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Abstract. Laminar forced convection heat transfer of water–Cu nanofluids in a microchannel 
is studied using the double population Thermal Lattice Boltzmann method (TLBM). The 
entering flow is at a lower temperature compared to the microchannel walls. The middle 
section of the microchannel is heated with a constant and uniform heat flux, simulated by 
means of the counter slip thermal energy boundary condition. Simulations are performed for 
nanoparticle volume fractions equal to 0.00%, 0.02% and 0.04% and slip coefficient equal to 
0.001, 0.01 and 0.1. Reynolds number is equal to 1, 10 and 50.The model predictions are found 
to be in good agreement with earlier studies. Streamlines, isotherms, longitudinal variations of 
Nusselt number and slip velocity as well as velocity and temperature profiles for different cross 
sections are presented. The results indicate that LBM can be used to simulate forced 
convection for the nanofluid micro flows. They show that the microchannel performs better 
heat transfers at higher values of the Reynolds number. For all values of the Reynolds 
considered in this study, the average Nusselt number increases slightly as the solid volume 
fraction increases and the slip coefficient increases. The rate of this increase is more significant 
at higher values of the Reynolds number.  

1.  Introduction 
The lattice Boltzmann Equation (LBE) is a minimal form of the Boltzmann kinetic equation, which is 
the evolution equation for a continuous one-body distribution function, wherein all details of 
molecular motion are removed except those that are strictly needed to represent the hydrodynamic 
behaviour at the macroscopic scale; it has gained much attention for its ability to simulate fluid flows, 
and for its potential advantages over conventional numerical solution of the Navier–Stokes equations. 
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The kinetic nature of Lattice Boltzmann Method (LBM) introduces key advantages, including easy 
implementation of boundary conditions and fully parallel algorithms. In addition, the convection 
operator is linear, no Poisson equation for the pressure must be resolved and the translation of the 
microscopic distribution function into the macroscopic quantities consists of simple arithmetic 
calculations [1]. LBM have met with significant success for the numerical simulation of a large variety 
of fluid flows, including real-world engineering applications and physical phenomena of various 
complexities as multiphase flows, complex geometries and interfacial flows [2]. The application to 
fluid flow coupled with non negligible heat transfer turned out to be much more difficult. The LBE 
thermal models fall into three categories: the multi-speed approach, the passive scalar approach and 
the doubled populations approach. In this latter, successful, strategy thermal energy density and heat 
flux are expressed as kinetic moments of a thermal distribution function, so that no kinetic moment 
beyond the first order is ever required, thus providing numerical stability, also in case of significant 
temperature gradient [3]; in addition, with respect to the previous approaches, viscous heat dissipation 
and compression work done by the pressure were naturally incorporated and the boundary conditions 
are easily implemented because both populations live in the same lattice, where additional speeds are 
not necessary. 
During the last two decades, much attention has been paid to make and use micro devices. The small 
sizes as well as high efficiency of micro devices – such as microsensors, microvalves and micropumps 
– are some of the advantages of using MEMS and NEMS (Micro and Nano Electro Mechanical 
Systems). To guarantee the performance of such devices and make them cool, many studies have been 
carried out concerning flow and heat transfer in microchannels. At micro scale level, the surface 
effects are getting more important which leads to change in the classic boundary conditions. The well 
known differences of micro flows from the macroscopic ones are the slip velocity and temperature 
jump on the solid–fluid boundaries. For the gas micro flows, the flow regimes can be slip, transient 
and free molecular flow regimes; however for liquid micro flows, mainly the slip flow regime can be 
observed [4]. Therefore, in addition to classic Navier–Stokes (NS), the particle-based methods 
including direct simulation of Monte Carlo (DSMC), molecular dynamics (MD) and the lattice 
Boltzmann method (LBM) may be applied [5]. Expensive computation cost and complex 
mathematical procedure of MD and DSMC, as well as the inability of N–S for simulation of flow in 
transition and free molecular regimes, have encouraged the researchers to use LBM. 
On the other hand, using nanofluids is an innovative way to increase heat transfer which has attracted 
the researchers’ interests who are working on micro flow due to their exciting potential. Nanofluids 
are a mixture of liquid and dispersed solid nanoparticles. The higher thermal conductivity of 
nanoparticles leads to the increase of nanofluid heat transfer. Nanofluid’s characteristics are different 
from the traditional solid–liquid mixtures in milli or micro-meter particle’s size. There are many 
studies concerning nanofluid in cavities and tubes which involve its positive effects on the Nusselt 
number. Some researchers have reported the flow and heat transfer of the nanofluid in microchannels 
[6-9]. For instance, Raisi et al. [ 10] simulated the Cu–water nanofluid in a microchannel for both slip 
and no-slip conditions, ignoring the temperature jump effects and applying the classic Navier–Stokes 
equations. All in all, theoretical results of fluid flow in slip flow regimes or even simulation of 
nanofluid flow using LBM (in single phase or multi-phase mixture model) have been presented by 
several researchers. However, there are few studies concerning nanofluid simulation in microchannels 
using LBM [11-13]. However, all of them have ignored the slip velocity and temperature jump effects. 
The open literature suggests that nanofluids are an effective coolant which requires more 
investigations. In particular, the convection heat transfer of nanofluids in microchannel in the slip flow 
regime is still not entirely understood. 
In the present study, laminar forced convection heat transfer of dilute water–Cu nanofluids in a 
microchannel is analyzed. The double population Thermal Lattice Boltzmann method (TLBM) is used. 
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The middle section of the microchannel is heated with a constant and uniform heat flux. This type of 
boundary condition, representing very usual situations in physical world, is not simple to model in 
lattice Boltzmann schemes. In effect, the only boundary condition able to simulate imposed 
temperature and imposed heat flux at a boundary is the counter-slip thermal energy density boundary 
condition, that has been presented by D’Orazio et al. in [3, 19, 20] (where the boundary were at rest), 
and used in case of moving wall in [14]. The results obtained in this work are weighed against model 
validation results found in the literature. Particular attention is paid to the effects of different slip 
velocities (slip coefficient is equal to 0.001, 0,01 and 0.1) and different solid volume fractions (equal 
to 0.00%, 0,02% and 0.04%). Reynolds number is equal to 1, 10 and 50. The model predictions are 
found to be in good agreement with earlier studies. 

2.  Thermal and hydrodynamic Lattice Boltzmann Method 
The lattice Boltzmann equation with a single relaxation time from the BGK model can be expressed as 

                         𝑓𝑖 (𝑥⃗ + 𝑐𝑖𝑑𝑑, 𝑡 + 𝑑𝑑) − 𝑓𝑖 (𝑥⃗, 𝑡) = − 𝑑𝑑
𝜏𝑓+0.5𝑑𝑑

�𝑓𝑖 − 𝑓𝑖𝑒�                                                (1) 

          𝑔�𝑖 (𝑥⃗ + 𝑐𝑖𝑑𝑑, 𝑡 + 𝑑𝑑) − 𝑔�𝑖 (𝑥⃗, 𝑡) = − 𝑑𝑑
𝜏𝑔+0.5𝑑𝑑

[𝑔�𝑖 − 𝑔�𝑖𝑒] − 𝜏𝑔𝑑𝑑
𝜏𝑔+0.5𝑑𝑑

𝑓𝑖𝑍𝑖                                    (2) 

where the populations 𝑓𝑖  carry mass and momentum and the populations 𝑔�𝑖  carry internal energy and 
heat flux. The discrete distribution functions 𝑓𝑖  and 𝑔�𝑖 are introduced as in [5]: 

                                                             𝑓𝑖 = 𝑓𝑖 + 𝑑𝑑
2𝜏𝑓

(𝑓𝑖 − 𝑓𝑖𝑒)                                                              (3) 

                                                         𝑔�𝑖 = 𝑔𝑖 + 𝑑𝑑
2𝜏𝑔

(𝑔𝑖 − 𝑔𝑖𝑒) + 𝑑𝑑
2
𝑓𝑖 𝑍𝑖                                                (4) 

                                                        𝑍𝑖 = (𝑐𝑖 − 𝑢�⃗ )𝐷𝑖𝑢�⃗   ,     𝐷𝑖 = 𝜕𝑡 + 𝑐𝑖 ∙ 𝛻                                           (5) 

where 𝑓𝑖 and 𝑔𝑖 are the discrete populations which evolve when a standard first order integration 
strategy is adopted, the terms Zi and  Di represent the effects of viscous heating and the material 
derivative along direction c⃗i respectively, 𝜏𝑓 and 𝜏𝑔 are relaxations times and fie and gie are the 
equilibrium distribution functions. Throughout of this work, two-dimensional square lattice with the 
nine speeds, as shown in figure 1, is used. 
 

 
Figure 1. Nine-speed square lattice. 

 
The discrete particle lattice speeds are: 

                         𝑐𝑖 = �𝑐𝑐𝑐 𝑖−1
2
𝜋, 𝑠𝑠𝑠 𝑖−1

2
𝜋� 𝑐,                                         𝑖 = 1, 2, 3, 4                                 (6) 

           𝑐0 = (0, 0)                 𝑐𝑖 = √2 �𝑐𝑐𝑐 �𝑖−5
2
𝜋 + 𝜋

4
� , 𝑠𝑠𝑠 �𝑖−5

2
𝜋 + 𝜋

4
�� 𝑐,         𝑖 = 5,6, 7, 8                (7) 
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where 𝑐2 = 3𝑅𝑅 and 𝑇 is the temperature. The equilibrium density distributions are chosen as follows: 

                                            𝑓𝑖𝑒 = 𝜔𝑖𝜌 �1 + 3𝑐𝑖∙𝑢��⃗
𝑐2

+ 9(𝑐𝑖∙𝑢��⃗ )2

2𝑐4
− 3�𝑢2+𝑣2�

2𝑐2
�                                                 (8) 

                                                         𝑔0𝑒 = −𝜔0 �
3𝜌𝜌�𝑢2+𝑣2�

2𝑐2
�                                                                 (9) 

                                     𝑔1,2,3,4
𝑒 = 𝜔1𝜌𝜌 �1.5 + 1.5 𝑐𝑖∙𝑢��⃗

𝑐2
+ 4.5 (𝑐𝑖∙𝑢��⃗ )2

𝑐4
− 1.5 �𝑢2+𝑣2�

𝑐2
�                             (10) 

                                      𝑔5,6,7,8
𝑒 = 𝜔2𝜌𝜌 �3 + 6 𝑐𝑖∙𝑢��⃗

𝑐2
+ 4.5 (𝑐𝑖∙𝑢��⃗ )2

𝑐4
− 1.5 �𝑢2+𝑣2�

𝑐2
�                                  (11) 

where 𝑢�⃗ = (𝑢, 𝑣) and 𝜌𝜌 = 𝜌𝜌𝜌 (in two-dimensional geometry). The weights of the different 
populations are 

                                     𝜔0 = 4
9

       𝜔𝑖 = 1
9

  𝑖 = 1,2,3,4          𝜔𝑖 = 1
36

    𝑖 = 5,6,7,8                           (12) 

The terms enclosed by the square bracket, multiplied by the corresponding weights 𝜔𝑖, will be called 
corresponding form for equilibrium. 

Finally, using fie and gie, hydrodynamic and thermal variables are calculated as follows: 

                                    𝜌 = ∑ 𝑓𝑖𝑖                𝜌𝜌 = ∑ 𝑔�𝑖𝑖 − 𝑑𝑑
2
∑ 𝑓𝑖𝑖 𝑍𝑖                                                       (13) 

                         𝜌𝑢�⃗ = ∑ 𝑐𝑖𝑖 𝑓𝑖         𝑞⃗ = �∑ 𝑐𝑖𝑖 𝑔�𝑖 − 𝜌𝜌𝑢�⃗ − 𝑑𝑑
2
∑ 𝑐𝑖𝑓𝑖𝑖 𝑍𝑖�

𝜏𝑔
𝜏𝑔+0.5𝑑𝑑

                                 (14) 

The kinematic viscosity and the thermal diffusivity in the two-dimensional geometry are given by: 

                                              𝜈 = 𝜏𝑓𝑅𝑇� ,            𝜒 = 2𝜏𝑔𝑅𝑇 �                                                                  (15) 

3.  Nanofluid 
Nanofluid is a homogeneous mixture of the liquid and suspended nanoparticles. Its effective 

density can be obtained by 

                                               𝜌𝑛𝑛 = 𝜑𝜌𝑠 + (1 −𝜑)𝜌𝑓                                                                  (16) 

where 𝜑 is the nanoparticle volume fraction and the subscripts “f”, “s” and “nf” refer to base fluid, 
solid nanoparticles and nanofluid, respectively. Using the heat capacity of nanofluid, the nanofluid 
thermal diffusivity can be obtained by [15]: 

                      �𝜌𝐶𝑝�𝑛𝑛 = 𝜑�𝜌𝐶𝑝�𝑠 + (1 − 𝜑)�𝜌𝐶𝑝�𝑓       𝛼𝑛𝑛 = 𝑘𝑛𝑛 �𝜌𝐶𝑝�𝑛𝑛�                            (17) 

The effective dynamic viscosity is expressed by using the Brinkman model [16]: 

                                                           𝜇𝑛𝑛 = 𝜇𝑓 (1 − 𝜑)2.5⁄                                                            (18) 

Following equation, which was presented by Patel et al. [17,18], is considered to determine the 
nanofluid thermal conductivity 𝑘𝑛𝑛 as a function of liquid and solid thermal conductivities 

                                                      𝑘𝑛𝑛 𝑘𝑓⁄ = 1 + �𝑘𝑠
𝑘𝑓

𝐴𝑠
𝐴𝑓

+ 𝐶𝑘𝑠𝑃𝑃
𝐴𝑠

𝑘𝑓𝐴𝑓
�                                             (19) 

in which 
𝐴𝑠
𝐴𝑓

= 𝑑𝑓 

𝑑𝑠
 𝜑
1−𝜑

          𝑃𝑃 = 𝑢𝐵𝑑𝑠
𝛼𝑓

         𝑢𝐵 = 2𝑘𝐵𝑇
𝜋𝜋𝑓𝑑𝑠2

          𝑘𝐵 = 1.3807 × 10−23 𝐽 𝐾⁄           𝐶 = 36000  (20) 
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where 𝑃𝑃 is the Péclet number with the Brownian motion velocity of particles uB and kB is the 
constant of Boltzmann. 

4.  Boundary conditions 
Non-equilibrium bounce back model, normal to the boundary, is used for inlet and outlet 

hydrodynamic boundary conditions. In this model, distribution functions are reflected in suitable 
ways to satisfy the equilibrium conditions and improve accuracy. It results 

       𝑓1 = 𝑓3 + 2
3
𝜌𝑖𝑈𝑖         𝑓5 = 𝑓7 + 1

2
�𝑓4 − 𝑓2�+ 1

6
𝜌𝑖𝑈𝑖         𝑓8 = 𝑓6 −

1
2
�𝑓4 − 𝑓2�+ 1

6
𝜌𝑖𝑈𝑖             (21) 

                                                       𝑓3 = 𝑓1 −
2
3
𝜌𝑜𝑜𝑜𝑈𝑜𝑜𝑜                                                                (22) 

        𝑓7 = 𝑓5 −
�𝑓̃4−𝑓̃2�

2
− 𝜌𝑜𝑜𝑜𝑈𝑜𝑜𝑜

6
− 𝜌𝑜𝑜𝑜𝑉𝑜𝑜𝑜

2
    𝑓6 = 𝑓8 + �𝑓̃4−𝑓̃2�

2
− 𝜌𝑜𝑜𝑜𝑈𝑜𝑜𝑜

6
+ 𝜌𝑜𝑜𝑜𝑉𝑜𝑜𝑜

2
                       (23) 

With regard to thermal boundary conditions at inlet and outlet sections, they are obtained by means 
a thermal counter-slip approach as proposed by [3,19,20], in which the incoming unknown thermal 
populations are assumed to be equilibrium distribution functions with a counter slip thermal energy 
density e’, which is determined so that suitable constraints are verified. It results 

                       𝑔�1 = 6𝜌𝜌+3𝑑𝑑 ∑ 𝑓𝑖𝑍𝑖𝑖 −6(𝑔�0+𝑔�2+𝑔�3+𝑔�4+𝑔�6+𝑔�7)
2+3𝑈𝑖+3𝑈𝑖

2 × �1.5 + 1.5𝑈𝑖 + 3𝑈𝑖2�
1
9
                     (24) 

                             𝑔�5 = 6𝜌𝜌+3𝑑𝑑∑ 𝑓𝑖𝑍𝑖𝑖 −6(𝑔�0+𝑔�2+𝑔�3+𝑔�4+𝑔�6+𝑔�7)
2+3𝑈𝑖+3𝑈𝑖

2 × �3 + 6𝑈𝑖 + 3𝑈𝑖2�
1
36

                        (25) 

                       𝑔�8 = 6𝜌𝜌+3𝑑𝑑∑ 𝑓𝑖𝑍𝑖𝑖 −6(𝑔�0+𝑔�2+𝑔�3+𝑔�4+𝑔�6+𝑔�7)
2+3𝑈𝑖+3𝑈𝑖

2 × �3 + 6𝑈𝑖 + 3𝑈𝑖2�
1
36

                         (26) 

         𝑔�3 = 6(𝑔�1+𝑔�5+𝑔�8)−3𝑑𝑑∑ 𝑐𝑖𝑖𝑓𝑖𝑍𝑖−6𝜌𝜌𝑢𝑜𝑜𝑜𝑖
2−3𝑈𝑜𝑜𝑜+3𝑈𝑜𝑜𝑜2 × [1.5 − 1.5𝑈𝑜𝑜𝑜 + 3𝑈𝑜𝑜𝑜2 − 1.5𝑉𝑜𝑜𝑜2 ] 1

9
                 (27) 

𝑔�6 = 6(𝑔�1+𝑔�5+𝑔�8)−3𝑑𝑑∑ 𝑐𝑖𝑖𝑓𝑖𝑍𝑖−6𝜌𝜌𝑈𝑜𝑜𝑜𝑖
2−3𝑈𝑜𝑜𝑜+3𝑈𝑜𝑜𝑜2 × [3 − 6𝑈𝑜𝑜𝑜 + 6𝑉𝑜𝑜𝑜 + 3𝑈𝑜𝑜𝑜2 + 3𝑉𝑜𝑜𝑜2 − 9𝑈𝑜𝑜𝑜𝑉𝑜𝑜𝑜]

1
36

   (28) 

𝑔�7 = 6(𝑔�1+𝑔�5+𝑔�8)−3𝑑𝑑∑ 𝑐𝑖𝑖𝑓𝑖𝑍𝑖−6𝜌𝜌𝑈𝑜𝑜𝑜𝑖
2−3𝑈𝑜𝑜𝑜+3𝑈𝑜𝑜𝑜2 × [3 − 6𝑈𝑜𝑜𝑜 − 6𝑉𝑜𝑜𝑜 + 3𝑈𝑜𝑜𝑜2 + 3𝑉𝑜𝑜𝑜2 + 9𝑈𝑜𝑜𝑜𝑉𝑜𝑜𝑜]

1
36

   (29) 

With regard to microchannel walls boundary conditions, the slip boundary condition is applied for 
hydrodynamic field. More specifically, we refer to the work of Ngoma and Erchiqui [21] who 
considered the slip length coefficient 𝛽 and defined the slip velocity 𝑢𝑠 for the liquid inside the 
microchannel on the stationary walls and we write the dimensionless slip velocity 𝑈𝑠 as 

                                         𝑢𝑠 = ±𝛽 𝜕𝜕
𝜕𝜕
�
𝑦=0,ℎ

        𝑈𝑠 = ±𝐵 𝜕𝜕
𝜕𝜕
�
𝑌=0,1

                                              (30) 

To determine the slip velocity in LBM, the specular reflective bounce back model (combination of 
bounce back and specular boundary condition) is applied in this work. For example for the bottom 
wall, the unknown distribution functions are estimated by 

                          𝑓2 = 𝑓4        𝑓5 = 𝑟𝑓7 + (1 − 𝑟) 𝑓8        𝑓6 = 𝑟𝑓8 + (1 − 𝑟) 𝑓7                                   (31) 

The accommodation coefficient value, 𝑟, is chosen appropriately for more accuracy [22]. 
With regard to thermal boundary conditions at the microchannel walls, the middle section of the 
microchannel is heated with a constant and uniform heat flux, whereas the final section is insulated. 
These boundary conditions are obtained by means of the thermal counter-slip approach with imposed 
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heat flux. As an example, for the top wall of the channel, named as “north wall”, in which entering 
heat flux is constant and equal to qN, the unknown g�4 , g�7 and g�8  are chosen as follows. 

                𝑔�𝑖 = 𝜌(𝑒𝑁 + 𝑒′) × [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]          𝑖 = 4, 7, 8                (32) 

By definition: 

                                   ∑  𝑐𝑖𝑖 𝑔�𝑖 𝑖 = 𝑑𝑑
2
∑ 𝑐𝑖𝑖𝑓𝑖𝑖 𝑍𝑖 + 𝜌𝑒𝑁𝑉𝑁 + 𝜏𝑔+0.5𝑑𝑑

𝜏𝑔
𝑞𝑦                                            (33) 

which yields to: 

                𝜌𝑒𝑁 + 𝜌𝑒′ = �𝐾 − 𝑑𝑑
2
∑ 𝑐𝑖𝑖

𝑐
𝑓𝑖𝑖 𝑍𝑖 − 𝜌𝑒𝑁

𝑉𝑁
𝑐
− 𝜏𝑔+0.5𝑑𝑑

𝜏𝑔

𝑞𝑦
𝑐
� �1

3
− 1

2
𝑉𝑁
𝑐

+ 1
2
𝑉𝑁
2

𝑐2
��                       (34) 

where 𝑉𝑁 is the component normal to the wall of flow velocity at the wall, K is the sum of the three 
known populations (𝑔�2 , 𝑔�5  and 𝑔�6 ) 𝑒𝑁 denotes the current value of thermal energy density at the 
north wall. The numerical value of the heat flux qN  (and similarly for the value qS at the south wall) is 
obviously equal to zero for the final section of the microchannel. The corners nodes are treated 
similarly and the counter-slip procedure can be applied to the five unknown incoming populations at 
the corner. The same relations are used for the bottom wall (named as “south wall”), in which entering 
heat flux is constant and equal to qS and the unknown populations are g�2 , g�5 and g�6 . 
With regard to the initial conditions, the velocities of all nodes inside the cavity are taken as zero 
initially. The initial density is set to a value of 2.7. The initial equilibrium distribution functions are 
evaluated correspondingly. The initial distribution functions are taken as the corresponding 
equilibrium values. 
 

5.  Results and discussion 
Laminar forced convection heat transfer of a Cu–water nanofluid in a long microchannel is studied 

numerically using Lattice Boltzmann Method previously described. Length L and height  H are shown 
in Figure 2. The top and bottom walls are partially heated; nanofluid enters the microchannel with 
inlet velocity and temperature ui and Ti respectively. 

The nanofluid simulated in this work is a dispersion of nanoparticles of copper (Cu) in pure water 
(as the base liquid). It is assumed that the considered fluid is a Newtonian, incompressible fluid, in 
laminar flow regime. Nanoparticles are spherical, with diameter as dp = 100nm. Water and 
nanoparticles mixture is in the homogeneous mode and the radiation effect is negligible. 

Characteristic dimensionless number in the analysis of laminar forced convection problems of 
nanofluids in microchannels are the Reynolds number and Prandtl numbers, defined as Re = uih νf⁄  
and Pr = νf αf⁄  respectively, nanoparticle concentration 𝜑 and slip coefficient 𝐵. As stated before, 
lattice Boltzmann method is used for near-incompressible flows and therefore Mach number is 
assumed as Ma ≪ 1. More specifically, the characteristic velocity of the flow must be small compared 
with the fluid speed of sound; in present study the velocity ui is selected as ui = 0.1c (Ui = 0.1). The 
Prandtl number is calculated for the nanofluid mixture at 𝜑 = 0 (pure water), 𝜑 = 0.02 and 𝜑 = 0.04 
and the and Reynolds number is assumed as 𝑅𝑅 = 1, 𝑅𝑅 = 10 and 𝑅𝑅 = 50. The effects of the slip 
velocity on the flow and heat transfer are studied; the slip velocity coefficient is assumed as 𝐵 =
0.001, 𝐵 = 0.01 and 𝐵 = 0.1. 
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Figure 2. The schematic diagram of the microchannel. 

 
To avoid ambiguity, the boundary of the channel are referred to according to the coordinates shown 

in Figure 2. In the following the macroscopic variables of fluid flow are made dimensionless as 
follows, respectively for dimensionless coordinates, velocity components, temperature, time 

 𝑌 = 𝑦
𝐻 

 ,     𝑋 = 𝑥
𝐻 

 ,     𝐿 = 𝑙
𝐻 

 ,     𝑈 = 𝑢
𝑈𝑖 

 ,    𝑉 = 𝑣
𝑈𝑖 

 ,      Θ = 𝑇−𝑇𝑖
ΔT

  ,    ΔT = 𝑞𝑦𝐻
𝑘𝑓 

 ,     𝜏 = 𝑡𝑈𝑖
𝐻 

            (35) 

Therefore, the local and average Nusselt numbers along the microchannel wall are calculated using 
following relations 

               𝑁𝑁𝑋 = 𝜆𝜆
𝑘𝑓 

= 𝑞𝑦𝐻
𝑘𝑓 (𝑇𝑠−𝑇𝑖)

= ΔT
(𝑇𝑠−𝑇𝑖)

= 1
Θs(𝑋)  ,                   𝑁𝑁𝑚 = 1

𝐿
 ∫ 𝑁𝑁𝑋𝑑𝑑
𝐿
0                           (36) 

where 𝜆 = 𝑞𝑦 (𝑇𝑠−𝑇𝑖)⁄  is the convection coefficient. The top wall is the at Y = 1, the bottom wall is at 
Y=0 and the inlet and outlet sections are at  X = 0 and X = 32. 

In order to obtain grid independent solution, a grid refinement study is performed for nanoparticle 
concentration 𝜑 = 0.02 and slip coefficient 𝐵 = 0.001. Grid independence of the results is 
established in term of average Nusselt number on the wall and dimensionless maximum value of 
temperature Θ at and Y = 0.1 for three different grid size, namely 40 × 400, 50 × 500 and  60 × 600 
lattice nodes; due to small difference between the results of the last two grid sizes, the 50 × 500 grid 
is chosen as a suitable one in this work. 

To validate the computer code, the comparison with the values obtained by Raisi et al. [10 ] for the 
longitudinal velocity Uout at the end of the microchannel is examined for the slip coefficient equal to 
0.05 and 0.1 and nanoparticles concentration coefficient and Reynolds number equal to 0.03 and 50.0 
respectively; in addition, the comparison with the values obtained by Aminossadati et al. [7] for the 
average Nusselt number Num is examined for the Reynolds number equal to 10.0, 100.0 and 500.0. 
The values obtained in present work show good agreement with those in [10] and [7], with a 
maximum error equal to 0.2% and 1.9% respectively. 

In order to show the effect of the Reynolds number on the flow field and heat transfer, in Figures 3, 
4 and 5 streamlines and isotherms are reported for slip velocity coefficient 𝐵 = 0.1 and nanoparticles 
concentration coefficient 𝜑 = 0.02 for the cases 𝑅𝑅 = 1, 10 and 50. Nanofluid enters the 
microchannel from the left and after cooling the walls, it leaves from the right side. So, there will be 
symmetric and horizontal streamlines along the microchannel. For the same values of Reynolds 
number in Figure 6, 7 and 8 the slip velocity Us is reported as a function of the slip coefficient. It can 
be observed that at the inlet, the slip velocities start from their maximum values and decrease 
asymptotically along the wall and approach constant values; larger 𝐵 corresponds to larger slip 
velocity on the walls. 
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Figure 3. Streamlines (top) 
and isotherms (bottom) for 
𝐵 = 0.1, 𝜑 = 0.02 and 
𝑅𝑅 = 1 

 

Figure 4. Streamlines (top) 
and isotherms (bottom) for 
𝐵 = 0.1, 𝜑 = 0.02 and 
𝑅𝑅 = 10 

 

Figure 5. Streamlines (top) 
and isotherms (bottom) for 
𝐵 = 0.1, 𝜑 = 0.02 and 
𝑅𝑅 = 50 

 

 

 

 

 

 
Figure 6. Slip velocity for 
𝜑 = 0.02 and 𝑅𝑅 = 1.  Figure 7. Slip velocity for 

𝜑 = 0.02 and 𝑅𝑅 = 10.  Figure 8. Slip velocity for 
𝜑 = 0.02 and 𝑅𝑅 = 50. 

 
The average Nusselt number Num for different values of 𝜑 and 𝐵 is presented in Figure 9, which 

indicates that the importance of using nanofluid to increase the heat transfer rate is distinguishable for 
𝑅𝑅 = 50. In this case, using 4% of Cu nanoparticles leads to increase almost 11% of the average 
Nusselt number at 𝐵 = 0.1. This increase is more significant (19.5%) at 𝐵 = 0.001. 

 

 
 
Figure 9. Average Nusselt number Num as a function of particles concentration 𝜑 for different slip 

velocity coefficient and in case of Reynolds number 𝑅𝑅 = 1, 10 and 50 

6.  Conclusions 
A thermal lattice Boltzmann BGK model with a dedicated boundary condition was used to study 
numerically laminar two-dimensional laminar forced convection heat transfer of Cu–water nanofluid 
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in a microchannel when he heat transfer rate is imposed at the boundaries. The effects of different 
volume fractions of copper nanoparticles and slip coefficient were investigated on the slip velocity  
and Nusselt number for 𝑅𝑅 = 1, 10 and 50. The results show that, as expected, heat transfer rate 
increases as increases the Reynolds number and the slip velocity at the wall. The effect of particle 
concentration is detectable for not too low values of Reynolds number and this effect is significant for 
the lowest slip velocity coefficient. As a result, to increase Nu in micro liquid flows, it is 
recommended to use nanofluid with 𝜑 = 4% and at low values of slip coefficient as like 𝐵 = 0.001. 
The study shows that LBM together with the counter-slip thermal boundary condition can be 
effectively used  for heat transfer phenomena in case of flows in microchannel in presence of 
nanofluid. 
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