . ,Km but is not obtainable by priority base merging.

An application of Lemma 4.6 allows finding the actual formulae to use in place of
A,B,C,D. The unobtainable result is then (A ∧ B) ∨ (C ∧D). Formulae like these are
later used as the basis of a hardness result.

The maxsets of this lemma form a cycle in which selected and excluded maxsets
alternate. This condition is shown to be necessary and sufficient in the case of maxsets
comprising two formulae or less.

The counterexample involves four formulae and four maxsets. This is the minimal
condition for unobtainability: a result that is an or-of-maxsets is always obtainable if
the formulae to be merged are three or less.

THEOREM 4.12. Every consistent or-of-maxsets is obtainable by priority base merg-
ing if the maxsets are less than four.

Proof. If a set of formulae has a single maxset, the only possible result of merge is the
maxset itself, which is therefore always obtainable. With two maxsets, only two cases
are possible: select one of them, or both. Lemma 4.8 and Lemma 4.7 cover both cases.

With three maxsets, these lemmas proves that selecting one or all of them is always
possible. The only remaining case is that of two selected maxsets out of three. Let them
be M , N , and L, where the first two are selected. Being maxsets, M has a formula not
in L, and the same for N :

— M\L ̸= ∅
— N\L ̸= ∅

If M\L and N\L intersect, place this intersection in P (1) and all other formulae in
P (2). This way, M and N have the same formulae in P (1) while L has none, proving
that M and N are selected while L is not.

If M\L and N\L do not intersect, place their union in P (1) and all other formulae in
P (2). This ordering guarantees that both M and N have formulae in P (1) while L has
none, and that P (1) ∩M and P (1) ∩N are not contained one in the other.

Since three formulae have at most three maxsets, this theorems proves that every
consistent or-of-maxsets of three formulae is obtainable with an appropriate priority
ordering.

Lemma 4.10 uses four formulae, indeed: {A,B}, {B,C}, {C,D}, {D,A}. The dis-
junction of the first three of these maxsets is also unobtainable: this can be proved in
the same line as Lemma 4.10, and shows a case where all maxsets but one are unob-
tainable. In contrast, Lemma 4.7 and Lemma 4.8 state that a single maxset and all
maxsets are always obtainable.

The four maxsets form a cycle, when seen as a graph: {A,B}, {B,C}, {C,D}, {D,A}.
When considering maxsets comprising more than two elements, the notion of Berge–
acyclicity [Fagin 1983] for hypergraphs ensure obtainability, as the next theorem
shows. An hypergraph is Berge-acyclic if its incidence graph is acyclic. The incidence
graph has a node for every edge and one for every node of the hypergraph; two nodes
are linked by an edge if they correspond one to an hyperedge and the other a node of
the hyperedge.

THEOREM 4.13. Every disjunction of a nonempty subset of a set of maxsets that is
Berge–acyclic is obtainable by priority base merging.

Proof. A set of sets that is Berge-acyclic can be seen as a tree of sets, where each
set shares a single node with its parent and one with each of its children. A priority

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:21

ordering can be build starting from a maxset, labeling its formulae and then moving
to its children.

At each step, a set having a single labeled node is considered, and the labeling is
extended to its other nodes. A label is either a single number n greater than one or
a pair 1, n with n greater than one. The meaning of 1, n will be clarified later, but
it roughly means that the node is part of a selected maxset whose other nodes are
labeled n.

The procedure includes some choices, such as the root and a node in each set. It
is however not nondeterministic, as it works for any of these choices; in other words,
every choice can be resolved by taking arbitrary choices.

The procedure starts from the root. If this maxset is selected, an arbitrary node of
its is labeled 1, 2:

f f
f

f f
�

�



�
1, 2

If it is excluded, an arbitrary node of its is labeled 2:

f f ff�

�



�
2

The algorithm descends the tree. When moving from the parent to a child, the former
is all labeled and the latter shares a single labeled node with it and its other nodes are
unlabeled. These are labeled and the procedure moves to the children.

Labels are added to selected edges are follows:

f ff
f

�

�



�
�
��3

XXXXXzQQs
n

n
n

1, n f f
f
f�

�



�
�
��3

XXXXXzQQs
n

n

n
1, n

In words, if the only label is n, an arbitrary other node is labeled 1, n and the re-
maining (if any) are labeled n. If the only label is 1, n, the other nodes are labeled
n.

If the considered set is excluded, labels are extended as follows:

f f
f
f�

�



�
�
��3

XXXXXzQQsn

n

n

n

f f
f
f�

�



�
�
��3

XXXXXzQQs1, n

n+ 1

n+ 1

n+ 1

In words, if the only label is n, the others are n. If it is 1, n, the others are n+ 1.
This labeling is iterated until all nodes are labeled. Labels then tell the class each

formula goes into: 1, n means class one, n means class n. If the maxsets form a forest,
which for example happens if there are isolated maxsets, the procedure is iterated on
all its trees.

The procedure of labelling ensures that the following conditions hold:

(1) every maxset contains at most a label 1, n;
(2) if it does, the others are all n if selected or n+ 1 if excluded;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Paolo Liberatore

(3) otherwise, the maxset is excluded and its labels are equal to a value greater than
one;

(4) every label 1, n is in at least a selected maxset, and every selected maxset contains
at least a label 1, n.

In other words, every selected maxset contains a label 1, n and the remaining labels
are n; every excluded maxset has either equal labels greater than one or a label 1, n
and all others n+ 1; every 1, n label is in at least a selected maxset.

This way, selected maxsets are minimal because they contain a node in class one,
the rest in class n, and all other maxsets containing the same node in class one have
the others in class n. Excluded maxsets are not minimal because they either contain
no formula in class one, or otherwise they contain a formula labeled 1, n, the others
are in class n+ 1, and the node labeled 1, n is is in another maxset having formulae in
class n.

In order to complete the proof, we show that the four conditions are ensured when
the procedure start, and that none of its step makes them false.

If the first maxset is selected, its first label is 1, 2 and the others are 2. If it is ex-
cluded, all its labels are 2. The conditions therefore hold up to this point.

At each iteration:

— if the maxset is selected, either it has the initial node 1, n and is added n to the
others, or it has n in the first node and is added 1, n to one of the others and n to the
remaining ones; this ensures that it contains at least a label 1, n and the others are
all n;

— if the maxset is excluded, it ends up with all labels n > 1, or with a single label 1, n
and the others n+ 1.

Either way, a set may contain a label 1, n only if it is the initial label, and then no
other 1,m is ever added, or it is added in a single node of a selected set that has n has
the initial label.

Finally, a label 1, n is added only in a single case: a selected set, if the initial node
is labeled n. As a result, every 1, n is in a selected set that contains n has the other
labels.

As an example, the algorithm is shown on the following set of sets, where lines
denotes binary sets and boxes ternary sets; a cross indicates an excluded set, the other
sets are included.

�� �� �� �� �� ��
�� ��

�� �� �� ��
�� ���� ��

�� ��
�� ��

@@

@@��

��

The central three-node set can be taken as the root of a tree-like structure of sets.
Since this set is selected, an arbitrary node of it is labeled 1, 2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:23

�� �� �� �� �� ��
�� ��

�� �� �� ��
�� ���� ��

�� ��
�� ��

@@

@@��

��

1,2

The algorithm now proceed with its iterative step. Since a node of the central set is
labeled 1, 2 and the set is selected, all other nodes of its are labeled 2.

�� �� �� �� �� ��
�� ��

�� �� �� ��
�� ���� ��

�� ��
�� ��

@@

@@��

��

1,2 22

The three-node set on the left is labeled in the same way. The vertical segment rep-
resenting a binary set is instead excluded. Since one of its nodes is labeled 2, the other
takes the same label.

�� �� �� �� �� ��
�� ��

�� �� �� ��
�� ���� ��

�� ��
�� ��

@@

@@��

��

1,2 222

2

2

The two horizontal segments are labeled in different ways. The first is selected and
one of its nodes is labeled 2; therefore, the other takes 1, 2. The second is excluded and
one of its nodes is labeled 1, 2; therefore, the other takes 3. The set at the bottom has
only the label 2 and is selected; therefore, one of its other nodes is labeled 1, 2, the other
2. This concludes the labeling.

�� �� �� �� �� ��
�� ��

�� �� �� ��
�� ���� ��

�� ��
�� ��

@@

@@��

��

1,2 222

2

2 1,2

2

1,2 3

While Berge-acyclic hypergraphs are obtainable, the converse is not always the case:
some Berge-cyclic hypergraphs are obtainable. Contrasting Theorem 4.20 (at the end

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Paolo Liberatore

of the next Section 4.3), which proves that alternating cycles imply unobtainability for
binary maxsets, in the general case alternating cycles may be obtainable:

f f
f

f

�
�

�S
S

S

�
�
� @

@
@

��@@

The maxset on the top is selected, the other excluded. This hypergraph is Berge-
cyclic, yet is obtained with a two-classes priority ordering:

f f
f

f

�
�

�S
S

S

�
�
� @

@
@

@@��

1

2 2

2

4.3. Binary maxsets
A particular case of the problem of obtainability by priority base merging is when
maxsets comprise at most two formulae. This may be guaranteed to hold in a specific
domains, but the main reasons for studying this case are: first, it provides proofs of ex-
istence of some specific cases, such as one requiring n classes of priority for obtainabil-
ity; second, it is a subcase where a necessary and sufficient condition for obtainability
can be given, that of alternating cycles of maxsets; third, it provides guiding principles
for a future study of the general case, where no such necessary and sufficient condition
has been found.

When all maxsets comprise at most two formulae, they can be seen as a graph:

— nodes are formulae;
— isolated nodes are singleton maxsets;
— edges are maxsets of two formulae.

Lemma 4.6 ensures that the contrary also holds: every graph corresponds to the
maxsets of some formulae. As a result, properties of graphs carry to sets of maxsets.

The analysis of the subcase of binary maxsets is long and requires a number of
intermediate steps. The formal proofs are in the electronic appendix, this section only
summarizes the main results.

Definition 4.14. A cycle is a path ending in the same node where it started.

This is different from the definition of simple cycles, which are not allowed to cross
an edge more than once.

When all maxsets contain at most two formulae, the singletons can be excluded from
consideration because of Lemma 4.1: {A} cannot be contained in any other maxset;
therefore, inclusion or exclusion do not affect the other maxsets. What remains is a set
binary maxsets, which can be seen as a graph where nodes are formulae and edges are
maxsets. Some edges correspond to selected maxsets, the others to excluded maxsets.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:25

Definition 4.15. A selected-excluded graph (abbreviated: se graph) is a graph whose
edges are partitioned in two sets: selected and excluded.

Since edges are maxsets, the distinction indicates which are required to be in the
result of merging and which are not. Most of the proofs regarding binary maxsets
employ assignments of some formulae to priority class.

Definition 4.16. A partially assigned se graph has some nodes assigned positive in-
teger values. If all nodes are assigned the graph is totally assigned.

In a totally assigned se graph, all formulae are assigned a class. Therefore, one may
determine the minimal edges (i.e., the edges that correspond to minimal maxsets) and
check whether they are exactly the selected ones.

Definition 4.17. A totally assigned graph is obtainable if the minimal edges accord-
ing to the priority ordering obtained from the numbers assigned to the nodes are ex-
actly the selected ones.

This definition may look tautological, but is rather close to the opposite. In a se
graph, the selected edges are the maxsets that are required to be in the result of merg-
ing: if {A,B} |= R, the edge (A,B) is selected and vice versa. The values assigned to
nodes may or may not make such a maxset minimal. If it is not, the edge is incorrectly
excluded. Similarly, an excluded edge that is minimal according to the values is incor-
rectly selected. If no edge is incorrectly selected or excluded the ordering produces the
required result.

The following graph illustrates the above definitions:

f f
ff

f
f

��������@@��

@@��

1

2

3

1

1

2

This is a se graph since some edges are marked as excluded (the crossed ones); the
others are selected. It is also totally assigned since each node is assigned a number (its
class in the priority ordering). It would be obtainable if every selected edge were min-
imal and every excluded edge were not. This is not the case, as the vertical excluded
edge is minimal. Indeed, it is less than the edge of values 1 and 3 and incomparable to
the others; for example, the top edge has in common with it the node of value 1, but
the two nodes of value 2 are different.

This graph would be obtainable if the value of the bottom node were 3 instead of
2; the bottom edge would remain minimal as it shares its node of value 1 with no
other edge. Graphically, obtainability means that the non-crossed edges are exactly
the minimal ones according to the numbers.

Definition 4.18. A partially or totally assigned se graph G extends another one H if
they have the same nodes and edges and all nodes assigned in H are also assigned in
G to the same values.

A se graph is therefore obtainable if and only if it can be extended to a totally as-
signed se graph that is obtainable. On totally assigned se graphs obtainability can be

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Paolo Liberatore

checked by determining the minimal maxsets according to the ordering given by the
values.

Se graphs can be simplified without affecting obtainability: the resulting graph is
obtainable if and only if the original one is. In particular:

— Disconnection: certain edges can be removed or replaced by edges between one of
their original nodes and an isolated copy of the other;

— Merging: certain edges can be merged by identifying their nodes pairwise; certain
nodes can be merged;

— Full disconnection: a node that is only touched by excluded edges can be replaced by
a node for each of these edges;

— Tail removal: a chain of edges that do not participate in any cycle can be removed;
— Zigzag folding: a path of selected edges is turned into a single edge by merging all

nodes in even positions and all in odd positions;

The following consequences can be drawn:

— in any obtainable total assigned se graph containing a triangle of selected edges, the
nodes of the triangle have value one;

— in any obtainable total assigned se graph containing a chain of alternating excluded-
selected edges with the first node assigned one, the values of the other even nodes
are one and the values of the odd nodes are strictly increasing;

— for every n there exists a graph that is only obtained by assignments with at least n
different values;

— a graph containing a cycle of alternating (single excluded edge)–(chain of odd se-
lected edges) is unobtainable;

— a graph is obtainable if and only if the result of applying full disconnection, removal
of tails and zigzag folding as far as possible is an empty graph;

The third result correspond to the following theorem, when carried back to maxsets
and formulae.

THEOREM 4.19. For any n, there exists R and K1, . . . ,Km such that R is obtainable
by priority base merging from K1, . . . ,Km only with priority partitions having n classes
or more.

Turning the second-last of these results into a necessary and sufficient condition
requires keeping into account that some edges can be crossed twice in the opposite
directions when following a cycle:f

f
f f f f

f
f

b
b
bb

"
"
""

"
"

""

b
b
bb@@��

@@��
@@��

@@��

@@��

This graph is unobtainable, but its only alternating cycle crosses the chain of three
edges in the middle twice, once left-to-right and once right-to-left. The main result
regarding binary maxsets is: a graph is unobtainable if and only if it contains a cycle
of alternating (single excluded edge)-(chain of odd selected edges) that crosses the same
edge at most twice.

Expressed in terms of maxsets and formulae, this fact is the following theorem.

THEOREM 4.20. Formula R is unobtainable from a set K1, . . . ,Km having no maxset
of size greater than two if and only if a cycle of (single maxset not in R)-(chain of odd
maxsets in R) that crosses the same maxset at most twice exists.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:27

4.4. Algorithm
Theorem 4.13 ensures that every or-of-maxsets is obtainable if the maxsets form a
Berge-acyclic hypergraph. The following algorithm combines the method for iteratively
labeling formulae with the search for maxsets. It is guaranteed to work if the maxsets
form a Berge–acyclic hypergraph, but may produce a correct result even if they do not.

ALGORITHM 2.

(1) for each pair of formulae Ki,Kj , determine their mutual consistency
(2) set L = ∅
(3) M = {Ki,Kj}, where {Ki,Kj} is consistent, Ki ∈ L and Kj ̸∈ L; if such a pair does

not exists (e.g., L = ∅) then M = {Ki} with Ki ̸∈ L; if L contains all Ki’s, stop
(4) choose Kj such that {Ki,Kj} is consistent for every Ki ∈ M ; if no such Kj exists, go

to Step 7
(5) if M ∪ {Kj} is inconsistent, go Step 4 and choose another Kj

(6) M = M ∪ {Kj} and go to Step 4
(7) L = L ∪M
(8) if M |= R, then:

(a) if no formula of M is labeled, then label one with 1, 2 and the others with 2;
(b) if a formula is labeled 1, n and the others are unlabeled, label the others n
(c) if a formula is labeled n and the others are unlabeled, label one of the others 1, n

and the others n
(d) otherwise, the set of maxsets is not acyclic: terminate with error

(9) if M ̸|= R
(a) if no formula of M is labeled, label all of them 2
(b) if a formula is labeled 1, n and the others are unlabeled, label the others n+ 1
(c) if a formula is labeled n and the others and unlabeled, label the others n
(d) otherwise, the set of maxsets is not acyclic: terminate with error

(10) go to Step 3

If a formula is labeled 1, n its priority class is one; if it is labeled n, it is n. If the result
of merging with this priority ordering is R, then R is obtainable.

The final check is necessary unless R is guaranteed to be an or-of-maxsets. The
algorithm includes some choices (e.g., “choose Kj”, “label one node with 1,2”) but is not
nondeterministic: arbitrary choices can be taken.

Entailment M |= R can be replaced with the consistency of M ∪ {R}. The algorithm
can be improved by caching the inconsistent sets M∪{Kj} detected in Step 5, especially
the small ones. This information can be useful when later checking another M ′∪{Kj}:
if M ∪ {Kj} ⊆ M ′ ∪ {Kj}, unsatisfiability is established at no additional cost.

THEOREM 4.21. If the maxsets of K1, . . . ,Km are Berge-acyclic, Algorithm 2 estab-
lishes the obtainability of R from them and outputs a priority ordering that generates
R if one exists.

Proof. The algorithm works by iteratively generating a new maxset M from a labeled
formula, and then labeling its other formulae according to the rules of Theorem 4.13.

In particular, during the algorithm the following conditions hold:

— all formulae of the maxsets found so far are labeled;
— L is the union of the maxsets found so far;
— M is a subset of a maxset not (yet) in L.

At the beginning these conditions are vacuously true, as no maxset has been found
and no formula is labeled. No step violates them: Step 3 guarantees that every gen-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 Paolo Liberatore

erated M is a new maxset, as it is built upon at least a formula that is not in the
previous ones; Step 7 is reached only when M is a maxset, ensuring the validity of the
first of three conditions; the two following steps label the formulae of this newly found
maxset.

Since labeling is performed as in Theorem 4.13, if the set of maxsets is acyclic and
R is an or-of-maxsets, the result is a priority ordering generating R.

If the maxsets are not Berge-acyclic, the algorithm stops when it reaches a maxset
that already contains two or more labels. In some cases, there is no way it could con-
tinue. For example, there is no way to extend labels 1, n and 1,m with n ̸= m to the
rest of a selected maxset. In the other cases, such as two labels greater than one, the
algorithm may still continue and obtain a correct ordering.

4.5. Complexity
A necessary condition to obtainability is that the formula to obtain is the disjunction of
some maxsets of the formulae to be merged. An obvious way to check this is to consider
all possible sets of subsets of formulae, checking that each of them is maximally con-
sistent, and that their disjunction is equivalent to the result to obtain. However, the
problem can be reformulated in a much simper way using some properties of maxsets.

LEMMA 4.22. Formula R is an or-of-maxsets of K1, . . . ,Km if and only if, for every
I |= R, it holds M |= R and M ∪ {Ki} |= ⊥ for every Ki ̸∈ M , where M = {Ki | I |= Ki}.

Proof. By Lemma 4.1, maxsets do not share models. Therefore, if R is an or-of-maxsets
then each of its models is in exactly one maxset. In particular, Lemma 4.2 tells that
M = {Ki | I |= Ki} is the maxset containing I, if any. The additional conditions en-
sure that M is actually a maxset (no other formula is consistent with it) and that the
disjunction of such M ’s do not include models not in R.

As a consequence of this property, checking whether R is an or-of-maxsets is not
harder than propositional entailment.

THEOREM 4.23. Checking whether R is an or-of-maxsets of K1, . . . ,Km is in coNP.

Proof. Let X be the set of variables. By Lemma 4.22, the property can be checked by
considering each model I over X, building M = {Ki | I |= Ki} and verifying a number
of independent entailments: M |= R and M ∪ {Ki} |= ⊥ for every Ki ̸∈ M . Since M can
be built in polynomial time from I, the subproblem is equivalent to a single validity
check, and can therefore be expressed in terms of a QBF in the form ∀Y.F . Since the
whole problem is to check this for every model I over X, it is equivalent to ∀X∀Y.F ,
and is therefore in coNP.

Hardness holds even with only two formulae to be merged.

THEOREM 4.24. Checking whether R is an or-of-maxsets of a set of two formulae is
coNP-hard.

Proof. The claim is proved by reduction from the problem of establishing the unsatis-
fiability of a formula F . Reduction is as follows: formula F is inconsistent if and only
if R = ¬c is an or-of-maxsets of A = ¬c and B = c ∨ (d ∧ F ), where c and d are two new
variables, not occurring in F .

Regardless of the consistency of F , resolution turns A ∧B into ¬c ∧ d ∧ F . As result,
if F is inconsistent so is A∧B. Therefore, the maxsets are {A} and {B}. Since R is the
same as A, it can be seen as the disjunction of the single element {A}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:29

If F is consistent, so is A ∧ B. Therefore, the only maxset is {A,B}, which is equiv-
alent to A ∧ B = ¬c ∧ d ∧ F . Model {c = false, d = false} falsifies this formula while
satisfying R. Therefore, R is not an or-of-maxsets.

These results do not require R to be consistent. If it is not, R is still an or-of-maxsets,
as

∨
∅ = ⊥. However, this case is not allowed as a result of merging: an inconsistent

formula is never obtainable.
By Lemma 4.12, if the formulae are three or less then every consistent or-of-maxset

is obtainable. By definition, obtainable formulae are or-of-maxsets. Therefore, the last
theorem also proves the complexity of obtainability in this case.

COROLLARY 4.25. Checking whether a consistent formula is obtainable by priority
base merging from two formulae is coNP-hard.

Unfortunately, Theorem 4.23 does not extend to obtainability. Indeed, while verify-
ing whether a formula is an or-of-maxsets can be done “locally”, by checking each model
I and its maxset M at time, obtainability is a global conditions over the maxsets: for a
given ordering, a maxset may be minimal or not depending on the others. This makes
the problem harder than checking whether a formula is an or-of-maxsets.

THEOREM 4.26. Checking whether a formula is obtainable by priority base merging
is in Σp

3.

Proof. By Lemma 4.2, for every model I of a maxset M it holds M = {Ki | I |= Ki}.
This provides a way for expressing the problem of obtainability of R from K1, . . . ,Km:
there exists a priority ordering P such that every model of R corresponds to a minimal
maxset and every model of ¬R corresponds to a subset that is either non-minimal or
not a maxset at all.

For every model I of R the set M = {Ki | I |= Ki} has to be a minimal maxset. By
Lemma 4.4, this is equivalent to M being not greater than another consistent subset
N . In other words, for every N ⊆ {K1, . . . ,Km} either N is inconsistent or it is not less
than M according to P . Comparing according to P can be done in polynomial time, as it
amounts to checking which formulae of M and N are in P (1), P (2), etc. The quantifiers
in these conditions are all universal; therefore, the subproblem can be expressed as a
∀QBF .

For every model I that does not satisfy R, the set M = {Ki | I |= Ki} should not be a
minimal maxset according to P . This means that M can be either not a maxset or not
a minimal one according to P .

(1) Since all Ki ∈ M satisfy I, the set M is consistent. As a result, it is not a maxset
only if it can be added some formulae without violating consistency. This is equiv-
alent to the consistency of M ∪ {Kj} for some Kj ̸∈ M . This case can therefore be
expressed as a ∃QBF .

(2) In the other case, M is a maxset but is not minimal. By Lemma 4.4, this is equiva-
lent to the existence of a consistent subset N ⊆ {Ki} that is less than M according
to the ordering. This subset N needs not to be a maxset. Therefore, what is to be
checked is only the existence of a subset N that is consistent and that is less than
M according to the ordering. This case can therefore be expressed as a ∃QBF .

Both conditions can therefore be expressed as a ∃QBF . They have to hold for every
model I that does not satisfy R. This corresponds to adding a universal quantifier (over
I) to the front of the QBF, which therefore becomes a ∀∃QBF . The first subproblem
was expressed as ∃QBF ; therefore, it can also be expressed as ∀∃QBF . This is the
check to be done for a single priority ordering P . Since the problem is to establish the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Paolo Liberatore

existence of an ordering satisfying these conditions, the whole problem is expressed as
a ∃∀∃QBF , and is therefore in Σp

3.

The following result shows that even with four formulae (the smallest case of un-
obtainable consistent or-of-maxsets) obtainability is coNP-hard even if the formula is
assumed to be a consistent or-of-maxsets.

THEOREM 4.27. Checking whether R is obtainable by priority base merging from
four formulae is coNP-hard, and this result holds even assuming that R is a consistent
or-of-maxsets.

Proof. The claim is proved by reduction from propositional unsatisfiability. By
Lemma 4.10, R = (A∧B)∨ (C ∧D) is not obtainable from A,B,C,D if the maxsets are
{A,B}, {B,C}, {C,D} and {D,A}. Lemma 4.6 gives the following formulae:

— A = (x ∧ y) ∨ (¬x ∧ ¬y)
— B = (x ∧ y) ∨ (x ∧ ¬y)
— C = (x ∧ ¬y) ∨ (¬x ∧ y)
— D = (¬x ∧ y) ∨ (¬x ∧ ¬y)

The maxset {D,A} is equivalent to ¬x ∧ ¬y. A formula F can be added to it by
changing D and A:

— A′ = (x ∧ y) ∨ (¬x ∧ ¬y ∧ F )
— B = (x ∧ y) ∨ (x ∧ ¬y)
— C = (x ∧ ¬y) ∨ (¬x ∧ y)
— D′ = (¬x ∧ y) ∨ (¬x ∧ ¬y ∧ F )

This provides the required reduction from propositional unsatisfiability to obtain-
ability. Indeed, if x and y are two new variables, not occurring in F , then F is unsatis-
fiable if and only if R = (A′ ∧B) ∨ (C ∧D′) is obtainable from A′, B, C,D′.

The maxsets of the four formulae are {A′, B} ≡ x∧y, {B,C} ≡ x∧¬y, {C,D′} ≡ ¬x∧y
and, if F is consistent, {D′, A′} ≡ ¬x ∧ ¬y ∧ F . As a result, if F is consistent then
maxsets are as in Lemma 4.10, and R is therefore unobtainable. Otherwise, there are
only three maxsets, and R is the disjunction of two of them. Lemma 4.12 ensures that
every or-of-maxsets is obtainable in this case.

Obtainability depends on the existence of orderings over the maxsets, which may
be exponentially many. This number reduces to quadratic if the maxsets comprise at
most two formulae.

THEOREM 4.28. Checking whether a consistent or-of-maxsets is obtainable by prior-
ity base merging is in coNP if all maxsets comprise at most two formulae.

Proof. The result is unobtainable if the graph of maxsets is unobtainable, which by
Theorem A.21 is equivalent to the presence of an alternating cycle. Since the nodes are
formulae, this condition can be reformulated as: there exists a sequence of formulae
A1, B1, A2, B2, . . ., each appearing at most twice, such that:

(1) every pair of consecutive formulae is consistent: Ai ∧ Bi ̸|= ⊥, Bi ∧ Ai+1 ̸|= ⊥,
. . . ; checking that such pairs are also maximally consistent is unnecessary by the
assumption that no maxset contains more than two formulae;

(2) Ai ∧Bi ∧R ̸|= ⊥: by Lemma 4.9, this is equivalent to {Ai, Bi} being selected;
(3) either Bi ∧ Ai+1 ̸|= R or Ai+1 ∧ Bi+1 ∧ R ̸|= ⊥; still by Lemma 4.9, this condition is

equivalent to: if {Bi, Ai+1} is selected, so is {Ai+1, Bi+1}.

Selection can be expressed both as M |= R and M ∧R ̸|= ⊥. Using the first condition
when the requirement is negated and the second when it is positive allows expressing

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:31

unobtainability in terms of non-entailment only. In particular, it is reformulated as the
existence of such a cycle that satisfies a number of conditions based on non-entailment.
Therefore, unobtainability is in NP, and obtainability in coNP.

This allows for a precise characterization of complexity for the case of binary
maxsets.

COROLLARY 4.29. Checking whether a consistent or-of-maxsets is obtainable by pri-
ority base merging is coNP complete if all maxsets comprise at most two formulae.

4.6. Constant number of formulae
For technical reasons, obtainability is extended to pairs (S,E) where both S and E are
sets of sets of formulae. Such a pair is obtainable if there exists a priority ordering such
that the sets in S are exactly the minimal ones among S ∪ E. In other words, (S,E) is
obtainable if there exists an ordering that makes the sets in S to be the minimal ones
among S ∪ E.

Obtainability can be defined from this concept: R is obtainable if R ≡
∨
S, (S,E) is

obtainable and S ∪E is the set of all maxsets of K1, . . . ,Km. Obtainability of pairs can
therefore be considered an extension of the usual concept of obtainability where the
condition that S ∪ E is the set of maxsets is lifted. In a way, (S,E) is obtainable if

∨
S

is obtainable from a set having S ∪ E as its sets of maxsets.
The following lemma concerns the obtainability of a pair (S,E), where S and E are

sets of sets of formulae, not necessarily maxsets and not necessarily all of them. Un-
obtainability is monotonic with respect to the excluded sets: adding new ones and en-
larging the existing ones does not change unobtainability.

LEMMA 4.30. If S and E are sets of sets such that none is contained in another
and (S,E) is not obtainable so is (S,E′), where E′ is the result of adding some sets of
formulae to E and some formulae to some sets of E.

Proof. Given the assumption of no mutual containment, every pair (S, ∅) is obtainable
by placing all formulae of S in class one. Therefore, unobtainability is due to the pres-
ence of E: every partition that makes all sets in S minimal also makes minimal some
N ∈ E. This means that for every M ∈ S, the set M is not less than N according to the
ordering. The two sets N and M coincide up to class i− 1 but N ∩ P (i) ̸⊆ M ∩ P (i) for
some class i, possibly i = 1. Adding formulae to N or new sets to E do not change this
condition.

Obtainability can be defined as follows: there exists a set S such that the result
is equivalent to

∨
S, S is a subset of maxsets and (S,E) is obtainable, where E are

the maxsets not in S. In the case of a constant number of formulae, their sets and
therefore maxsets are in constant number as well. Quantifying over them does not
therefore increase the complexity of the problem.

However, the remaining quantifiers are not all of the same kind. For example, the
condition that R is an or-of-maxsets is:

R is an or-of-maxsets of {K1, . . . ,Km}
⇕

∃S ⊆ 2{K1,...,Km} such that R ≡
∨
S

∀M ∈ S . M ̸|= ⊥ and ∀K ̸∈ M . M ∪ {K} |= ⊥

The quantifiers over S, M and K are not a problem because the choices are on sets
of constant cardinality. Instead, M ̸|= ⊥ is an existential quantification (there exists
a model satisfying all formulae of M ) and all others are universal (e.g. all models
satisfying M also satisfy

∨
S).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 Paolo Liberatore

These quantifiers can be removed by relaxing the condition over M , that is, accepting
some sets other than M . This is the technique used by Nebel [1998] for the generalized
closed-world assumption (GCWA) and the WIDTIO revision: instead of considering
only the sets specified by the definition, include some others others that do not affect
the final result.

Omitting details, GCWA(T ) is T with a certain set of literals F added; what made
determining the exact complexity of the problem GCWA(T ) |= A difficult was that
checking membership of a single literal in F is already Πp

2-hard, thus requiring a poly-
nomial number of calls to a Πp

2 oracle for verifying T ∪ F |= A. Nebel [1998] overcame
this difficulty by switching from F to its supersets: T ∪ F ̸|= A if and only if T ∪ S ̸|= A
for some S ⊇ F . In spite of the seeming increase of complexity, the problem is simpli-
fied because checking whether S ⊇ F is in Σp

2. Therefore, the whole non-entailment
problem is in Σp

2, as it amounts to guess a set S satisfying a condition in Σp
2 and a

model that satisfies T ∪ S but not A. In a nutshell, the core of the method is:

instead of the specific set F use a group of sets that includes it, provided
that the other sets do not affect the final result.

In the present case, the key point is that inconsistent sets in S are irrelevant: if
S contains an inconsistent set M , then

∨
S = {M} ∨

∨
(S\{M}) = ⊥ ∨

∨
(S\{M}) =∨

(S\{M}); inconsistent sets do not contribute to the disjunction. As a result, the con-
dition can be relaxed by allowing such sets M : requiring that M is a maxset is changed
into just M ∪ {K} |= ⊥ for every K ̸∈ M . The M ’s satisfying this condition are either
maxsets or inconsistent sets of formulae, but the latter do not affect

∨
S.

R is an or-of-maxsets of {K1, . . . ,Km}
⇕

∃S ⊆ 2{K1,...,Km} such that
R ≡

∨
S

∀M ∈ S ∀K ̸∈ M . M ∪ {K} |= ⊥

This condition contains only universal quantifiers: R ≡
∨
S is equivalent to “every

model satisfying R also satisfies
∨
S and vice versa”; M ∪ {K} |= ⊥ is “every model

falsifies M ∪ {K}”. The quantifiers over S, M and K are choices over sets of constant
cardinality, so they do not affect complexity. They can be replaced by conjunctions and
disjunctions.

As a result, checking whether R is an or-of-maxsets is in coNP for a constant num-
ber of formulae. This fact is subsumed by Theorem 4.23, which states the same for
any number of formulae. However, with some changes the condition extends to obtain-
ability, for which no similar result hold in the general case. Lemma 4.30 ensures the
correctness of relaxing.

LEMMA 4.31. R is obtainable by priority base merging from K1, . . . ,Km if and only
if there exists a nonempty S ⊆ 2{K1,...,Km} such that:

(1) R ≡
∨
S;

(2) ∀M ∈ S, ∀K ̸∈ M , M ∪ {K} |= ⊥;
(3) ∀E ⊆ 2{K1,...,KM}, either ∃M ∈ E such that M |= ⊥ or ∃M ∈ E such that M ⊆ M ′

for some M ′ ∈ S or (S,E) is obtainable.

Proof. The first two points are equivalent to R being an or-of-maxsets. The third
resembles the definition of obtainability, but E is not the set of maxsets not in S.
Rather, if the condition is false is an arbitrary set of consistent subsets such that (S,E)
is not obtainable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:33

Lemma 4.30 however ensures that if such a set E is enlarged by adding arbitrary
new sets and arbitrary new formulae to existing sets, the pair (S,E) remains unob-
tainable. As a result, if there exists E such that (S,E) is unobtainable, E can be added
formulae and sets to make it the set of maxsets not in S.

— R obtainable. The three conditions above hold for S equal to the set of selected
maxsets. This choice makes the first and second points true. If the third point were
false, then (S,E) would be unobtainable for some set of consistent sets E such that
none of its element is contained in one of S. Since an N ∈ E is not contained in a
selected maxset, it can be enlarged to make it a maxset, and that would be an ex-
cluded one. Adding the other excluded maxsets, E is turned into the set of excluded
maxsets E′. By Lemma 4.30, since (S,E) is unobtainable so is (S,E′), contradicting
the assumption that R is obtainable.

— R unobtainable. If R is not an or-of-maxsets, then for no S points 1 and 2 hold.
Otherwise, R is an or-of-maxsets S but (S,E) is not obtainable, where E is the set of
the other maxsets. For such E the third point of the condition is violated.

The conditions in this lemma only contain universal quantifier, apart the ones on
sets of constant size. The complexity of the problem is the obvious consequence of this.

COROLLARY 4.32. Checking obtainability by priority base merging from a constant
number of formulae is in coNP.

Once obtainability is established, the problem is to find the ordering generating the
result. This problem can be recast as that of checking whether a partial assignment of
formulae to classes can be extended to form an ordering generating the required result
of merging.

THEOREM 4.33. Checking whether a priority ordering can be extended to generate
R as the result of merging a constant number of formulae K1, . . . ,Km is coNP complete.

Proof. The problem is hard with an empty ordering, as it is equivalent to obtainabil-
ity. It is also in coNP: it is the same as obtainability by adding the condition that the
ordering extends the given one. In the statement of Lemma 4.31, the only point where
the ordering matters is when (S,E) is checked to be obtainable. Therefore, the prob-
lem can be expressed by simply changing the subcondition “(S,E) is obtainable” into
“(S,E) is obtained by an ordering extending the given partial one” in the statement of
Lemma 4.31. Since the additional check has cost linear in the number of the formulae,
complexity remains the same.

A related question is whether a priority ordering can be uniquely extended to gen-
erate the required result. This amounts to finding such an ordering, if any, and then
checking that no other priority ordering would do the same.

THEOREM 4.34. Checking whether a priority ordering not extending a given one
generates R as the result of merging a constant number of formulae K1, . . . ,Km is coNP-
complete.

Proof. Lemma 4.31 expresses this problem by changing the condition that (S,E) is ob-
tainable to its obtainability with an ordering not extending the given one. This proves
that the problem is in coNP.

Hardness is proved using three formulae with maxsets {A,B}, {A,C}, and {B,C},
where the latter is excluded and only exists if a formula F is satisfiable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 Paolo Liberatore

f
f

fHHHHH

�����

@@��

B

C

A

If the third maxset exists, the only ordering excluding it while selecting the other
two is the one containing A in class one and B and C in class two. Indeed, if both B
and C are in class one, by Lemma 4.7 {B,C} would be selected. If A and B are in
class one and C is not, {A,C} would be excluded. Since either A or B is in class one by
Lemma 4.8, the only remaining case is A in class one. The other two formulae B and
C cannot be in different classes, as otherwise one between {A,B} and {A,C} would be
excluded. Therefore, the only ordering obtaining the required result has A in class one
and B and C in class two.

The same ordering selects the same two maxsets even if the third maxset does not
exists. Since the result is the disjunction of all maxsets, Lemma 4.7 applies: it is also
obtained by placing all three formulae in class one. Therefore, a second ordering selects
{A,B} and {A,C} in this case.

The problem is therefore that of generating formulae such that {B,C} is consistent
if and only if a formula F is. Lemma 4.6, with F added to {B,C}, gives:

A = (x ∧ ¬y) ∨ (¬x ∧ ¬y)
B = (x ∧ ¬y) ∨ (x ∧ y ∧ F )

C = (¬x ∧ ¬y) ∨ (x ∧ y ∧ F )

The set of all three formulae is inconsistent, as A is only satisfied by partial models
{x = true, y = false} and {x = false, y = false}, while C is falsified by the first and B by
the second. Pairs of formulae are all consistent:

{A,B} = x ∧ ¬y
{A,C} = ¬x ∧ ¬y
{B,C} = x ∧ y ∧ F

The third is consistent if and only if F is consistent. As a result, the maxsets {A,B}
and {A,C} always exist, and are selected when the required result is R = ¬y because
they are consistent with it. The third maxset {B,C} only exists if F is consistent, and
if this is the case is excluded because it is inconsistent with R.

As shown before, R is uniquely obtainable if and only if {B,C} is not a maxset, which
is equivalent to the inconsistency of F . As a result, unique obtainability is coNP-hard.

5. WHAT TO DO IN CASE OF UNOBTAINABILITY
After establishing obtainability, the next step is to determine the weights or the pri-
ority ordering. The algorithms in Section 3.2 and Section 4.4 searches for them, but of
course cannot find anything in case of unobtainability. A question therefore remains:
what to do in this case?

Various possibilities exist. One is to relax the condition that R is exactly the outcome
of merging, still maintaining that R is a formula that is known to be true. Lifting
equivalence and only requiring consistency is coherent with this principle: R does not

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:35

discriminate among its models, so each could be the actual state of the world. The
result of merging may therefore only be required to have one such model. In other
words, it is expected that merging produces a formula consistent with R rather than
equivalent to it.

LEMMA 5.1. There exists a priority partition such that merging K1, . . . ,Km is con-
sistent with R if and only if R is consistent with one of the maxsets of K1, . . . ,Km.

Proof. If one of the maxsets is consistent with R, the ordering of Lemma 4.8 allows
selecting it only. The result of merging is equal to this maxset, which is by assumption
consistent with R.

In the other way around, if R is consistent with the result of merging K1, . . . ,Km

with some ordering, since this result is the disjunction of some of the maxsets, then R
is consistent with at least a maxset.

Even when merging is not supposed to be a process of search of a single propositional
model, a similar idea can be applied. Assuming that the situation is characterized by
a set of models, both the result of merging and R result from bounding it as close as
possible. The difference is that R is known to be correct, so it contains all these models,
while merging only aims at doing the same. Under this assumption, the problem is to
find an ordering such that the set of models of R is strictly contained in the result of
revision. Since what is known about this set is only that R contains it, the result of
merging should be implied by R. Unfortunately, this condition does not constraint the
ordering at all.

LEMMA 5.2. Merging K1, . . . ,Km with some priority ordering is entailed by R if and
only if R entails the disjunction of all maxsets.

Proof. If R entails the disjunction of all maxsets, such a disjunction can be obtained
as the result of the revision by the ordering in Lemma 4.7. Vice versa, if R entails the
result of merging K1, . . . ,Km with some ordering, since this result is the disjunction of
some maxsets, then R also entails the disjunction of all maxsets.

Requiring that R is entailed by the result of merging or consistent with it gives no
information about the relative reliability of the sources. To obtain such an information
some additional constraint is needed, such as R being as close as possible to the result
of merging, possibly also implying or being consistent with it. In other words, the aim
moves from obtaining R with the appropriate priorities to approximating it as much
as possible.

If a result is unobtainable, another possible line of action is to consider whether
the given pieces of knowledge produce it using a different merging mechanism. In
other words, instead of using merging by priorities, one of the many other sys-
tems [Konieczny and Pérez 2011; Peppas 2008; Konieczny et al. 2004; Everaere et al.
2010; Jin and Thielscher 2007; Liberatore and Schaerf 1998] may be employed instead.

Another possible solution is to split the sources on their variables. If a renowed
computer scientist tells some property of computational classes and that the fastest
way to go a certain restaurant is to turn left at the next turn, the first information
should be assigned higher priority than the second, as there is no a priori reason why
an expert in computing should know the roads better than anyone else. According
to this principle, when a result is not obtainable some source Ki may be split into
{K1

i , . . . ,K
r
i }, for example using a partition of the variables to decide which part of Ki

goes into K1
i , which in K2

i , etc.
A totally different direction is to lift the assumption that R is a formula known with

certainty. Instead, it could be just a formula coming from a source of high reliability.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 Paolo Liberatore

Table I. Main theorems on obtainability

— necessary and sufficient condition for obtainability from two knowledge bases using the weighted sum of
distances: Theorem 3.1

— every consistent or-of-maxsets is obtainable by priority base merging if the maxsets are less than four:
Theorem 4.12

— every disjunction of a nonempty subset of a set of maxsets that is Berge-acyclic is obtainable by priority
base merge: Theorem 4.13

— for every n there exists a formula that requires a priority of n levels or more to be obtained from a set of
binary maxsets: Theorem 4.19

— necessary and sufficient condition for obtainability from formulae having all binary maxsets: Theo-
rem 4.20

Obtainability then generalizes to the case where no such source may be available [Li-
beratore 2014].

A solution suggested by one of the anonymous referees is to extend the set of knowl-
edge bases {K1, . . . ,Km} by some other formulae Km+1, . . . ,Kr. Such an addition is
motivated if some information has been neglected, for example because it is not ex-
pressed explicitly or because it has wrongly been considered irrelevant. Of course, some
constraints on the new formulae has to be specified to avoid trivializing the problem.

Even with all these alternatives, it is still possible that the known information R
cannot be obtained from the knowledge bases. For example, no semantics allows ob-
taining R = x from K1 = ¬x and K2 = ¬x. This is however a rational outcome: if the
knowledge bases totally agree, merging should produce them as the result, no mat-
ter by which weights, priorities or other relative reliability measures; this intuition is
formalized by postulate IC2 of merging [Konieczny and Pérez 2011]. If x is true, then
two knowledge bases equal to ¬x are just useless. Unobtainability provides significant
information even in this case: the sources are unreliable, and can therefore be ignored
from this point on.

6. CONCLUSIONS
In this article, the problem of establishing the relative reliability of knowledge bases
given the result of their merge is studied. This is in a way the reverse of the usual
problem of merging them, like abduction [Douven 2011] reverses implication: from
some information one attempts to derive what has generated it.

Two semantics for merging are considered for this inversion: sums of dis-
tances [Konieczny and Pérez 2011; Konieczny et al. 2002; 2004] and priority base
merging [Nebel 1992; 1998; Rott 1993; Delgrande et al. 2006]. In a way, these can
be considered at the extreme opposite of the spectrum of the many possible semantics
for merging [Konieczny and Pérez 2011; Delgrande et al. 2006]: the first is numeric,
model-based and majority-obeying; the second is qualitative (priority-based), syntax-
dependent and not majority-obeying. The idea of obtaining reliability information, in
whichever form they are expressed, can be however applied to other semantics for
merging. How this idea can be extended to problems encompassing merging, contrac-
tion [Peppas et al. 2012] and update [Herzig et al. 2013] is also left as an open problem.

The main result proved for the semantics based on the sum of distances is an equiva-
lent formulation for the condition of K1 and K2 generating R with some weights. From
this, complexity upper bounds follow, as well as the core of a local search algorithm
for determining weights. In particular, whenever the distance measure used is in Πp

i
or in Σp

i , obtainability is in Πp
i+1. Two relevant measures are the drastic and the Ham-

ming distances, for which the problem is proved coNP and Πp
2-complete, respectively.

A tractable subcase is proved.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:37

Table II. Complexity of obtainability

membership hardness
arbitrary pseudodistance - coNP-hard
pseudodistance in Πp

i or Σp
i in Πp

i+1 coNP-hard
Hamming distance in Πp

2 Πp
2-hard

drastic distance in coNP coNP-hard
K1 and K2 conjunctions of literals, R Horn or Krom in P

Complexity of obtaining R from K1 and K2 using distance-based merging.

membership hardness
priority base merging in Σp

3 coNP-hard
constant m in coNP coNP-hard
Berge-acyclic maxsets in P
binary maxsets, R is a consistent or-of-maxsets in coNP coNP-hard

Complexity of obtaining R from K1, . . . ,Km using priority base merging.

The complexity analysis of priority base merging shows that obtainability is not
harder than computing the result of merging with a fixed priority ordering for the
considered subcases. Given that obtainability is the existence of a priority ordering
generating a given result, at a first looks it may seem harder. Most of the problems
in belief revision are at the second level of the polynomial hierarchy [Eiter and Gott-
lob 1992; 1996; Liberatore 1997a; Nebel 1998; Liberatore and Schaerf 2001], even in
some simple restrictions like two formulae to be integrated. In contrast, obtainabil-
ity proved coNP complete with a constant number of formulae or with maxsets of two
or less formulae. The problem of obtainability in general is however still open, so it
may prove harder. If Theorem A.21 extends in some form from graphs to hypergraphs,
obtainability may be still in coNP in the general case.

What to do if the result is not obtainable? Various alternatives are outlined: relax
the condition that R is exactly the result of merging, use another semantics of merging
(for example, if R is unobtainable with priority merging one may try the weighted
sum of Hamming distances), split the sources (for example, by the variables), lift the
assumption that R is known with certainty, use some other information. However, in
some cases a result should not be obtainable, like when all sources agree on x and the
result is ¬x; in such cases, unobtainability still provide the useful warning that the
sources are unreliable.

While the present article concentrates on obtainability, a sensible question is
whether a given result is uniquely obtainable or not; another question is whether it
can be obtained not with arbitrary weights or priorities, but with weights or priori-
ties obeying some constraints, such as the weight of a base being greater than that
of another. The problem of obtaining plausibility information from iterated revisions
instead of merging has been considered in other articles [Booth and Nittka 2008; Libe-
ratore 2015]; an open question is whether the two ideas can be put together, given that
merging with integrity constraints generalize both merging and revision [Konieczny
and Pérez 2011]. Some technical questions are also left open by this article, such as
extending the necessary and sufficient condition for obtainability for weighted sum of
distances from two to an arbitrary number of knowledge bases, and that for priority
base merging from binary maxsets to arbitrary maxsets. Also, the gap between the
hardness and membership results for priority base merging is also very large in the
general case, as the problem is in Σp

3 but only coNP-hard.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 Paolo Liberatore

REFERENCES
C.E. Alchourrón, P. Gärdenfors, and D. Makinson. 1985. On the Logic of Theory Change: Partial Meet con-

traction and revision Functions. Journal of Symbolic Logic 50 (1985), 510–530.
R. Booth and A. Nittka. 2008. Reconstructing an Agent’s Epistemic State from Observations about

its Beliefs and Non-beliefs. Journal of Logic and Computation 18 (2008), 755–782. Issue 5.
DOI:http://dx.doi.org/10.1093/logcom/exm091

R. Booth, Meyer T.A., I.J. Varzinczak, and Wassermann R. 2011. On the Link between Partial Meet, Kernel,
and Infra Contraction and its Application to Horn Logic. Journal of Artificial Intelligence Research 42
(2011), 31–53.

S. Chopra, A. Ghose, and T. Meyer. 2006. Social choice theory, belief merging, and strategy-proofness. Infor-
mation Fusion 7, 1 (2006), 61–79.

M. d’Agostino. 1999. Tableau methods for classical propositional logic. In Handbook of tableau methods.
Springer, 45–123.

A. Darwiche and J. Pearl. 1997. On the Logic of Iterated Belief Revision. Artificial Intelligence Journal 89,
1–2 (1997), 1–29.

J.P. Delgrande. 2012. Revising beliefs on the basis of evidence. International Journal of Approximate Rea-
soning 53, 3 (2012), 396–412.

J.P. Delgrande, D. Dubois, and J. Lang. 2006. Iterated Revision as Prioritized Merging. In Proceedings, Tenth
International Conference on Principles of Knowledge Representation and Reasoning, KR-2006. 210–220.

J.P. Delgrande, T. Schaub, H. Tompits, and S. Woltran. 2013. A Model-Theoretic Approach to Belief
Change in Answer Set Programming. ACM Transactions on Computational Logic 14, 2 (2013), 14.
DOI:http://dx.doi.org/10.1145/2480759.2480766

I. Douven. 2011. Abduction. (2011). Stanford Encyclopedia of Philosophy.
T. Eiter and G. Gottlob. 1992. On the Complexity of Propositional Knowledge Base Revision, Updates and

Counterfactuals. Artificial Intelligence Journal 57 (1992), 227–270.
T. Eiter and G. Gottlob. 1996. The Complexity of Nested Counterfactuals and Iterated Knowledge Base

Revisions. J. Comput. System Sci. 53, 3 (1996), 497–512.
P. Everaere, S. Konieczny, and P. Marquis. 2010. Disjunctive merging: Quota and Gmin merging operators.

Artificial Intelligence Journal 174, 12–13 (2010), 824–849.
R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM

30 (1983), 514–550. Issue 3.
P. Gärdenfors. 1988. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books, MIT

Press, Cambridge, MA.
A. Herzig, J. Lang, and P. Marquis. 2013. Propositional Update Operators Based on For-

mula/Literal Dependence. ACM Transactions on Computational Logic 14, 3 (2013), 24.
DOI:http://dx.doi.org/10.1145/2499937.2499945

Y. Jin and M. Thielscher. 2007. Iterated belief revision, revised. Artificial Intelligence Journal 171, 1 (2007),
1–18.

S. Konieczny, J. Lang, and P. Marquis. 2002. Distance-based merging: a general framework and some com-
plexity results. In Proceedings of the Eighth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2002). 97–108.

S. Konieczny, J. Lang, and P. Marquis. 2004. DA2 merging operators. Artificial Intelligence 157, 1-2 (2004),
49–79.

S. Konieczny and R.P. Pérez. 2011. Logic based merging. Journal of Philosophical Logic 40, 2 (2011), 239–
270.

P. Liberatore. 1997a. The complexity of belief update. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI’97). 68–73.

P. Liberatore. 1997b. The complexity of iterated belief revision. In Proceedings of the Sixth International
Conference on Database Theory (ICDT’97). 276–290.

P. Liberatore. 2014. Belief revision by reliability assessment. (2014). Manuscript.
P. Liberatore. 2015. Revision by history. Journal of Artificial Intelligence Research 52 (2015), 287–329.

DOI:http://dx.doi.org/10.1613/jair.4608
P. Liberatore and M. Schaerf. 1998. Arbitration (or how to merge knowledge bases). IEEE Transactions on

Knowledge and Data Engineering 10, 1 (1998), 76–90.
P. Liberatore and M. Schaerf. 2001. Belief Revision and Update: Complexity of Model Checking. J. Comput.

System Sci. 62, 1 (2001), 43–72.
J. Lin and A.O. Mendelzon. 1999. Knowledge base merging by majority. Springer, 195–218.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples A:39

A.E. Mannes. 2009. Are We Wise About the Wisdom of Crowds? The Use of Group Judgments in Belief
Revision. Management Science 55, 8 (2009), 1267–1279.

B. Nebel. 1992. Syntax-Based Approaches to Belief Revision. Cambridge University Press, 52–88.
B. Nebel. 1998. How hard is it to revise a knowledge base? In Belief Change, D. Dubois and H. Prade (Eds.).

Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 3. Springer, 77–145.
R. Nieuwenhuis, A. Oliveras, and C. Tinelli. 2006. Solving SAT and SAT Modulo Theories: From an Abstract

Davis–Putnam–Logemann–Loveland Procedure to DPLL(T). Journal of the ACM 53, 6 (2006), 937–977.
DOI:http://dx.doi.org/10.1145/1217856.1217859

P. Peppas. 2008. Belief revision. In Handbook of Knowledge Representation. Elsevier, 317–359.
P. Peppas, C.D. Koutras, and M.A. Williams. 2012. Maps in Multiple Belief Change. ACM Transactions on

Computational Logic 13, 4 (2012), 30. DOI:http://dx.doi.org/10.1145/2362355.2362358
P. Revesz. 1997. On the Semantics of Arbitration. International Journal of Algebra and Computation 7

(1997), 133–160. Issue 2.
H. Rott. 1993. Belief contraction in the context for the general theory of rational choice. Journal of Symbolic

Logic 58, 4 (1993), 1426–1450.
K. See, W. Morrison, N. Rothman, and J. Soll. 2011. The detrimental effects of power on confidence, advice

taking, and accuracy. Organizational Behavior and Human Decision Processes 116, 2 (2011), 272–285.
H. Wang, J. Zhang, and T. R. Johnson. 2000. Human belief revision and order effect. In Proceedings of the

22th Annual Conference of the Cognitive Science Society.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Online Appendix to:
Belief merging by examples

PAOLO LIBERATORE, Sapienza University of Rome

This appendix contains the formal proofs concerning the case of binary maxsets.
When all maxsets comprise at most two formulae, they can be seen as a graph:

— nodes are formulae;
— isolated nodes are singleton maxsets;
— edges are maxsets of two formulae.

Lemma 4.6 ensures that the contrary also holds: every graph corresponds to the set
of maxsets of some formulae. As a result, properties of graphs carry to sets of maxsets.

This section is organized as follows:

(1) definitions and basic properties;
(2) transformations on graphs;
(3) properties of some specific graphs or subgraphs;
(4) proof that a graph is unobtainable if and only if it contains a cycle of alternating

single excluded edge–odd sequence of selected edges.

Definition A.1 (4.14 in the article). A cycle is path ending in the same node where
it started.

This is different from the definition of simple cycles, which are not allowed to cross
an edge more than once.

A.1. Definitions
When all maxsets contain at most two formulae, the singletons can be excluded from
consideration because of Lemma 4.1: {A} cannot be contained in any other maxset;
therefore, inclusion or exclusion do not affect the other maxsets. What remains is a
set of binary maxsets, which can be seen as a graph where nodes are formulae and
edges are maxsets. Some edges correspond to selected maxsets, the others to excluded
maxsets.

Definition A.2 (4.15 in the article). A selected-excluded graph (abbreviated: se
graph) is a graph whose edges are partitioned in two sets: selected and excluded.

Since edges are maxsets, the distinction indicates which are required to be in the
result of merging and which are not. Most of the proofs regarding binary maxsets
employ assignments of some formulae to priority class.

Definition A.3 (4.16 in the article). A partially assigned se graph has some nodes
assigned positive integer values. If all nodes are assigned the graph is totally assigned.

In a totally assigned se graph, all formulae are assigned a class. Therefore, one may
determine the minimal edges (i.e., the edges that correspond to minimal maxsets) and
check whether they are exactly the selected ones.

Definition A.4 (4.17 in the article). A totally assigned graph is obtainable if the
minimal edges according to the priority ordering obtained from the numbers assigned
to the nodes are exactly the selected ones.

c⃝ YYYY ACM. 1529-3785/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–2 Paolo Liberatore

This definition may look tautological, but is rather close to the opposite. In a se
graph, the selected edges are the maxsets that are required to be in the result of merg-
ing: if {A,B} |= R, the edge (A,B) is selected and vice versa. The values assigned to
nodes may or may not make such a maxset minimal. If it is not, the edge is incorrectly
excluded. Similarly, an excluded edge that is minimal according to the values is incor-
rectly selected. If no edge is incorrectly selected or excluded the ordering produces the
required result.

The following graph illustrates the above definitions:

f f
ff

f
f

��������@@��

@@��

1

2

3

1

1

2

This is a se graph since some edges are marked as excluded (the crossed ones); the
others are selected. It is also totally assigned since each node is assigned a value (its
class in the priority ordering). It would be obtainable if every selected edge were min-
imal and every excluded edge were not. This is not the case, as the vertical excluded
edge is minimal. Indeed, it is greater than the edge of values 1 and 3 and incomparable
to the others; for example, the top edge has in common with it the node of value 1, but
the two nodes of value 2 are different.

This graph would be obtainable if the value of the bottom node were 3 instead of
2; the bottom edge would remain minimal as it shares its node of value 1 with no
other edge. Graphically, obtainability means that the crosses indicate the edges that
are minimal according to the numbers.

Definition A.5 (4.18 in the article). A partially or totally assigned se graph G ex-
tends another one H if they have the same nodes and edges and all nodes assigned in
H are also assigned in G to the same values.

A se graph is therefore obtainable if and only if it can be extended to a totally as-
signed se graph that is obtainable. On totally assigned se graphs obtainability can be
checked by determining the minimal maxsets according to the ordering given by the
values.

A.2. Influence
On totally assigned se graphs, one can check selection or exclusion of every edge by
determining its minimality according the values. The following lemma shows which
values affect the minimality of a particular edge.

LEMMA A.6. In a totally assigned se graph, minimality of an edge (a, b) depends
only on:

(1) the values of a and b, and
(2) the values of the nodes linked to a, if the value of a is one and the value of b is not;
(3) the values of the nodes linked to b, if the value of b is one and the value of a is not.

Proof. If the values of a and b are both one, the edge is minimal no matter of what the
other values are. If a and b are both greater than one, the edge is not minimal.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–3

Of the remaining case, suffices to consider a assigned to one and b to a larger value:
the other possibility is specular. If all nodes linked to a are greater or equal than b,
then (a, b) is minimal. If one of them is lesser, it is not. In both cases, no other value of
the graph affects the result.

This lemma can be refined: of a node of value one, the only information that counts
is the minimal values of nodes linked to it.

A.3. Value-depending transformations
Se graphs can be simplified without affecting obtainability: the resulting graph is ob-
tainable if and only if the original one is. Correctness is proved by a detour to the
totally assigned graphs extending the original and resulting graphs. In particular:

— a partially assigned se graph is obtainable if and only if it can be extended to a
totally assigned graph that is also obtainable;

— obtainability on totally assigned se graphs is verified by checking that the minimal
edges are exactly the selected ones;

— the transformations do not turn a minimal edge into a non-minimal one in the to-
tally assigned se graphs, and vice versa;

— in most cases, the transformations remove or add only edges that are correctly
selected or excluded in the totally assigned se graph; otherwise, they replace cor-
rectly/incorrectly selected or excluded edges with edges that are equally correct or
incorrect.

All this proves that the transformations are correct: they map a partially assigned
se graph into another whose extensions to totally assigned se graphs correspond to
the ones of the original graph, and this correspondence maps obtainable graphs into
obtainable graphs and vice versa. As a result, the original graph is obtainable if and
only if the resulting graph is. In most cases, obtainability is maintained simply because
edge minimality is unaffected by the transformation.

The first simplification is disconnection, which is done in three different ways de-
pending on the values.

Disconnection, both greater than one.

f f f f@@��
HH
��

n > 1 m > 1 n > 1 m > 1

An edge between two nodes of value greater than one can be removed.
In every extension to a totally assigned se graph, the edge is correctly excluded.

Therefore, obtainability in both the graph before and after the change depends only on
the minimality of the other edges.

If an edge does not touch the disconnected one, by Lemma A.6 its minimality is
unaffected by the change. But the lemma implies the same for edges touching the
deleted one: f ff @@��

n > 1
?

m > 1

In this and the following figures, a question mark indicates that the edge may be
selected or excluded, and the following reasoning holds in both cases.

Since n > 1, minimality of the other edge depends on n only, and not on nodes linked
to the one of value n. The presence of the removed edge is therefore irrelevant.

Disconnection, one assigned one.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–4 Paolo Liberatore

f f f ffmHH
��

m > 11 1
? ?

m > 1m > 1

The double circle is a new node connected to none else. In this transformation, an
edge between a node of value one and a node of value greater than one becomes an
edge between the first and an isolated copy of the second.

In the totally assigned se graph extending the original one the edge may be minimal
or not, but either way its status is not changed by the transformation, as its nodes
maintain their value and its node of value one is connected to the same nodes as before.
As a result, selection is either correct in both graphs or incorrect in both.

Regarding the other edges, minimality is not changed by the disconnection. If one
such edge does not touch the disconnected one, or touches the node greater than one,
Lemma A.6 tells that its minimality is not affected. But the same also holds for edges
touching the node of value one, since this is connected to the same nodes as before,
except that instead of the old node of value m is connected to a new node of value m.

Disconnection, both assigned one.

f f f ffm m fHH
��

1 11 1 1 1

The double circles are new nodes, connected to none else. An edge between two nodes
of value one is split in two, each linking one of the original nodes to an isolated copy of
the second.

The original edge is correctly selected in the original graph, and the two new ones
are correctly selected in the resulting one. Therefore, obtainability depends only on the
minimality of the other edges, which will be proved to be unchanged by the transfor-
mation.

By symmetry and Lemma A.6, the only relevant case is about edges touching the
first node of the original edge. After the change, the node is still connected to the same
other nodes and to a node of value one, as before. Therefore, minimality of the other
edge is unaffected.

Merging of selected edges.

f f
f f
m
m fm fHH

��

n 1

n 1

n 1

The double circles indicate nodes connected to none else. The two original nodes of
value one may be touched by other edges, which are connected to the merged node of
value one after the transformation.

If any of the two nodes of value one is linked to one of value less than n, the same
happens in the resulting edge, and vice versa. As a result, if any of the original edges
is incorrectly selected so is the resulting edge, and vice versa. Therefore, it remains
to show that obtainability is unaffected by the change only if the two original nodes
assigned one are not linked to a node of value less than n.

Selection of edges not touching the nodes assigned one is not changed because of
Lemma A.6. Regarding the edges touching one of these, let k be the value of the other
node:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–5

f f
f f
m
m

f fm f fQQ
��

n 1

n 1

?
k

n 1
?

k

In the original totally assigned se graph, all other nodes linked to the ones assigned
one have values greater than n. As a result, the minimality of this edge depends only
on whether k is equal to n or greater. The same happens in the resulting graph.

Merging of excluded edges.

f
f
m
m fm ff HH

��

PPPP

����
@@��

@@��
@@��

n 11

n > 1

m > 1
In this figure, n ≤ m. Double circles indicates nodes connected to none else.
If the node of value one is only connected to nodes of value greater or equal than

n, then the original totally assigned se graph is unobtainable, and so is the graph
resulting from the transformation. Therefore, the only situation where obtainability
could be altered is when the node of value 1 is connected to at least a node of value less
than n.

An edge that does not touch the node of value one is unaffected by the change by
Lemma A.6. Let k be the value of the other node of an edge touching it, and h the
minimal values of nodes connected to the same node:

f
f
m
m f fm fff ff
PPPP

����
@@��

@@��
@@��XXXX

HH
�� XXXX

1 n 1k

h

?
k

h

?

n > 1

m > 1
Since by assumption h if the minimal value of nodes connected to the node of value

1, minimality of the edge of values 1, k only depends on whether k = h or not, in both
the original and modified graph. This condition is not altered by the transformation.

Merging of nodes of equal values, greater than one. In this case, no edge is added
or removed. The point is therefore only to prove that selection of an edge touching one
of the two nodes is unaffected by the transformation.

f f fHH
��

n > 1 n > 1 n > 1

Edges not touching any of the two nodes are unaffected by Lemma A.6. Regarding
the ones that touch it, the following figure exemplifies the situation.

f f f
f f

f
f f

f
�
�
�
�

T
T
TT

HH
��

n > 1 n > 1 k

l m

n > 1 k

l m

?

?? ? ?

?

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–6 Paolo Liberatore

By Lemma A.6, the edge from nodes of values n and k is minimal or not depending
on the value of n, but not on the other nodes linked to the one of value n. Therefore,
the new link to the node of value l does not influence to the minimality of the edge.

In the following, two transformations are shown that, contrary to the ones above, do
not require any condition on the value of the nodes. They can be therefore applied to
se graphs that are totally unassigned.

A.4. Unassigned graphs transformations
The simplifications in the previous section assume knowledge of the values of nodes
in the part of the graph to be changed. Some transformations that can be applied to
unassigned se graphs are now presented. Contrary to the ones in the previous sec-
tions, these apply to nodes that are not assigned yet. They are valid regardless of the
values these nodes may take: they map obtainable graphs into obtainable graphs, and
unobtainable graphs into unobtainable graphs.

Definition A.7. The full disconnection of a node that is only touched by excluded
edges is the replacement of the node with one for each of these edges.

@@��

@@�� @@��

@@��

@@��

@@��

@@��

@@��

@@��

@@��

ff f
f

f f ff
f f f

f

ff f f
S
S
S�

�
�

S
S
S �

�
�

HH
��

LEMMA A.8. Full disconnection maps obtainable graphs into obtainable graphs,
and vice versa.

Proof. The claim is proved by showing how to map values of the original node to values
of its copies in the disconnected version of the graph: the single value is assigned to the
copies; vice versa, if the copies have different values, set the original to their maximum.

As a preliminary observation, if the value of the node of a non-minimal edge is in-
creased, the edge remains non-minimal.

If the original graph is obtainable, there exists at least an extension of it to a totally
assigned se graph that is obtainable. If the central node has value one, it is changed
to two; the graph remains obtainable. The nodes of the graph that results from the
transformation are assigned as follows: the copies of the node that is broken get the
same value of the original node; all other values are left unchanged. By Lemma A.6,
these edges remain non-minimal, as they are still connected to a node of the same
value greater than one. The edges connected to them are not changed either: even if
the other node is assigned one, it is still connected to a node of the same value.

If the resulting graph is obtainable, it has at least an extension to an obtainable
totally assigned se graph. The nodes that result from the disconnection may have the
same value or not, and these values may even be all one. In the latter case, these
values are all changed to two. Otherwise, they are all changed to the maximum of
these values. This way, all these nodes are set to the same value. The original graph
is then assigned values as follows: the node that was broken is assigned to the value
of the resulting nodes; all others are the same. By Lemma A.6, all edges touching the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–7

broken node remain non-minimal because they are still connected to a node of the
same value greater than one; the other edges remains minimal or not for the same
reason of the previous case.

The second transformation is about the removal of edges that do not participate in
any cycle. Such edges form chains that may be isolated to the rest of the graph, or
connected by one node only.

Definition A.9. The removal of a tail is the deletion of a chain of edges that do not
participate in any cycle.

Removing all such edges leads to a graph where every edge is part of some cycle.

LEMMA A.10. Removing tails does not alter obtainability.

Proof. The claim is proved for tails comprising a single edge. Longer tails can be dealt
with by removing edges one at time, from the end to the beginning. That tails end is a
consequence of the finiteness of the graphs and the lack of cycles containing them.

Removing an edge releases a constraint: the edge is no longer required to be minimal
if selected and non-minimal if excluded. As a result, if the original graph is obtainable,
so is the one resulting from the transformation. Remains to prove the other direction:
if the graph resulting from the removal is obtainable, the edge can be added back
without violating obtainability.

If the graph after removal is obtainable, an obtainable totally assigned se graph
extending it exists. Recovering the removed edge introduces either one or two nodes.
It is shown that these can be assigned values so that obtainability is maintained.

The case of two nodes added back is only possible if the edge is connected to none
else. In this case, the values can be set to both one for a selected edge or two for an
excluded one.

In the other case, one of the nodes is also in the graph after removal, so it has a
values. This could be equal to one or greater. In the first case, the edge could be selected
or excluded. This leads to three possible cases, the first being:

f fb
b

bb

"
"

""

?
n > 1

A value is to be chosen for the reintroduced right node so that the totally assigned se
graph remains obtainable. By Lemma A.6, minimality of the other edges is not affected
by the value of the right node, which can be therefore set to 1 if the edge is selected
and 2 if excluded.

f fb
b

bb

"
"

""

@@��
1 m

In this second case, the left node is one and the edge is excluded: the other node is
assigned to a value that is greater than all other nodes connected to the left one.

f fb
b

bb

"
"

""

1 m

This is the third case. If the node of value 1 is connected via another selected edge to
a node of value n, set m = n. If it is only touched by excluded edges, set m = 1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–8 Paolo Liberatore

Another transformation is the zigzag folding, where a chain of selected edges is re-
duced to a single one by merging the first, third, fifth, etc. node of the chain and the
second, fourth, etc.

Correctness is proved in two steps: first, a sequence of selected edges has alternating
values (n −m − n −m − · · ·) in every obtainable totally assigned se graph; second, by
a sequence of transformations, this result is used to prove that the sequence can be
folded into a single selected edge.

LEMMA A.11. The nodes of a chain of selected edges in a totally assigned obtainable
graph has alternating values, that is, n−m− n−m− n−m− · · ·.

Proof. Let n, m and k be the values of three consecutive nodes of the chain. The claim
follows from k = n for every possible values of n and m.

f f f ...
n m k

Various cases are possible:

— n > 1: by Lemma 4.5, in every selected edge at least one node has value 1; therefore,
m = 1; if k < n, then (1, k) is preferred over (1, n); if l > n, the converse happens;
since both edges are selected, k = n;

— n = 1, m = 1: if k greater than 1, then (1, 1) is preferred over (1, k); therefore, k = 1;
— n = 1, m > 1: the edge values (m, k) is selected; by Lemma 4.5, one between m and

k is 1; since m > 1, if follows that k = 1, which is the same as n.

Since the alternation holds for every triple of consecutive nodes, it holds for the
whole chain.

This property implies that, regardless of the values of the other nodes of the graph,
the only way to produce a correct assignment is by setting the nodes of the chain to
values that alternate between two values.

Definition A.12. Given a se graph, a zigzag folding of a chain of selected edges is
the merging of all nodes of odd position and nodes of even position.

f
f

f
f

f f
f

�
�
�S

S
S�

�
�S

S
S

QQ
��

LEMMA A.13. The zigzag folding maps obtainable graphs into obtainable graphs
and vice versa.

Proof. In every totally assigned se graph extending the given one, the nodes of the
chain have alternating values n−m− n−m− · · · by Lemma A.11. By Lemma 4.5, one
between n and m is one. The other may be one or greater.

Let n = 1 and m > 1. Disconnecting all edges of the chain produces:

f f f f
�
�
�

A
A
A

�
�
�

A
A
A

A
A
A

�
�
�

...
1 m 1 m

A B C D

HH
��

f f f ffm fm fm
�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

...
1 m 1 mm m m

A B C D
In this figure, A indicates the connections of the first node of the chain, B to the

second, etc. Merging of selected edges and nodes of value greater than one collapse the
nodes into two ones:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–9

f f f ffm fm fm
�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

...
1 m 1 mm m m

A B C D

HH
��

f ffm
�

��
�

�
�

�
�

�

�
�
��

HHH@
@@

1 mm

C
D

B
A

The two nodes of value m can be then merged back by applying disconnection in
reverse: f ffm

�
��

�
�

�

�
�

�

�
�
��

HHH@
@@

1 mm

C
D

B
A

HH
��

f f
�

��
�

�
�

�
�

�

�
�
��

HHH@
@@

1 m

C
D

B
A

The same can be done if n = m = 1, or m = 1 and n > 1. This proves that, regardless
of the two values of the nodes of the chain, obtainability is the same if the chain is
folded in a zigzag manner. In other words:

(1) for every se graph, every obtainable totally assigned se graph extending it has
alternating values for the nodes of the chain;

(2) no matter what these values are, obtainability is not altered by folding the chain.

Therefore, folding turns an obtainable graph into an obtainable graph. If the original
graph is instead unobtainable, still has extensions to totally assigned se graph with
alternating values for the chain; however, these extensions incorrectly select or exclude
some edge. This condition is not changed by folding, either.

This lemma proves that every chain of selected edges can be turned into a single
edge. The same can be done iteratively until the graph is left with no such a chain,
so that no selected edge touches another one. Excluded edges may still form chains of
arbitrary length, though.

A.5. Forced values
Some graphs require values to obey some simple conditions for obtaining the expected
result.

LEMMA A.14. In any obtainable total assigned se graph containing a triangle of
selected edges, the nodes of the triangle have value one.

Proof. A triangle of selected edges is also a chain:f
f

fb
b

bb

"
"

""

Let n, m, and k be the values of these nodes. By Lemma A.11, n = k. But also m = n,
as the sequence is n −m− k − n. Since either n or m is equal to one by Lemma 4.5, it
follows n = m = 1 and also k = n = 1.

The following lemma shows that values are forced to increase in a chain of edges
that are alternatively excluded and selected. In this configuration, if the first node is
assigned 1 the values are 1−n−1−m−k−· · · with 1 < n < m < k < . . .. At a minimum,
these values are 2, 3, 4, etc.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–10 Paolo Liberatore

f f f f@@�� @@��
...

1 2 1 3

LEMMA A.15. In any obtainable total assigned se graph containing a chain of alter-
nating excluded-selected edges with the first node assigned one, the values of the other
even nodes are one and of the even nodes are strictly increasing.

Proof. The chain begins with value 1 and an excluded edge:

f f f f@@�� @@��
...

1

The next node cannot be one, as otherwise the edge would have values 1 and 1, so it
would be minimal. Let n > 1 be the value of this node:f f f f@@�� @@��

...
1 n > 1

The second edge is selected: by Lemma 4.5, it has at least a node assigned one. Since
n > 1, this cannot be other than the third node:

f f f f@@�� @@��
...

1 1n > 1

The values of the second edge are n > 1 and 1. The third edge also has the node
assigned 1. In order to be non-minimal, the other value has to be greater than n:

f f f f@@�� @@��
...

1 1n > 1 n > 1

The proof can be iterated indefinitely, showing that each node of odd position has
value one, and each node of even position has a value that is greater than the node two
positions on the left of it.

A.6. Graphs requiring n values to be obtainable
Several results are affected by whether values are equal to one or greater. This may
suggest that what really matters about a value is whether it is one or not. In some
cases, for example, a priority ordering that produces the expected result can be ob-
tained by placing a formula for each maxset in class one, and all remaining ones in
class two. This is however not always the case, as the next theorem shows: some graphs
can be obtained only with n priority classes.

LEMMA A.16. For every n there exists a graph that is only obtained by assignments
with at least n different values.

Proof. The graph is as follows, where the chain is 2n long:f
f

f f f fb
b
bb

"
"
"" @@�� @@��

...

By Lemma A.14, the nodes of the triangle have value one in all totally assigned se
graph extending this one. This also holds for the starting node of the chain, making
Lemma A.11 applicable. The values of the chain are therefore 1, n > 1, 1, m > n, 1,
k > m, . . . Since the chain is 2n long, it contains n strictly increasing values.

When this lemma on graphs is recast in terms of formulae, it shows a sort of coun-
terexample to the converse of Property 4.5: a priority ordering cannot always obtained

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–11

by choosing one formula for each maxset to place in class one. To the contrary, some
results can be obtained only with a large number of classes.

THEOREM A.17 (4.19 in the article). For any n, there exists R and K1, . . . ,Km such
that R is obtainable by priority base merging from K1, . . . ,Km only with priority parti-
tions having n classes or more.

A.7. Unobtainable graphs
The following graph contains a cycle of edges in a form that the following lemma shows
making it unobtainable. The edge on the left is irrelevant to obtainability, what counts
is the cycle: an excluded edge, three selected edges, an excluded edge, a selected edge.f

f
f f f

f f
@@��

@@��

LEMMA A.18. A graph containing a cycle of alternating (single excluded edge)–
(chain of odd selected edges) is unobtainable.

Proof. By Lemma A.13, chains of odd selected edges can be folded into a single edge
where the first and last nodes are the same. After this transformation, the cycle be-
comes a sequence of alternating excluded and selected edges. An arbitrary selected
edge can be taken as the starting point:f f ff @@�� @@��

......
n m

Lemma 4.5 tells that one among n and m is equal to one for the edge to be selected.
It can be assumed m = 1, the other case is symmetric proceeding right-to-left.

f f ff @@�� @@��
......

n 1

By Lemma A.11, the next values alternates between one and an increasing value.
As an example, choosing the least possible values:

f f ff f f@@�� @@�� @@��
...

n 1 312
...

The values at the end of excluded edges are increasing. Following the cycle, n gets
its value, for example 10:

f f ff f f@@�� @@�� @@��
...

1 312
...

1 10

The first edge has values 1 and 10, the next one has the same node of value one and
another of value 2. Therefore, the second is minimal and the first is not, opposite to the
requirement.

The following lemma shows a necessary and sufficient condition to obtainability.

LEMMA A.19. A graph is obtainable if and only if the result of applying full discon-
nection, removal of tails and zigzag folding as far as possible is an empty graph.

Proof. These operations do not change obtainability. An empty graph is obtainable, as
it does not contain edges on which selection can be incorrect; therefore, if the transfor-
mations lead to an empty graph, the original one is obtainable.

In the other way around, if the resulting graph is not empty:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–12 Paolo Liberatore

(1) every node is touched by at least two edges, as otherwise the single edge would
have been deleted by removal of tails;

(2) every node is touched by exactly one selected edge and one or more excluded edges;
otherwise, two selected edges would have been folded, and excluded edges only
separated by full disconnection.

As a result of the second point, if the graph is not empty it contains at least a selected
edge. For the graph to be obtainable, either one or its two nodes has to be assigned one
by Lemma 4.5. The other node may be one or a greater value.

f fn1 1

The case in which the values are reversed is identical.
By the first property of this graph, the node of value 1 is touched by at last another

edge, which is excluded because of the second property.

f f f@@��
n1 1 n2 > n1

By Lemma A.15, n2 is greater than n1, as otherwise the first edge would not be
selected and the second not excluded. By the two properties of the graph, the node of
value n2 is connected to at least a selected edge:

f f f f@@��
n1 1 1n2 > n1

The last node is in turn connected to an excluded edge:

f f f f f@@�� @@��
n1 1 1n2 > n1 n3 > n2

Again, n3 > n2 by Lemma A.15. The sequence proceeds alternating selected and
excluded edges. By Lemma A.15, the nodes at the end of a selected edge have value 1,
the others have increasing values. Since every node is touched by at least two edges
in this graph, the sequence can be extended indefinitely, until it reaches a node that it
already crossed. f

6

-

Since the path is alternating, one of the two horizontal edges is selected and the
other is excluded, leading to two possible cases. Since no node is touched by more than
one selected edge, the one leading back to it is excluded:f @@��

@@��

-

6

f@@��

@@��
6

-

All values on the path obey the rules of Lemma A.15: one at the end of a selected
edge, increasing the others.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Belief merging by examples App–13

f
f
f

@@��

@@��
6

-

m

1

1
f
f
f

@@��

@@��

-

6

1

m

k

In the first case, the vertical excluded edge is incorrectly selected. In the second case,
by Lemma A.15 m is greater than k because it is later in the sequence; as a result, the
vertical selected edge is incorrectly excluded.

This proves that assigning the first selected edge values n1 and 1 leads to unobtain-
ability. But the same happens, by symmetry, if these values are reversed.

Lemma A.18 shows that a graph is unobtainable if it contains an alternating cycle.
A proof similar to the one of the last lemma allows reversing this result, if cycles
are allowed to follow an edge twice in opposite directions. An example where this is
necessary is: f

f
f f f f

f
f

b
b
bb

"
"
""

"
"

""

b
b
bb@@��

@@��
@@��

@@��

@@��

None of the three transformations can be applied, as the graph contains no tails, no
chain of selected edges, and no node connected to excluded edges only. The graph is
therefore unobtainable. However, the only alternating cycles cross the chain of three
edges in the middle twice, once left-to-right and once right-to-left.

LEMMA A.20. If a graph is unobtainable, it contains an alternating (single excluded
edge)–(chain of odd selected edges) cycle that contains the same edge at most twice.

Proof. The claim is proved in two parts: first, the transformations do not add or
remove alternating cycles; second, if the resulting graph is not empty, it contains an
alternating cycle. By Lemma A.18, if the graph is unobtainable then the resulting
graph is not empty; therefore, the original graph also has an alternating chain.

— full disconnection does not open alternating cycles, as every node in them is touched
by a selected edge (no consecutive excluded edges); it does not create a new one
either, as it only disconnect edges;

— tail removal only remove edges, so it never creates a new cycle; it does not touch
existing cycles, alternating or otherwise;

— zigzag foldings do change cycles; however, it turns every path of odd selected edges
into another path of selected edges of length one, and one is still an odd number; in
the same way, paths of even edges are turned into paths of zero length; as a result, a
cycle exists after the change if and only if it existed beforehand, and it is alternating
if it was.

The second part of the proof shows that a non-empty graph resulting from applying
the three transformations contains an alternating cycle. In particular, one alternating
between single excluded edges and single selected edges. This is shown with a proof
similar to the one of the previous theorem, with a difference. If the path reaches one of
its previous nodes, this is not the end of the cycle if this would lead to two consecutive
excluded edges:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



App–14 Paolo Liberatore

f @@��

@@��

-

6

If the edge after the node is selected, the cycle could be closed as an alternating one.
This being not the case, the path is continued on the left:f @@��

@@��

-

�

The sequence can continue indefinitely. Since there are only a finite number of edges
and only two directions for each edge, at some point the sequence comes back to an
edge in the same direction it followed it before. The cycle is closed at that point.

Since the existence of an alternating cycle implies unobtainability but is also implied
by it, it is a characterization of this property.

LEMMA A.21. A graph is unobtainable if and only if it contains a cycle of alternat-
ing (single excluded edge)-(chain of odd selected edges) that crosses the same edge at
most twice.

Expressed in terms of maxsets, it leads to the following theorem.

THEOREM A.22 (4.20 in the article). Formula R is unobtainable from a set
K1, . . . ,Km having no maxset of size greater than two if and only if a cycle of (sin-
gle maxset not in R)-(chain of odd maxsets in R) that crosses the same maxset at most
twice exists.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.


