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Chapter 1

Motivation and Objectives

One of the most challenging problems in modern science is how to deal with the

huge amount of data that today's technologies provide. Several di�culties may

arise. For instance, the number of samples may be too big and the stream of

incoming data may be faster than the algorithm needed to process them. Another

common problem is that when data dimension grows also the volume of the space

does, leading to a sparsi�cation of the available data. This may cause problems

in the statistical analysis since the data needed to support our conclusion often

grows exponentially with the dimension. This problem is commonly referred to

as the Curse of Dimensionality and it is one of the reasons why high dimensional

data can not be analyzed e�ciently with traditional methods. Classical methods

for dimensionality reduction, like principal component analysis and factor analysis,

may fail due to a nonlinear structure of the data. In recent years several methods

for nonlinear dimensionality reduction have been proposed. A general way to model

high dimensional data set is to represent the observations as noisy samples drawn

from a probability distribution µ in RD. It has been observed that the essential

support of µ can be often well approximated by low dimensional sets. These sets

can be assumed to be low dimensional manifolds embedded in the ambient dimension

D. A manifold is a topologial space which globally may not be Euclidean but in

a small neighbor of each point behaves like an Euclidean space. In this setting we

call intrinsic dimension the dimension of the manifold, which is usually much lower

than the ambient dimension D.

Roughly speaking, the intrinsic dimension of a data set can be described as the

minimum number of variables needed to represent the data without signi�cant loss

of information. In this work we propose di�erent methods aimed at estimate the

intrinsic dimension. The �rst method we present models the neighbors of each point

as stochastic processes, in such a way that a closed form likelihood function can

1



Background Theory 2

be written. This leads to a closed form maximum likelihood estimator (MLE) for

the intrinsic dimension, which has all the good features that a MLE can have. The

second method is based on a multiscale singular value decomposition (MSVD) of the

data. This method performs singular value decomposition (SVD) on neighbors of

increasing size and �nd an estimate for the intrinsic dimension studying the behav-

ior of the singular values as the radius of the neighbor increases. We also introduce

an algorithm to estimate the model parameters when the data are assumed to be

sampled around an unknown number of planes with di�erent intrinsic dimensions,

embedded in a high dimensional space. This kind of models have many applications

in computer vision and patter recognition, where the data can be described by mul-

tiple linear structures or need to be clusterized into groups that can be represented

by low dimensional hyperplanes. The algorithm relies on both MSVD and spectral

clustering, and it is able to estimate the number of planes, their dimension as well

as their arrangement in the ambient space. Finally, we propose a novel method for

manifold reconstruction based on a multiscale approach, which approximates the

manifold from coarse to �ne scales with increasing precision. The basic idea is to

produce, at a generic scale j, a piecewise linear approximation of the manifold using

a collection of low dimensional planes and use those planes to create clusters for

the data. At scale j + 1, each cluster is independently approximated by another

collection of low dimensional planes. The process is iterated until the desired pre-

cision is achieved. This algorithm is fast because it is highly parallelizable and its

computational time is independent from the sample size. Moreover this method au-

tomatically constructs a tree structure for the data. This feature can be particularly

useful in applications which requires an a priori tree data structure. The aim of the

collection of methods proposed in this work is to provide algorithms to learn and

estimate the underlying structure of high dimensional dataset.



Part I

Intrinsic Dimension Estimation
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Introduction

Modern data sets often consist of noisy samples taking values in a high dimensional

Euclidean space yet containing an underlying low-dimensional structure. In this

part of the dissertation we deal with the problem of estimating the local dimension

of the low-dimensional structure that we call the intrinsic dimension of the data.

Assume that we have samples from a set with intrinsic dimension d, in other words

that the set is locally well approximated by a d-dimensional plane. Now, let this set

be embedded in RD with D > d. Our goal is to estimate d given the samples which

are generally corrupted by noise in D dimensions. Intrinsic dimension estimation

is a relevant problem in many applications, including physics, genomics, statistics,

�nance and machine learning. In these various areas it is commonly needed to

analyze high-dimensional data sets, sometimes with limited sample size. Many al-

gorithms have been developed to perform dimensionality reduction in order to obtain

representations for high-dimensional data sets. One of the usual frameworks is to

map the data from RD to Rd preserving the pairwise distance between points. These

low-dimensional representations are necessary in exploratory data analysis, enabling

the visualization of very complicated data and possibly uncovering the underlying

patterns and structures. However, most of these techniques require to specify the

dimension d of the Euclidean space into which the data will be mapped. Values

too small of d may result in the loss of signi�cant information, while too large

value of d may cause di�culties in revealing the underlying structure of the data.

Thus, although an accurate estimation of the intrinsic dimension is extremely useful

in data analysis, in practice this task is everything but straightforward. Classical

linear methods for intrinsic dimension estimation, such principal component analy-

sis (PCA), may overestimate the dimension when the data structure is non-linear.

Nevertheless, if the data are corrupted by noise or the sample size is too small, the

underlying structure may be obscured or partially explored, in these cases estimate

the intrinsic dimension may be di�cult. Thus, to reliably estimate the intrinsic

dimension in real-world data sets, it is crucial to develop techniques that are robust

to curvature in the data, noise and small sample size. In this part of the disserta-

tion we will present some methods for the intrinsic dimension estimation based on

5
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a modeling approach that leads to maximum likelihood estimators (MLE) for the

intrinsic dimension d. We extend these methods using the composite likelihood the-

ory and present some methods for the choice of the tuning parameters. Eventually

we present some numerical results to describe the performances of the algorithms

we propose.



Chapter 2

Background Theory

2.1 Intrinsic Dimension Estimation

There are several ways to classify intrinsic dimension estimation techniques; however

most of them may be divided in two main categories: local and global methods.

Roughly speaking, local techniques estimate the dimension in a neighbor of each

data points, while global techniques estimate the intrinsic dimension of the entire

data set under the assumption that it actually has a unique value. In this section we

will brie�y introduce di�erent notions of dimension and some estimation methods

capable to recover them from data.

2.1.1 Notions of dimensionality

In the literature, there are many di�erent de�nitions of dimension, and some of them

have been used to design appropriate intrinsic dimension estimation methods.

To begin with, consider the de�nition of the d-dimensional Hausdord� measure

of a set A ⊆ RD, which can be found in David and Semmes (1993):

Hd(A) = lim
δ→0

inf
∪iEi⊇A

diam(Ei)≤δ

(∑
i

diam(Ei)
d

)
.

The in�mum is taken over all sequences of sets Ei ⊆ RD, with diameter bounded

by δ, whose union covers the set A. If Hd(A) = C for some �nite, positive constant,

then A has Hausdor� dimension d.

Another option is the so called box-counting dimension which is a simpli�ed

7
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version of the Hausdor� dimension and is de�ned as

dB = lim
r→0

ln
(
v(r)

)
ln
(
1
r

) ,

where v(r) is the minimal number of boxes of size r needed to cover Ω. In prac-

tice, the box-counting dimension can only be computed for low-dimensional sets,

because the computational complexity is exponential in the dimension. Thus, for

high dimensional sets, the box-counting dimension needs to be approximated. This

approximation is usually done via the correlation dimension. So, let x1, . . . , xn be a

set of n i.i.d. samples from some domain Ω ⊆ RD, then the correlation integral is

de�ned as

C(r) = lim
n→∞

2

n(n− 1)

n∑
i=1

n∑
j=i+1

I(
‖xj−xi‖≤r

),
and the corresponding correlation dimension is

dC = lim
r→0

ln
(
C(r)

)
ln(r)

. (2.1)

2.1.2 Estimators based on the correlation integral

One way to estimate the correlation dimension in Equation (2.1) is to plug a su�-

ciently small value of r into the righthand side of the equation. This approach, of

course, may be very sensitive to the choice of r. As a consequence, another way to

estimate dC is simply to plot ln(r) versus ln
(
C(r)

)
and evaluate the slope of the

linear portion in the resulting plot. This approach, introduced in Grassberger and

Procaccia (1983), is known as the GP algorithm. However the number of samples

to obtain the intrinsic dimension is prohibitive, even for a small intrinsic dimension,

since the number of samples needed must be bigger than 10
dC
2 . To tackle this is-

sue, in Camastra and Vinciarelli (2002), a fractal method is proposed which is a

modi�cation of the GP algorithm and which is more accurate at small sample sizes.

They basically assume that the intrinsic dimension d can be determined from the

relationship between the correlation dimension dC and the sample size n.

2.1.3 Nearest neighbor estimators

Another branch of techniques to estimate the intrinsic dimension d is based on

geometrical information contained in neighbors of the data. Most of the algorithms

in this category are based on the assumption that the density f (xi) can be locally
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well approximated by

f̂ (x) =
k/n

Vd
, (2.2)

where k is the number of nearest neighbors to x, n is the sample size of the of data

set and Vd is the volume of the d-dimensional sphere with radius r equal to the

distance between x and its k�th neighbor. One of the �rst works in this direction

is Pettis et al. (1979) where the Authors exploit Equation (2.2) to �nd a function

similar to its logarithmic transformation which can be used to isolate and estimate

d via optimization. A similar idea is introduced in Sricharan et al. (2010), where

the Authors consider a statistic that averages the logarithm of the radii of many

k�nearest-neighbors and then again isolate and estimate d via optimization.

In this same category there are also model based methods that tries to render ge-

ometric information in a probabilistic fashion. Works like Levina and Bickel (2004),

MacKay and Ghahramani (2005) and Gupta and Huang (2012), for example, are

based on the assumption that the number of points randomly drawn from a smooth

Riemannian manifold with unknown density f(·) that fall in a small enough hyper-

sphere, can be reasonably modeled as a suitable Poisson process. These methods

usually lead to closed form maximum likelihood estimators characterized by strong

theoretical properties.

2.1.4 Projective estimators

One of the most commonly used method to reduce the dimensionality of a dataset is

principal component analysis (PCA) or, equivalently, the singular value decomposi-

tion (SVD) of the covariance/correlation matrix. These methods apply an orthogo-

nal transformation to the observations in order to obtain a new set of uncorrelated

variables. Dimensional reduction is usually achieved by dropping the (new) variables

with an associated small eigenvalue. The main issue with the use of these methods

to estimate the intrinsic dimension is the assumption that the embedded manifold

is linear. If this assumption does not hold (i.e. the embedded manifold have a non

linear structure) the intrinsic dimension may be overestimated due to the curvature

of the manifold. This issue can be solved thinking locally under the assumption that

we are dealing with a smooth Riemannian manifold with bounded curvature. In this

setting a small enough region of the data should behave as a linear manifold and so,

if there are enough data points to perform PCA in that neighborhood, the number of

non zero eigenvalues we get can be interpreted as an estimate of the (local) intrinsic

dimension. One of the �rst approach that uses local PCA is described in Fukunaga

and Olsen (1971) which proposed a non�iterative semi�automatic algorithm subse-
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quently improved in Fan et al. (2010) where initially we build a minimal cover of the

data set and then perform a local PCA on each subset of the cover. A multiscale

approach is proposed by Little et al. (2009b) which estimates the intrinsic dimension

carefully studying the behavior of the singular values as functions of the radius of

the sub�region where the local SVD is performed.



Chapter 3

Maximum Likelihood Approach

In this chapter we will introduce and describe some model based methods for the

estimation of the intrinsic dimension. The use of point processes to model the

number of observations that fall in arbitrary sub�region of the ambient space allows

us to write a likelihood function that can be subsequently maximized to obtain a

well de�ned estimator in closed form. In this section we will extend the original

setup described in Levina and Bickel (2004) by using composite likelihood theory to

obtain adjusted global estimators for the intrinsic dimension. In addition, to choose

an appropriate neighborhood size, we propose a method based on cross�validation

and present some numerical results on simulated datasets to show the performances

of our proposals.

Model based approaches are usually strictly linked to nearest neighbor techniques.

Let Xn = {x1, . . . , xn} be a set of n samples drawn from some unknown density

f (x) in RD. If the true intrinsic dimension of our point cloud is d, then, on a d�

dimensional sphere Sk (xi) centered on xi with radius Rk (xi) � which is the distance

of xi from its kth nearest neighbor, we have

k

n
≈ f (xi) VdRk (xi)

d ,

where Vd is the volume of the d�dimensional unit sphere. We can now consider an

inhomogeneous point process N (R, x) which counts the number of samples falling

into a small d�dimensional sphere of radius R centered at x. This is a binomial

process that under appropriate conditions can be approximated by a suitable Poisson

process. If we assume that f (x) is approximately constant inside a small enough

sphere, then the rate λ of N (R, x) is

λ (R, x) = f (x) Vd dR
d−1

11
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and, according to Snyder and Miller (1991), the associated local log�likelihood have

the form

L
(
d (x) , θ (x)

)
=

R∫
0

log λ (r, x)dN (r, x)−
R∫

0

log λ (r, x)dr (3.1)

where θ (x) = log f (x). This is an exponential family likelihood, and the maximum

likelihood estimators can be found solving the equations
∂L
∂θ

= N (R, x)− eθVdRd = 0

∂L
∂d

=
(

1
d

+
V ′d
Vd

)
N (R, x) +

∫ R
0

log(r)dN (R, x)− eθVdRd
(

logR +
V ′d
Vd

)
= 0

.

The solution to those equations lead to closed form estimators
d̂ (x) =

[
1

N(R,x)

∑N(R,x)
j=1 log R

Rj(x)

]−1
f̂ (x) = N(R,x)

V
d̂(x)

Rd̂(x)

where Rj is the euclidean distance between x and its jth neighbour. To obtain

a global estimate of the intrinsic dimension Levina and Bickel (2004) propose to

locally estimate it around all the data points and then simply average the result-

ing estimates. However this approach leads to a very strong bias for low number

of neighbors. A simple correction is proposed in MacKay and Ghahramani (2005)

under the working (and usually unrealistic) assumption that the number of obser-

vations falling around each of the n points are independent to each other. In this

case the MLE for the intrinsic dimension associated to this approximated global

likelihood can still be written in closed form as

d̂ =

 1

N (R, x)

n∑
i=1

N(R,x)∑
j=1

log
R

Rj (xi)

−1 . (3.2)

An alternative formulation for the likelihood and the MLE can be obtained �xing

the number of neighbour k instead of the radius R. In this case we get

d̂ =

[
1

n (k − 1)

n∑
i=1

k−1∑
j=1

log
Rk (xi)

Rj (xi)

]−1
. (3.3)
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3.1 Composite Likelihood Approach

The framework proposed by MacKay and Ghahramani (2005) we just described can

be seen as a composite likelihood (CL) maximization problem. We compute the log�

likelihood in Equation (3.1) for each point; we assume that they are independent, and

we then sum them all to obtain a logarithmic CL. Equation (3.2) is then the MLE

associated to this simple unweighted CL. In this section, after a brief introduction on

the composite likelihood theory, we will compute a correction term to the composite

likelihood.

3.1.1 Introduction to Composite Likelihood

Consider a D-dimensional vector random variable Y having pdf f(y; θ) for some

unknown p-dimensional parameter vector θ ∈ Θ. Let {A1, . . . ,AK} be a set of

conditional or marginal events with associated likelihoods Lk(θ; y) ∝ f(y ∈ Ak; θ).
Following Lindsay (1988), a composite likelihood is

LC(θ; y) =
K∏
k=1

Lk(θ; y)wk ,

where wk are nonnegative weights to be chosen. If the weights are all equal then

they can be ignored. Nevertheless, a careful choice of unequal weights can improve

the e�ciency of the resulting estimators.

In the case of n independent and identically distributed samples, for D �xed, the

use of the composite likelihood is supported by some standard asymptotic results

(i.e. n→∞). These results can be found in Lindsay (1988), Kent (1982), Verbeke

(2005) and Varin et al. (2011). One of these results is a central limit theorem for the

CL score statistics, which implies that the composite maximum likelihood estimator

θ̂CL is asymptotically normally distributed:

√
n
(
θ̂CL − θ

) d−→ Np

(
0, G−1(θ)

)
,

where Np(µ,Σ) denotes the p-dimensional normal distribution and G(θ) is the Go-

dambe information matrix given by

G(θ) =
[
H(θ)−1J(θ)(H(θ)T )−1

]−1
,

where H(θ) is the Fisher information matrix and J(θ) is the covariance matrix of

the score.
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Suppose that there is scienti�c interest in a q-dimensional subvector ψ of the

parameter θ = (ψ, τ) where τ is a nuisance parameter subvector. Composite like-

lihood versions of Wald and score statistics for testing the hypothesis H0 : ψ = ψ0

can be easily constructed and have the usual asymptotic χ2
q distribution. The Wald

statistic is

We = n
(
ψ̂CL − ψ0

)T
Gψψ

(
ψ̂CL − ψ0

)
,

where Gψψ is the sub (q × q) submatrix of the Godambe information related to ψ.

The score statistic is

Wu =
1

n
uψ
(
ψ0, τ̂CL(ψ0)

)T
H̃ψψG̃ψψH̃

ψψuψ
(
ψ0, τ̂CL(ψ0)

)
,

where Hψψ is the (q × q) submatrix of the inverse of H(θ) related to ψ, and

H̃ = H
(
ψ0, τ̂CL(ψ0)

)
. Like in ordinary likelihood inference We is not invariant

to reparametrization and Wu may be numerically unstable.

It may be preferable to use the composite likelihood ratio statistic

W = 2
[
logLC

(
θ̂CL; y

)
− logLC

(
ψ0, τ̂CL(ψ0); y

)]
,

which, however, have the drawback of a non-standard asymptotic distribution

W
d→

q∑
j=1

λjZ
2
j ,

where Z1, . . . , Zq are independent normal variables and λ1, . . . , λq are the eigenvalues

of the matrix (Hψψ)−1Gψψ. To overcome this problem Geys et al. (1999), proposed a

correction to likelihood ratio statistic and introduced the statisticW ′(θ) = W (θ)/ψ,

with

ψ =
1

d

d∑
i=1

λi
(
θ̂
)
CL

=
1

d
tr
(
H(θ̂)−1CL − J(θ̂)CL

)
. (3.4)

The statistic W ′, in general, has an approximate χ2
q distribution (see Varin (2008)).

In Pauli et al. (2011) the authors propose to use 1
ψ
as a particular choice of weight

for the composite likelihood in order to alleviates ine�ciency due to model misspec-

i�cation of the composite likelihood that may lead to unreasonable inference. For

instance, the variability of the composite maximum likelihood estimator may not be

re�ected by the shape of the composite likelihood.



15 Intrinsic Dimension Estimation

3.1.2 Computing the Correction Term

In this section we will compute the composite likelihood for our model and its

correction term ψ shown in Equation (3.4). The log�likelihood described in Levina

and Bickel (2004) for �xed k is

L
(
d (x) , f (x)

)
= (k − 1) log f (x)− (k − 1) log d (x) + (k − 1) log Vd+

+
k−1∑
j=1

logRj − f (x)VdR
d
k.

The composite log�likelihood is then

cL(d, f) =
n∑
i=1

[
(k − 1) log f (xi)− (k − 1) log d+ (k − 1) log Vd+

k−1∑
j=1

logRij − f (xi)VdR
d
ik

]
.

The correction ψ is the average of the eigenvalues of the I−1J matrix and can be

written

ψ =
tr (H−1J)

n+ 1
,

where H is the Fisher's information matrix and J is the covariance matrix of the

score function. We de�ne the the score function as

u = (u0, u1, . . . , un) =

(
∂cL (d, f)

∂d
,
∂cL (d, f)

∂f1
, . . . ,

∂cL (d, f)

∂fn

)
.

Lets de�ne every component of J :

u0 =
∂cL (d, f)

∂d
=

n∑
i=1

∂L (d, fi)

∂d
=n

k − 1

d
+ n (k − 1)

V ′d
Vd

+
n∑
i=1

k−1∑
j=1

logRij−

n∑
i=1

fiV
′
dR

d
k −

n∑
i=1

fiVdR
D
ik logRik,

where V ′d is the �rst derivative of Vd with respect to d. We note that the only

component of u0 that depends on the data is

n∑
i=1

k−1∑
j=1

logRij.
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Under the usual assumption that the number of points around each data point are

independent, we have that the random variables Rij are also independent, so the

variance of u0 is

Var (u0) =
n∑
i=1

Var

(
k−1∑
j=1

logRij

)
.

Since it is known from Levina and Bickel (2004) that the random variable Y =
1
d

∑k−1
i=1 log Rk

Rj
follows a Gamma (k, 1) distribution, then

k−1∑
i=1

logRj =
k−1∑
i=1

logRk − d Y,

and since Var (Y ) = k, then

n∑
i=1

Var

(
k−1∑
j=1

logRij

)
= n d2Var (Y ) = n d2 k.

The generic component uj for j in (1, ..., n) is

ui =
∂cL (d, fi)

∂fi
=
k − 1

fi
− VdRik,

which doesn't depend on the data so, for i 6= i′ and i > 0

Var (ui) = 0, Cov (ui, ui′) = 0,

and

Cov (ui, u0) = E (uju0)− E (uj)E (uj) = 0

J = Var (u) =


Var (u0) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 =


n d2 k 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .
De�ne the expected Fisher's information matrix, with l = (0, . . . , n) as

H =



H00 · · · H1l · · · H1n

...
. . .

...
. . .

...

Hl1 · · · Hll · · · Hln′

...
. . .

...
. . .

...

Hn1 · · · Hln · · · Hnn


,
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where the �rst entry is

H00 = −∂
2cL (d, f)

∂d2
=

n∑
i=1

[
k − 1

d2
− (k − 1)

V ′′d Vd − (V ′d)
2

V 2
d

+ fiV
′′
d R

d
ik

]
+

+
n∑
i=1

[
fiV

′
dt
d
ik logRik + fi logRikV

′
dR

d
ik + fiVd logR2

ikR
d
ik

]
.

Values in the �rst row and �rst column (excluding H00) are given by

H0l = Hl0 = −∂
2cL (d, fl)

∂d∂fl
= V ′dR

d
lk + V ′dR

d
lk logRlk.

Values on the diagonal (excluding H00) are

Hll = −∂
2cL (d, fl)

∂fl∂fl
=

k

f 2
l

.

Finally, all the values not on the �rst row, �rst column or diagonal are equal to 0

Hll′ = −∂
2cL (d, f)

∂fl∂fl′
= 0, ∀ l 6= l′.

We notice that H is an arrow shaped matrix

H =



H00 H10 · · · H1l · · · H1n

H01 H11 0 0 0 0
... 0

. . . 0 0 0

Hl1 0 0 Hll 0 0
... 0 0 0

. . . 0

Hn1 0 0 0 0 Hnn


.

Since H does not depend on data it can be considered both the observed and the

expected Fisher Information matrix. We can also notice that

H−1J =


a00 a01 · · · a1n

a01 a11 · · ·
...

...
...

. . .
...

an1 · · · · · · ann



n d2 k 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 =


a00 n d

2 k 0 0 0

a01 n d
2 k 0 0 0

...
...

...
...

an1 n d
2 k 0 0 0

 ,
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then, to compute the the trace of the H−1J matrix we only need the element a00

of H−1 matrix. Now, since H is an arrow shaped matrix, the element a00 can be

computed as

a00 =

[
H00 −

n∑
l=1

H2
0l

Hll

]−1
.

The correction term ψ for the composite likelihood is then

ψ =
tr (I−1J)

n+ 1
=
a00 n d

2 k

n+ 1
,

that can be written in its non�simpli�ed form as

ψ =
nd2k

n+ 1

{
n∑
i=1

[
k − 1

d2
− (k − 1)

V ′′d Vd − (V ′d)
2

V 2
d

+ fiV
′′
d R

d
ik + fiV

′
dt
d
ik logRik+

+ fi logRikV
′
DR

d
ik + fiVd logR2

ikR
d
ik

]
−

n∑
l=1

(
V ′dR

d
lk + V ′dR

d
lk logRlk

)2
k
f2l

}−1
.

(3.5)

3.1.3 Numerical Results

In this section we show some numerical results on the performance of the correction

term introduced in the last section. The simulation study is organized as follows

1. Draw 200 samples uniformly from a 2�dimensional �at torus embedded in R4.

2. Randomly pick 50 points and build their neighbors.

3. Estimate the intrinsic dimension of the manifold in three di�erent ways:

• dmle � Closed form MLE in Equation (3.3).

• demp � Evalute on a grid of d values the composite marginal likelihood

built using the 50 (local) likelihoods associated to the selected 50 neigh-

borhoods and �nd the value which empirically maximize the composite

likelihood.

• dcor � Computed as the previous one but the composite likelihood used

is corrected as in Section 3.1.2.

4. All the estimators are evaluated on a grid of k values.

5. Repeat 100 times and average the results.



19 Intrinsic Dimension Estimation

Figure 3.1.3 shows the results of the numerical experiment. We see how, for a good

range of k values, the correction term tends to gives estimates closer to the real

value of the intrinsic dimension d, compared to the other two methods.

Figure 3.1: Estimates of the intrinsic dimension provided by the three methods
described in Section 3.1.3, for data on a 2�dimensional �at torus embedded in R4.
The green, black and red lines represents dmle, demp and dcor respectively. The solid
lines are the average estimates over 100 iteration. The blue solid line represents
the real intrinsic dimension. The dashed lines are bands centered on the average
estimate ± 1 standard error.
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3.2 Cross Validation for the choice of k

One of the most critical aspect of the methods presented in this chapter is the choice

of the neighborhood size. In other words we have to decide either the number of

element k inside the neighborhood or its radius r. In this section we will propose

some ways to choose these parameters.

3.2.1 Cross Validation

In this section we propose an algorithm (Algorithm 1) to �nd the optimal number of

neighbors k in order to obtain a good estimate for the intrinsic dimension d. What we

Algorithm 1 Cross Validation for optimal k

Input: An (n×D) dataset X
Output: Optimal number of neighbors k
Steps:

• for k = 1 : (n− 1)
• for i = 1 : n
compute d(k)i and f̂ (k)−i described in Section 3.2.1

compute w
(
f̂ (k)−i

)
as in Equation 3.9

sample M values from the distribution X∗−i described in Equation (3.6)
compute the distance d

(
k, g

(
X∗−i

))
compute C(k) as in Equation (3.7)

compute k∗ as in Equation (3.8)
return: the optimal neighbors number k∗

• end algorithm

propose, for the choice of the tuning parameter k, is a leave�one�out Cross Validation

(CV), which can be easily extended to a K�fold Cross Validation. The problem with

the application of the CV in our case is that you have to choose what to �validate�

and among what to �cross�. Our idea is to select a summary statistic of a data

point's k-neighborhood and measure how well it �validates� a random realization of

the same statistic depending from an estimate of the parameters (f and d) and then

�cross� through all the data points to get a CV score. Let xi, with i in (1, . . . , n),

be a D-dimensional data point and X be the (n × D) data matrix. Using the

MacKay and Ghahramani (2005) method, for any given k we obtain the estimates

f̂ (k)−i, which length is n− 1, and d̂ (k)−i which are respectively the estimates of f

and d without taking into account the ith observation. Since we assume that if the

sphere that contain k data points S (k) is small enough, those points are uniformly

distributed, we treat the observations as a Poisson process in that sphere. Thus, we
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can predict the number of points in a multidimensional sphere around the ith point

as

X∗i ∼ Poisson
(
f̂ (k)i V

(
d̂ (k)i

)
d̂ (k)i T (k)

d̂(k)i−1
i

)
.

where V (a) is the volume of a unit ball of dimension a and T (k)i is the distance

between xi and its kth neighbor. However, we need to predict the number of points

in S (k)i without taking into account the i
th point, in other words we can not directly

compute f̂ (k)i and d̂ (k)i. The most obvious solutions is then to replace d̂ (k)i with

d̂ (k)−i. On the other hand the choice of f̂ (k)−i is not completely straightforward and

in fact our proposal is to combine the values f̂ (k)−i with a suitable weight function

w (·). The choice of w (·) is discussed in Section 3.2.2. With those corrections

we can predict the number of points in a multidimensional sphere around the ith

observation, removing the point itself from the computation of the estimates, as

X∗−i ∼ Poisson

(
w
(
f̂ (k)−i

)
V
(
d̂ (k)−i

)
d̂ (k)−i T (k)

d̂(k)−i−1
i

)
(3.6)

Then we can compute the CV score

C (k) = F

[
n∑
i=1

d
(
k, g

(
X∗−i

))]
, (3.7)

where F [·] is an some optimality criterion, d (·) is a reasonable distance function and

g (·) may be a representative function of the predictive distribution (e.g. the mean).

The choices of F , d (·) and g (·) are discussed in Section 3.2.3. The optimal number

of neighbor is then chosen with the rule

k∗ =
{
k : C (k) ≤ C (l) , ∀ k, ∀ l

}
. (3.8)

The idea of this method is that point process driven by the predictive distribution

X∗−i within a d dimensional sphere of radius T (k)i with intensity fi should, at least

on average, return values close to k. So we select as optimal value for k, the one

that leads to estimates of d and f that minimize C (k).

3.2.2 The choice of the weight function w (·)

Under the assumption that the manifold we are sampling from has a regular shape

and f(·) is a smooth density, we can reasonably expect that if two points on the

manifold are somehow close then the associated values of the density f are also

similar to each other. In typical application of our model this assumption is usually
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satis�ed since S (k)i intersects with at least k − 1 other spheres and the closer two

spheres are, the bigger intersected area they have. Thus, it is plausible that densities

evaluated on nearby spheres are more similar to the one that we want to estimate.

Hence, to estimate fi once the observation xi is removed, we propose to average

the values of f̂ (k)−i with a weight function w (·) that soften the impact of density

estimates related to regions far from xi. One of the most straightforward choice for

w (·) is a symmetric D-dimensional kernel centered at xi. Since one can not take for

granted that densities in spheres that doesn't intersect with S (k)i are similar to fi,

we propose instead the weight function

wI

(
f̂ (k)−i

)
=
∑
j∈G

f̂ (k)j
h (xi, xj)

G =
{
j : S (k)j ∩ S (k)i 6= ∅

}
, (3.9)

where h (·) is a reasonable distance function which takes into account only densities

in spheres that intersect with S (k). The choice of h (·) depends on how much

importance we want to give to nearby points. A standard choice is the euclidean

distance, but since the intersected volume does not grow linearly with the distance,

something more sophisticated might be used.

3.2.3 The choice of F [·] , d (·) and g (·)

Di�erent combinations of F [·] , d (·) and g (·) lead to di�erent CV scores. Wise

choice for them can lead to di�erent properties. One of the simplest choice for F is

the expected value with respect to the predictive distribution

F [·] = EX∗−i
[·] =

∫
N

[·] π
(
x∗−i
)
dx∗−i

but more robust criteria can be used (e.g. the median).

Usually the function g (·) is the identity function I (·), this choice leads to a direct
comparison between X∗−i and k. Another choice for g (·) can be any representative

value (e.g. the mean) of the predictive distribution X∗−i comparable with k. The

function d (·) can be any distance function. The sum of the absolute or squared

di�erence are the standard choice but, since the variables involved are actually

counts, distances between small numbers could have a bigger impact than distance

between bigger values even if their euclidean distance is the same. For this reason

more �ne tuned distance functions may be used.
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3.2.4 Numerical Results

In this section we collect the results of three simulation studies showing the perfor-

mance of the proposed method. The setting we used is w (·) = wI (·), F [·] = EX∗−i
[·]

, g (·) = I (·) and the L1�norm. Our cross validation score is then

C1 (k) =
1

n

n∑
i=1

‖k − x∗i ‖1 .

Table 3.1 shows the results of estimating the intrinsic dimension with the original

MLE using the optimal (cross�validated) neighbors size k∗. Results are given for an

extension of Algorithm 1 that performs a 5�fold Cross�Validation under di�erent

sampling schemes. On each experiment we draw n points uniformly from a d-

dimensional manifold embedded in RD and corrupt each observation with an additive

Gaussian noise ηi ∼ σ√
D
N (0, ID). We consider three di�erent manifolds: the �rst is

a 9-dimensional unit sphere embedded in R100 with noise level σ = 0.1; the second

is a bi�dimensional rectangular region composed by two unit squares glued together

having di�erent densities levels (see Figure 3.2 for an example) embedded in R5 with

noise level σ = 0.001; the third is a 2�dimensional unit cube embedded in R5 with

noise level σ = 0.01 and also without noise. For each manifold we vary the number

Figure 3.2: Example of 1000 samples drawn from a Twosheets manifold

of samples n = (100, 500, 1000). Each experiment has been iterated 100 times and

the results are averaged among those iterations. Table 3.1 shows how the estimates

of the intrinsic dimension d̂k∗ are pretty close to the true value d, with a relatively

small standard error which tends to decrease as the number of samples increases.



Intrinsic Dimension Estimation 24

Manifold n σ D d E
[
d̂k∗
]

sd
[
d̂k∗
]

Sphere
100 0.1 100 9 8.49 1.01
500 0.1 100 9 8.8 0.5
1000 0.1 100 9 9.03 0.36

Twosheets
100 0.01 5 2 1.96 0.27
500 0.01 5 2 2.03 0.11
1000 0.01 5 2 2.08 0.08

Hypercube

100 0.01 5 2 2.19 0.25
500 0.01 5 2 2.59 0.15
1000 0.01 5 2 2.52 0.33
1000 0 5 2 1.98 0.08

Table 3.1: Results on the performance of the MLE d̂k∗ using the cross�validated
neighbors size k∗ obtained extending Algorithm 1 to perform a 5�fold Cross�
Validation. Each experiment, described in Section 3.2.4, consider di�erent manifolds
with di�erent sample sizes and it is iterated 100 times.

3.3 SURE

Since computational approaches to determine the optimal value for k (or r) can be

very slow, in future work it could be useful to �nd a criterion to do it analytically.

The Stein's Unbiased Risk Estimate (SURE) theory, James and Stein (1961), can

help with this issue. The SURE method allows to have an unbiased estimate of

the mean-squared error (MSE) from the data without requiring knowledge of the

parameter true value. Let h (u) = θ̂α where h (u) is a function of a su�cient

statistics u and θ̂α is an estimate for the parameter θ that depends from a tuning

parameter α. What we want to do is to �nd an optimal value for α that minimize

the MSE of h (u) = θ̂α. This can be written as

E
{∥∥∥θ̂α − θ∥∥∥2} = ‖θ‖2 + E

{
‖h (u)‖2

}
− 2E

{
hT (u)θ

}
.

In order to minimize the MSE over h (u) it is enough to minimize

v (h,θ) = E
{
‖h (u)‖2

}
− 2E

{
hT (u)θ

}
over h (u), which is impossible since it depends from the true value of θ that we want

to estimate. The second term of v (h,θ) is problematic since it depends explicitly

from θ. The SURE idea is based on estimating this term with an unbiased estimator

that depends only on u in order to obtain an unbiased estimator for the MSE.
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Chapter 4

Introduction to the MSVD approach

As mentioned in Chapter 1, a local singular value decomposition (SVD) may be

used to estimate the intrinsic dimension of a point cloud. More in particular in this

chapter we will focus on the approach described in Little et al. (2009b) where an

estimator of the intrinsic dimension is proposed that exploits a careful study of the

behavior of the singular values as functions of the radius of the sub�regions where

the SVD is actually performed. This approach computes the singular values{
λ
(x, r)
1 , . . . , λ

(x, r)
D

}
,

sorted in non-increasing order, on the data pointsX
(x, r)
D belonging to aD-dimensional

sphere S
(x, r)
D , with radius r centered at a point x ∈ X, and repeat the process for

di�erent values of r. This is the reason why this technique is called Multiscale

Singular Value Decomposition (MSVD). The method is based on the study of the

behavior of the SVs λ̂d (r) when r grows. It has been shown in Little et al. (2009b)

that it exists a set of values of r such that the SVs may be grouped in three di�erent

categories according to their di�erent growth�rate as functions of r; that is,

• the �just�noise� SVs which are almost �at;

• the �dimensionality� SVs which are the top d SVs and grow linearly w.r.t. r;

• the �curvature� SVs which grow at most linearly with r2.

These di�erent behaviors allow us to separate the SVs using, for instance, a simple

least squared �t to the SVs and then estimating the intrinsic dimension d as the

number of the non�curvature SVs among the non�noise SVs. The main issue with

this approach is the choice of a good region for the values of r to perform the least

squared �t. Small values of r may lead to an insu�cient number of samples and

27
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thus to noise dominated SVs. On the other hand, for large values of r, the SVs may

lose the properties described above, as the curvature SVs will grow at the same rate

of the dimensionality SVs. This problem surfaces also in Little et al. (2009a) and

Little et al. (2011), where it is shown that, under mild assumption on the manifold

structure, it exists a region R of optimal values of r such that the the larger gap

∆l = λ
(r)
l − λ

(r)
l−1 will be ∆d. Thus, given R, it is straightforward to estimate the

intrinsic dimension d. Numerical results and comparison between MSVD and other

approaches show that it performs well even with low sample size and that it is less

sensitive than other methods to noise in the data, although it is still an open problem

to locate the region R and �nd an optimal estimator for r. These problems will be

addressed in the following sections.
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4.1 The MSVD algorithm

The methods and algorithms that will be introduced in the following sections will

heavily rely on a MSVD of the data. For this reason, in this section, we brie�yde-

scribe a very basic algorithm (Algorithm 2) to perform the local MSVD.

Algorithm 2 Algorithm to perform local MSVD on Data

Input: An (n×D) dataset X, a point x in X, a bound d0 on intrinsic dimension
Output: A (D × J) MSVD matrix Λ
Steps:

De�ne nd0 = d0 log(d0)
De�ne J = n/nd0
• for j = 1 : J

Find rj = min
(
r : S

(x, r)
D contains j · nd0 points

)
Perform SVD on points in S

(x, rj)
D to obtain

{
λ
(x, rj)
l

}
l=1,...,D

return: Λ such that Λl,j = λ
(x, rj)
l

• end

Algorithm 2 requires as input a dataset matrix X, a point x ∈ X and an a priori

upper bound d0 on the intrinsic dimension. The latter parameter is not strictly

needed as it can be set equal to D, but in practice the ambient space dimension D

may be very large and the sample size n may be not big enough to have �ne enough

scales to do a multiscale analysis. Thus, the use of d0 � D is strongly suggested,

but again may not be necessary. The choice of the minimal number of points on

which to perform the SVD is nd0 = d0 log(d0) because with fewer points it could

be impossible to compute the top d0 single values. For each scale j the SVD is

performed on the j · nd0 points closest to x in euclidean distance. In other words,

the SVD is performed on the points contained in the sphere S
(x, rj)
D , where rj is the

minimum radius of the D-dimensional sphere centered iat x, that contains j · nd0
observations. The output of the algorithm is then a (D × J) matrix Λ. The jth

column of Λ represents the singular values at scale j sorted in non�increasing order.

Therefore the lth row of Λ can be interpreted as the variation of the lth top singular

value with respect to r. Figure 4.1 shows the result of applying the MSVD on 105

points uniformly sampled on the surface of a 9�dimensional unit sphere embedded

in R100. Each point is corrupted with additive Gaussian noise ηi ∼ σ√
D
N (0, ID)

with σ = 1 and D = 100. Each line then represents the singular value evolution

with respect to the radius r of the neighborhood of x. From Figure 4.1 we notice the

behavior described previously: it is easy too see that, approximately in the region

r = [1.6, 1.9], the biggest gap between the singular values is exactly ∆9. This gap
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correctly identi�es the intrinsic dimension to be 9. For larger values of r the biggest

gap will be ∆10, because the constant curvature become a predominant element in

the neighborhood on which the SVD's are computed. Also, it is easy to see that the

growth�rate of the 10th SV is higher than the �rst 9 SV's. In the next chapters we

will introduce a method to automatically �nd a good region that will return ∆d as

the biggest gap between the singular values.
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Representation of MSVD

Figure 4.1: Representation of a MSVD applied to 105 points uniformly sampled
from a unit 9�dimensional sphere embedded in R100 adding Gaussian noise ηi ∼
N
(

0, 1√
100
I100

)
.



Chapter 5

Model Selection for Plane

Arrangement

In many applications, like computer vision (Sugaya and Kanatani (2004)), pattern

recognition (Ma et al. (2008)) and image processing (Hong et al. (2006)), the data

cloud, usually observed in high dimension, can be modelled with hybrid linear mod-

els using a union of low-dimensional planes. This approach has shown promising

results in model selection, clustering and classi�cation problems. The main prac-

tical problem to �nd a set of planes approximating a point cloud laying in high

dimension consists in choosing the number of planes and their dimension. One of

the algorithm proposed to solve these problems is the Agglomerative Lossy Coding

(ALC) (Ma et al. (2007)). However, the ALC algorithm is very sensitive to the

value of a tunable but otherwise unknown tolerance parameter which can lead, if

changed, to very di�erent number of clusters. In addition the ALC was found to be

slow (Chen and Maggioni (2011)), does not come with any �nite sample guarantees

and the number of iteration needed to converge is unknown. Another algorithm

that tackle both the model selection and the clustering problems is proposed in

Chen and Maggioni (2011). This algorithm is based on a combination of Multiscale

Singular Value Decomposition (Little et al. (2012)) and Spectral Clustering (Chen

and Lerman (2009)). We focus on this last algorithm and improve its performances

introducing a new method to estimate the intrinsic dimension of the planes.

31
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5.1 Model Assumptions

Let the data set X = {x1, . . . , xn} be a point cloud observed in RD and sampled

around a collection of K a�ne planes π1, . . . , πK of (true) dimensions d1, . . . , dK

respectively. We require some assumptions on the distribution of the points on the

planes to ensure a good and fast convergence of the proposed algorithms. Let µ

be a probability measure in RD with support in QD
M ∩

(
∪Kk=1πk

)
, where QD

M is the

hypercube with edge length M. We assume measure zero on the planes intersection,

more formally

µ (πk ∩ πk′) = 0 for πk 6= πk′ .

We also assume that it exists a positive constant c1 such that

µ (πk) ≥
c1
K
, ∀ k.

Now, we introduce some local regularity assumptions around a generic point x ∈ πk.
Let µk be the probability measure conditioned to the plane πk, it exists a positive

constant c2 such that

rdk

c2
≤ µk

(
S
(x, r)
D

)
≤ c2r

dk ∀ r ≤M,

which ensure that the measure on the sphere S
(x, r)
D is bounded by a factor pro-

portional to its radius. Now Let Xk,x,r be a random variable with distribution µk

restricted on the sphere S
(x,r)
D , then

{
λ
(x, r)
l

}2

l=1,...,D
⊂ r2

dk
[λmin, λmax] ∀ r > 0. (5.1)

Where λmin and λmax are �xed positive constant. Assumption in Equation (5.1)

ensure a regular shape of the ellipsoid represented by the SVs in S
(x,r)
D .

Now, for each x ∈ πk let

Ex =
{
r : S

(x,r)
D ∩

(
∪Kj πj

)
= ∅
}

for j 6= k. (5.2)

Ex represents the set of values of r such that the sphere built around x does not hit

other planes and let rmax
x = sup Ex. Let each point xi be observed after a random

Gaussian noise corruption ηi ∼ σ√
D
N (0, ID). Assume that

∃ c3 < 1 : µk (rmax
x > σ) ≥ 1− c3. (5.3)
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This assumption, jointed with the others in this section, ensure that, for c3 small

enough, there is a granted probability that it exists a non empty set of values of r

such that S
(x,r)
D contains only points in πk and that the SVs on those points will not

be dominated by the noise. Finally, the next assumption will guarantee that the

computational time of our algorithm does not dependent on the sample size n. To

be more speci�c, it exists a value c5 (c2, c3, σ) > 0 such that, if

n1 ≥ c5K log(K) d log(d),

then, with high probability, the sphere of radius rmax
x around a randomly sampled

point x contains enough points that lay beyond the noise zone. As shown in Little

et al. (2009a), this will ensure an accurate estimate of the covariance of the points

in the sphere S
(x,rmax

x )
D . It is also assumed that the probability to sample a points in

the kth plane is proportional and close to 1/K.

Figure 5.1: Example of points uniformly drawn on 3 hyperplanes embedded in R6

of dimension d = (1, 1, 2) respectively. Black, red and green dots represent the
points on the two lines and the plane respectively while the blue dots represent the
randomly sampled points used as centers in Algorithm 4.
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5.2 Local Intrinsic Dimension Estimation

In this section we propose an algorithm (Algorithm 3) for the local estimation of d

and the choice of r. Let xi be a random data point and perform Multiscale Singular

Value Decomposition described in Algorithm 2 (Section 4.1) to obtain a (D × J)

matrix Λ, which each jth column represents the Singular Values {λlj}Dl=1 at the scale

j in decreasing order. In this section, in order to simplify the notation, we drop the

i index (e.g. xi = x), although all the quantities that follow are still considered to

be local conditioned to xi. When r is small, but large enough to move away from

the noise zone, with high probability all the points inside the sphere belong to the

same plane πk. Thus the �rst dk Singular Values are big, while the other D− dk are
close to σ. As r increases, the top dk Singular Values grow linearly until the radius

reach the change point value rmax at which the sphere hits another plane π′k. At this

point the sphere starts to include points from π′k. Thus, at least another Singular

Value, after the �rst dk, should start to move away from 0 growing linearly with r.

Bearing these features in mind � which are also shown in Figure 5.2 � the idea

that we propose to �nd rmax is based on the use of piecewise linear regressions to �t

each Singular Value path independently

E (λl) =

α r for r ≤ r∗l

β r for r > r∗l
(5.4)

with the constrains α ≤ 0 and β > 0. When r∗l is also unknown, the parameters

estimation turn into a nonlinear optimization problem. However, we can reduce the

whole procedure to a linear optimization problem. Since we have only J values for

r, which are the values of the radius rj at each scale, we can vary r∗l among all

the values of rj and estimate, for each λl, the change point r
max
l using the value of

r∗l that leads to the model with the best �t in term of mean squared error. Since

Singular Values may change their slopes every time the growing sphere hits another

planes, if we take into account all the values of λl and r, the piecewise regression

may fail to give a good estimate of the �rst change point. To overcome this problem

we �t the piecewise linear regression, described above, using only the �rst j values

of λl for l in 1, . . . , D. This process is iterated for increasing values of j. At each

iteration we apply a k�means algorithm with two cluster to the resulting D values

rmax
t , for t in 1, . . . , J , breaking at t∗ when the di�erence between the two clusters

is bigger than a tolerance value δ. In this way we obtain two well separated sets

of change points. The lower change point of the �rst set is a good estimate for the

value of r needed for the sphere to include points outside the noise zone. The lower
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Figure 5.2: A Representative image of a MSVD on the data shown in Figure 5.1.
We use for center x a point generated from the black plane (d = 1). Here one can
appreciate the behavior described in Section 5.2. For small values of r only the
�rst SV grows almost linearly. As r increase, around 0.2, the neighborhood of x
includes points of the red plane (d = 1) and the second SV starts to grow linearly
too. Around r = 0.23 the sphere hits the green plane (d = 2), thus, the next two
SVs start to grow linearly. The remaining 2 = (D −

∑K
k=1 dk) SVs stay �at because

they represents only noise. Note: in typical applications we do not know a priori
from which plane x is generated or in which order the planes are hit by the sphere,
the colors of this �gure are only chosen for the sake of a better comprehension.
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change point of the second group is a good estimate of the value of r needed for

the sphere to hit another plane. So value rmax
i,t∗ can be used to estimate rmax

i as it

represents the radius needed for the dk+1 Singular Values to move away from 0 (i.e.

have a positive slope). At this point a SVD analysis on the points in sphere S
(x, rmax)
D

gives an estimate of d, de�ned by the biggest SV gap ∆d. The top d eigenvectors,

along with the barycenter of the points in the sphere, give a representation of the

plane π approximating the neighborhood of x.
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Algorithm 3 Algorithm for �nding d, rmax
l and π̂

Input:

• X: A (n×D) data matrix

• x: A center point

• δ: A tolerance level

Output:

• d̂: Local Intrinsic dimension estimate

• rmax: Distance to the closest plane

• π̂: Best d-dimensional plane approximating the neighborhood of x

• ε̂: Mean squared error of plane π̂

Steps:
Perform Multiscale SVD on X to obtain Λ
• for j = 1 : J
• for l = 1 : D
• for t = 1 : j
• use the model in Equation (5.4) with the �rst j values
of λl and r, set r

∗
l = rt and compute its MSE errt

• end �for t�
• for each of the D values λl set the best change point r

max
l

to the value of rt which leads to the smaller errt
• end �for l�
• perform a two clusters k�means on the D values rmax

l

• if the distance between the two groups is bigger than the tolerance δ
then • estimate rmax with the lower value of rmax

l in the higher cluster

• let d̂ be the rank g? of the biggest value of ∆g = Λg,rmax−Λg−1,rmax

• compute π̂ as the best d-dimensional plane on points in S
(x, rmax)
D

• compute ε̂ as the �tted mean squared error of plane π̂
• break �for j�
• return d, rmax, π̂ and ε̂
• end algorithm

else • continue �for j�
• end �for j�
• return: �w.h.p x is close to the intersection of all the planes or d = D�
• end algorithm
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5.3 Global model estimation

In this section we propose a method (Algorithm 4) based on the idea of Chen et al.

(2009), to �nd and estimate the number of planes K, the dimensions d1, . . . , dk

and how the planes π1, . . . , πK are arranged in the space. The basic idea is to

perform Algorithm 3 on n0 subsamples of X in order to obtain a set of planes

π̂1, . . . , π̂n0 . Since many of these planes will be an estimate of the same πk, a spectral

clustering on the plane estimates is performed to �nd the true number of planes K.

In Chen and Maggioni (2011) it is proposed a spectral approach that aligns the

planes to rebuild the original plane arrangement. To have a good con�dence of

having, on average, approximately c4 > 0 subsampled points for each plane, we

need n0 ≥ c4K log(K). This requirement have the same motivations as the famous

coupon collector's problem, with the only di�erence that the coupons are represented

by the planes. Since K is usually unknown, a parameter Kmax representing a priori

information about the maximum number of planes K should be plugged into the

equation. Note that the parameter Kmax is not strictly required as one can choose

n0 = n, but it is strongly suggested to improve the computational time of the

algorithm. Algorithm 3 on n0 subsampled points returns the set
{
π̂j, d̂j, ε̂j

}n0

j=1
. To

perform spectral clustering we have to de�ne an (n×n0) a�nity matrix A such that

Aij = exp

{
−D (xi, π̂j)

2ε̂2j

}
(5.5)

where D (xi, π̂j) represents the euclidean distance between the point xi and its or-

thogonal projection on the plane π̂j. For the Gaussian kernel, ε̂j is a scale parameter

that penalizes planes with high local error. Algorithm 4 for k in 1, . . . , Kmax, itera-

tively encode Uk as the matrix containing the �rst k left singular vector matrix of A

� after an opportune normalization detailed in Algorithm 4. Let Vk be a normaliza-

tion of Uk such that the vectors will have unit length. We then apply the k�means

algorithm to the row vectors of Vk in order to obtain k clusters χ̂tk, for t in 1, . . . , k.

Let d̂tk be the mode of the d̂j of the points assigned to χ̂tk and compute the best

d̂tk-dimensional plane on the cluster χ̂tk using principal component analysis. Now

compute the k�planes model error as

e2 (k) =
D

n

k∑
t=1

∑
x∈χ̂tk

D (xi, π̂j)

D − d̂tk
.
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The k�planes model error e2 (k) is computed for increasing values of k. The Algo-

rithm 4 stops when

e2 (k) ≤ τ 2 =
D

n0

n0∑
j=1

ε̂2j

D − d̂j
, (5.6)

and it returns

K̂ = min
{
k : e2 (k) ≤ τ 2 (k)

}
.

In other words, the optimal number of planes K̂, is the �rst value of k such that the

error of the aligned k�planes model is lesser or equal to the model error estimate τ 2.

Note that during this process we already computed:

• the estimates of the best K̂ planes π̂1, . . . , π̂K̂ when we performed PCA on the

clusters
{
χ̂tK̂
}K̂
t=1

;

• the plane dimensions d̂1, . . . , d̂K̂ when we computed the mode of the d̂j values

of the points assigned to χ̂tk.

Thus, we already have everything we need to reconstruct the plane arrangement.

As a �nal remark notice that the computational time of Algorithm 4 is independent

from n, this is a extremely good property when it is needed to analyze a dataset

with a large number of observations.
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Algorithm 4 Algorithm for Plane Arrangement Model Parameters
Input:

• X: The data

• δ: A tolerance level for Algorithm 3

• d0: A priori bound for max (dk) (optional)

• Kmax: A priori bound for the number of planes K (optional)

• c4: The subsampling constant for n0 (optional)

• c5: The subsampling constant for n1 (optional)

Output:

• K̂: estimate for the number of planes

• d̂1, . . . , d̂K̂ : estimates for the planes dimension

• π̂1, . . . , π̂K̂ : best planes approximating the plane arrangement

• eK̂ : estimated model error

• {χ̂t}K̂t=1: clusters

Steps:
− Replace X with a subsample of n1 = c5Kmax log(Kmax) d0 log(d0) points
− Subsample n0 = c4Kmax log(Kmax) points from X

− Perform Algorithm 3 on the subsampled points and obtain
{
π̂j, d̂j, ε̂j

}n0

j=1

− Compute A as shown in Equation (5.5)

− Normalize A to L = diag (AA′1)−1/2A
− Let U = [u1, . . . , uKmax ] with uk the k

th left singular vectors of L

− Compute τ 2 = D
n0

∑n0

j=1

ε̂2j

D−d̂j
• for k = 1 : Kmax

− De�ne Uk = [u1, . . . , uk]
− Let Vk be the matrix Uk with normalized row vector to the unit length
− Apply k�means algorithm to the rows of Vk to obtain k clusters {χ̂tk}kt=1

− Let d̂tk be the mode of the d̂i's of the points assigned to χ̂tk
− Do PCA on {χ̂tk}kt=1 and let π̂tk be the best d̂tk�dimensional plane
− Compute e2 (k) as de�ned in Equation (5.6)
• if e (k) > τ end �for k�

− set K̂ = k and {χ̂t}K̂t=1 = {χ̂tk}K̂t=1

• return K̂,
{
d̂1, . . . , d̂K̂

}
, {π̂1, . . . , π̂K̂}, eK̂ and {χ̂t}K̂t=1

• end algorithm
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5.4 Simulations

In this section we show some empirical results on the performances of Algorithm 4.

We denote a collection ofK planes of dimension (d1, . . . , dK) in RD by (d1, . . . , dK ;D).

On each simulation we sample 200 points uniformly on K unit hyper-cubes of di-

mension d1, . . . , dK respectively. Thereafter we corrupt each observation by adding

a Gaussian noise ηi ∼ 0.04√
D
N (0, ID), we rotate each hyper-plane randomly in D

directions and make them intersect in the origin. We ran Algorithm 4 on 1000

iterations in di�erent scenarios, varying the number of planes K, their dimension

(d1, . . . , dK) and the embedding dimension D. The performance of the algorithm

are shown in Table 5.1 where we collect the number of planes K, their dimension d

and the success rate in assigning each point to the right plane. As we can see our

novel method for estimating the dimension of the planes performs very well in all the

proposed scenarios and the clustering success rate is also quite good once consider

that, by construction, all the planes intersect in the origin, and so we might have

some physiological error for observation close to this point.

(1,2,3;6) (1,2,3;10) (1,1,2;6)
K 0.93 (0.25) 0.90(0,29) 0.88(0.31)
d 1 1 1
cl 0.88(0.03) 0.91((0.02) 0.91(0.07)

time 5.7(0.8) 6.6(0.2) 7.5(0.8)

(1,2,3;10) (1,1,3,3;6) (1,1,3,3;10)
K 0.88(0.32) 0.27(0.44) 0.7(0.46)
d 1 0.982 (0.07) 0.999 (0.06)
cl 0.91(0.08) 0.89(0.06) 0.94(0.02)

time 6.4(0.2) 10.2(4.2) 10(0.8)

Table 5.1: Performances of Algorithm 4 in six di�erent scenarios iterated 1000 times.
The values on row K represent the success rate in estimating the number of planes.
The values on row d represent the success rate in estimating the dimension of the
planes when the number of planes is correctly identi�ed. The values on row cl

represent the success rate in assigning the points to the correct plane when the
number of planes is correctly estimated. The time row shows the average time
taken by each iteration in seconds. The values in parentheses are the standard
errors.
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Chapter 6

Manifold Learning

In Section 5 we proposed a method to estimate the model parameter when the data

are generated from an unknown collection of di�erent planes with di�erent intrinsic

dimension embedded in high dimension and perturbed with gaussian error. In the

next sections we propose a method to approximate the model when the data are

assumed to be generated from a manifoldM with intrinsic dimension d embedded in

RD. A manifold is a topological space that can be locally but not necessarily globally

euclidean. In the literature there are several methods available for recovering the

underlying manifold from data. These techniques tackle the problem from di�erent

perspectives and some of them will be described in the following sections.

Our goal here is to perform a data adaptive piecewise linear multiscale recon-

struction of the manifold with guarantees on the approximation error. Also we want

our algorithm to be fast, its computational time must be independent from the sam-

ple size n, should scale well with the intrinsic dimension d and only negligibly on

the embedding dimension D. With the term multiscale we mean that the manifold

approximation is made at multiple scales of precision, from coarse scales with lower

precision to �ne scales with higher precision. With the proposed method we also

directly build a data adaptive tree structure for the data which gives nice properties

to the approximation and is very useful for other kind of applications. The proposed

method is consistent in the sense that for �ner and �ner scales and with the sample

size growing the approximation error tends to zero.

43
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6.1 Background Theory

In the literature there are several nonlinear manifold learning techniques used to

recover the full low-dimensional representation of an unknown nonlinear manifold

embedded in a high dimensional space. In this section we will brie�y describe some of

these methods while in the following sections we will propose a new one for manifold

approximation.

In this part of our work we assume that a �nite number of points, {yi}, are
randomly sampled from a smooth d�dimensional manifold M with an unknown

metric given by its geodesic distance. These points are then embedded in a nonlinear

fashion by a smooth embedding map ψ into a D�dimensional input space X = RD

with d � D. The space X have an Euclidean metric. The map ψ yields the

observed data {xi}. Thus, ψ :M→ X is the embedding map, and a point on the

manifold y ∈ M can be expressed as φ(x), for x ∈ X , where φ = ψ−1. The goal of

a manifold learning technique is to recoverM from {xi} �nding the unknown map

ψ and hence the {yi}. Consequently, in general, the output of these algorithms will

be an estimate {ŷi} ⊂ Rd̂ of the manifold data {yi} ⊂ Rd. One important aspect is

then to estimate correctly the true dimension of the manifoldM.

ISOMAP

The isometric feature mapping (i.e. ISOMAP) algorithm, described in Tenenbaum

et al. (2000), is based on two main assumptions. The �rst is that the manifold

is a convex region of the embedding space and the second is that the embedding

function ψ : M → X is an isometry. The second assumption guarantees that

the geodesic distance is invariant or, in other words, that the geodesic distance

of any pair of points y, y′ ∈ M must be equal to the euclidean distance between

the same point in the corresponding coordinates x, x′ ∈ X . The �rst step of the

ISOMAP algorithm is to build a neighborhood graph by evaluating all the pairwise

distances and determining which data points are neighbors on the manifoldM by

connecting each point to its K nearest neighbors. In this way we produce a weighted

neighborhood graph G = G(V , E), where the vertexes in V are the data points, the

edges in E gives the neighborhood structure while the weights are proportional to

the distance between two connected observations. In the second step the geodesic

distance between pairs of points in the manifold is estimated by the shortest path

distances between the all pairs of points on the graph G. Finally, in the third and

last step (the embedding step), the multidimensional scaling algorithm is applied to

reconstruct a d dimensional space in such a way that the geodesic distances onM
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are preserved as much as possible. The ISOMAP algorithm may have di�culties

with manifolds that contain holes, have high curvature or are not convex. The choice

of K is crucial on the success of the algorithm: it must be su�ciently large so that

the points can be well-reconstructed but also small enough to have little curvature in

the neighbor. Another problem with the ISOMAP algorithm is that on the second

and the third step (n×n)-matrices need to be computed and the memory needed to

store such matrices could be huge. This problem has been addressed in de Silva and

Tenenbaum (2003) with the introduction of the LANDMARK ISOMAP algorithm

which tries not to compute redundant distances with a choice of a representative

landmark subset of m � n data points. The distances are calculated only on this

small set of points and then the matrices needed in the second and third step of the

algorithm will be of dimension (m× n).

Local Linear Embedding

The local linear embedding (LLE) algorithm (Roweis and Saul (2000)) for nonlinear

dimensionality reduction, similarly to ISOMAP, attempts to preserve the local neigh-

borhood information on the manifold. As before in the �rst step of the algorithm we

compute the K nearest neighborhood of each point x using the Euclidean distance.

The second step consists in reconstructing the point x using a linear combination

of its neighbors. The optimal weights of the linear combination can be obtained via

linear optimization that provides a (n × n) matrix of optimal weights Ŵ = (ŵij).

The third and �nal step consists in �nding the (d × n) matrix Y = (y1, . . . ,yn) of

embedding coordinates that solves

Ŷ = argmin
Y

n∑
i=1

∥∥∥∥∥yi −
n∑
j=1

ŵijyj

∥∥∥∥∥
2

,

with the constrains
∑

n yi = YIn = 0 and n−1
∑

i yiy
T
i = n−1YYT = Id. These

constrains are imposed to set the translation, rotation, and scale of the embedding

coordinates so that the objective function will be invariant. Hence the aim of LLE

is to preserves the local (rather than global) properties of the underlying manifold.

Laplacian Eigenmaps

The Laplacian Eigenmaps algorithm Belkin and Niyogi (2001) also consists in three

steps. The �rst step of the algorithm is to compute the K nearest neighborhood

of each point x using the Euclidean distance with a symmetrical constrain: for a

K�neighbor Nk
i of the point xi, then xj ∈ Nk

i if and only if xi ∈ NK
j . The second
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step, which characterize this algorithm, compute a weight matrix W = (wij) using

the isotropic Gaussian kernel

wij =

exp

{
−‖xi − xj‖

2

2σ2

}
ifxj ∈ Ni

0 otherwise

where σ is the scale parameter. In this way we have obtained a weighted graph G.
The third and last step consists in the embedding of G into the low�dimensional

space Rd by the (d× n) matrix Y = (y1, . . . , yn), where the ith column of Y yields

the embedding coordinates of the ith point. This is done using the graph Laplacian

L = D −W for the graph G where D is a (n × n) diagonal matrix where each

ith entry is the sum of the weight of the neighbor of xi. The matrix Y is then

approximated with

L̂ = argmin
YDYT=Id

tr
{
YDYT

}
.

Hessian Eigenmaps

In certain situations, the assumption of convexity of the manifold may be too restric-

tive. The Hessian Eigenmaps algorithm has been proposed for recovering manifolds

which may not be convex. Assume that the parameter space is Θ ⊂ Rd and suppose

that φ : Θ → RD, where d < D. Also assume that the manifold M = φ(θ) is

smooth. The isometry and convexity assumption are dropped and replaced by a

local isometry assumption. The function φ is a locally isometric embedding of θ

into RD if for any point x′ in a su�ciently small neighborhood around each point

x onM, the geodesic distance equals to the Euclidean distance between their cor-

responding parameter points θ, θ′ ∈ Θ where x = φ(θ) and x′ = φ(θ′). Another

requirement is that the parameter space Θ must be open and a connected subset

of Rd. The goal of the Hessian Eigenmaps algorithm is to recover the parameter

vector θ. Let Tx (M) be a tangent space of the point x ∈ M. We confer Tx (M)

with a system of orthonormal coordinates having the same inner product as RD.

The tangent space Tx (M) may be interpreted as an a�ne subspace of RD that is

spanned by vectors tangent toM and intersect the point x, with origin 0 ∈ Tx (M)

identi�ed with x ∈ M. De�ne Nx as a neighborhood of x such that each point in

this neighborhood has a unique closest point ξ ∈ Tx (M). A generic point in Nx

has local coordinate, or tangent coordinates, ξ = ξ(x) =
(
ξ1(x), . . . , ξd(x)

)T
. Let

f : M → R be a C2-function near x. If a point x′ ∈ Nx has local coordinates

ξ = ξ(x) ∈ Rd, then the rule g(ξ) = f(x′) de�nes a C2-function g : U → R, where
U is a neighborhood of 0 ∈ RD. The tangent Hessian matrix, which measures the



47 Multiscale SVD Approach

curvature level of f at the point x ∈ M, is de�ned as the ordinary (t × t) Hessian

matrix of g,

Htan
f (x) =

[
∂2g(ξ)

∂ξi∂ξj

]
ξ=0

.

Thus, the average curvature level of f overM is represented by the quadratic form

H(f) =

∫
M

∥∥Htan
f (x)

∥∥2
F

dx,

where ‖H‖2F =
∑

i

∑
j H

2
ij is the squared Frobenius norm of a square matrix H.

The Hessian Locally Linear Embedding (HLLE) algorithm performs a discrete ap-

proximation to the Hessian H using the data on M. The HLLE algorithm has

three steps. In the �rst step a neighborhood NK
i of each point xi is created with a

K nearest neighbors based on euclidean distances. In the second step the tangend

Hessian Matrices are estimated. This is done computing a (D ×D) covariance ma-

trix Mi of the K points in NK
i and compute a PCA on it. Assuming K ≥ d, the

�rst d eigenvectors of Mi yield the tangent coordinates of the K points in NK
i and

provide the best-�tting d�dimensional planes corresponding to xi. All the square

and cross products of the columns of Mi are computed, up th the dth order, and

set the 1 + d + d(d + 1)/2 obtained vectors to be the columns of the matrix Zi.

Then apply the Gram-Schmids orthonormalization to Zi, and let the estimate of

the tangent Hessian matrix Ĥi be the transposed of the last d(d+ 1)/2 orthonormal

columns pf Zi The third and last step combines the estimates local Hessian matrices

Ĥi, i = 1, . . . , n to construct a sparse symmetric, (D ×D) matrix Ĥ = Ĥkl, where

Ĥ =
∑
i

∑
j

[
Ĥi

]
jk

[
Ĥi

]
jl
.

Ĥ is a discrete approximation of the functional H. Now we perform an eigenanalysis

of Ĥ in the same way it is done on the Laplacian in the LLE algorithm. Hence the

smallest d + 1 eigenvectors of Ĥ represent the low-dimensional representation that

will minimize the level of curvature of the manifold M. The �rst d eigenvectors

provide the embedding coordinates for θ̂.
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6.2 Novel Manifold Learning Method

In this section we will introduce a novel method for manifold learning. The approxi-

mation of the underlying structure is composed by a collection of planes, where each

plane approximates a sub�region of the manifold. This approximation is made in a

multiscale fashion, which means that you get better and better approximations as

you use �ner and �ner scales. Hence, in essence, this method can reconstruct the

manifold providing the desired level of precision together with a strict control on

the error at each scale.

6.2.1 The algorithm

Under certain regularity conditions, a d�dimensional manifold embedded in high

dimension can be approximated by a collection of d�dimensional planes. The ap-

proximation can be performed at di�erent scales with the precision growing as the

scales get �ner. Based on this idea. we may try to extend the approach discussed in

Section 5 for plane arrangement to the manifold case. The algorithm proposed here

(Algorithm 5) requires as input parameters the desired approximation error τ and

the maximum number of planes per node Kmax. The algorithm produces �ner and

�ner manifold approximations until the desired precision is achieved. Similarly to

how we have done in Algorithm 4, we can subsample the data to have a computa-

tional time independent from the sample size n. Let the sample sizes of the center

set, of the training set and of the test set be respectively

n0 = c4Kmax log(Kmax)

n1 = c5 n0 d0 log(d0) (6.1)

n2 = c6 n1

where c4 and c5 are conceptually similar to the one introduced in Section 5.1, while

c6 > 0 represent the ratio between the validation and test sets sizes. At scale

j = 0 we approximate the manifold with a single plane π01. At each scale j + 1 of

Algorithm 5 we sample cj · (n0 + n1 + n2) from the data X, where cj is the number

of planes πj1, . . . , πjcj at scale j, and assign those points to the cluster χjt, with t

in 1, . . . , cj, with a criteria based on the smaller point�plane distance. Now for each

cluster {χjt}cjt=1 we apply a slightly modi�ed version of Algorithm 4 using (n0 + n1)

points to obtain at most Kmax new planes for each cluster for a total of cj+1 planes

at scale j + 1. Figure 6.1 shows how Algorithm 4 is reiterated on a single cluster.

The collection of these planes
{
π(j+1)1, .., π(j+1)cj+1

}
represents the approximation
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Algorithm 5 Multiscale Manifold Approximation
Input:

• X: The data matrix

• δ: A tolerance level for Algorithm 3

• τ : The desired level of approximation error

• Kmax: The maximum number of planes per node (optional)

• d0: A priori bound for max (dk) (optional)

• c4: Subsampling constant for n0 (optional)

• c5: Subsampling constant for n1 (optional)

• c6: Ratio between n2 and n1 (optional)

Output:

• A multiscale manifold approximation organized in a tree structure

At each scale j it is computed:

� πj1, . . . πjcj : collection of planes approximating the manifold

� Cj1, . . . , Cjcj : partition of the manifold

� {ejt}cjt=1: local estimated approximation errors

Steps:
− Let n0, n1 and n2 be as in Equation (6.1) and let j = 0 and cj = 1
− Subsample (n0 + n1 + n2) points from X
− Apply Algorithm 4 on n0 + n1 points forcing a single plane output π01
− Compute the LS error {ejt}cjt=1 of the plane using n2 points as test set
• while ∃ t ∈ {1, ..., cj} : ejt > τ
Subsample cj (n0 + n1 + n2) points from X
Compute the distances between the subsample and the planes {πjt}cjt=1

Assign each point to the cluster {χjt}cjt=1 with the lower distance
• for t = 1 : cj
• if |χjt| < (n0 + n1 + n2)
− Clone the parent: π(j+1)t′ = π(j+1),t with t

′ ∈ Tjt and |Tjt| = 1
• else
− Apply Algorithm 4 to (n0 + n1) points in χjt and let{

π(j+1)t′
}
t′∈Tjt

with |Tjt| ≤ Kmax be the output planes

− Let e(j+1)t′ be the LS error of plane π(j+1)t′

− De�ne C(j+1)t′ as the region of the manifold which has
π(j+1)t′ as closest plane ∀t′ ∈ ∪

cj
t=1Tjt

− Let cj+1 =
∑t=1

cj
|Tjt|

− Let j = j + 1
• return: Output
• end algorithm
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Figure 6.1: An example of the iterative nature of Algorithm 5. In the �rst step
Algorithm 4 works on the whole dataset to obtain �ve best �tting planes. Then
points are grouped according to the closest plane. In the second step Algorithm 4
is applied on each cluster independently: in this picture it is shown what happen in
particular to the �green cluster� in order to obtain a �ner approximation.
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Figure 6.2: An example of multiscale reconstruction of the Swiss Roll manifold.
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at scale j + 1. The approximation error is then computed using other n2 points of

cluster χjt as test set. If a cluster χjt does not have n0 + n1 + n2 points we will

not perform Algorithm 4 and we will just reproduce the plane πjt used to create

the cluster. In this way if we do not have enough point the approximating plane

remains the same until eventually enough points will be sub sampled to ensure a �ner

approximation. The algorithm stops at scale j? when all the approximation errors

of all the planes will be lower or equal to the desired error τ . Some representative

example of this multiscale manifold approximation are shown on Figure 6.3. As

mentioned before, this method automatically build a tree structure. Each plane

πjt is a linear approximation of a speci�c region Cjt of the manifold which will be

approximated in a �ner way at the next scale with q ≤ Kmax planes πj1, . . . , πjq

which will divide the region Cjt in the disjointed subregions Cj1, . . . , Cjq. Thus

every single plane at scale j represents a node of the tree at level j and will be the

parent node of up to Kmax planes at level j + 1.

6.2.2 Numerical Results

In this section we show some empirical results on the performances of Algorithm

5. We draw 106 points uniformly on a manifold, embed and randomly rotate them

in RD with D = 30. We then corrupt each observation adding a Gaussian noise

ηi ∼ σ√
D
N (0, ID). We tested the algorithm in di�erent settings, each repeated 100

times, varying the manifold type � a Swissroll and an S-Manifold � and the noise

level σ. In all cases we have chosen a precision parameter τ equal to σ, so that we

expect to have in every approximation a MSE ≤ σ = τ . In Table 6.1 we present for

each scenario the MSE, the number of planes needed to obtain a precision of τ and

the running time of the algorithm.

Results in Table 6.1 show that the algorithm guarantee an approximation error

always lower than τ , we can see this noticing that the MSE values in square bracket,

which represent the maximum MSE over the 100 iterations, is always lower than

σ = τ . As one could expect, the number of planes and the computational time

needed decrease as the precision required τ decreases. We notice that the computa-

tional time for these experiments are very small relatively to the dimension of the

data set which is a (106 × 30) matrix, since, on such a matrix, an application of

standard algorithms would be impracticable. To give the reader a benchmark, we

ran the Local Linear Embedding algorithm (with given dimension d = 2 and neigh-

borhood size of 10 points) on the same machine and software of our experiments,

on a Swissroll with only 104 points embedded in R5 with noise level σ = 0.001. The

experiment using the LLE algorithm took more than 111 minutes to reconstruct the
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Figure 6.3: An example of the multiscale reconstruction on three di�erent manifolds:
a Swissroll, a S�Shaped manifold and a surface of a 3D sphere. All these manifold
are embedded in R30 and then corrupted with gaussian noise.
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manifold while Algorithm 5 (look at Table 6.1) took an average of 10.09 seconds for

a matrix with a number of entries 600 times bigger than the one used on the LLE

algorithm. The speed of the algorithm is a direct consequence of the subsampling

techniques described in Section 6.2.1 which make the computational times be inde-

pendent from n and only mildly dependent on D.

103σ Swissroll S-Manifold
103MSE 0.19 (0.13) [0.99] 0.34 (0.31) [0.98]

1 Planes 25.23 (9.56) 14.12 (4.83)

Time 70.22 (24.41) 41.25 (23.05)

103MSE 1.70 (1.10) [4.94] 3.07 (0.96) [4.99]

5 Planes 19.14 (10.96) 6.85 (2.54)

Time 48.82 (29.17) 5.28 (9.77)

103MSE 7.30 (2.27) [9.95] 7.63 (0.96) [9.55]

10 Planes 9.38 (8.02) 5.31 (1.27)

Time 10.09 (21.39) 2.23 (3.39)

Table 6.1: Experiments results for Algorithm 5. Experiments are made on two
di�erent manifolds, a Swissroll and a S�Manifold, with sample size n = 106, embed-
ded in RD with D = 30. All points are corrupted with an additive gaussian noise
ηi ∼ σ√

D
N (0, ID). For each manifold we vary the noise level σ = (0.001, 0.05, 0.1)

and ask the algorithm to produce an approximation with MSE < σ setting the al-
gorithm parameter τ = σ. The values in the table are averaged over 100 iterations
of the experiment, the values in parentheses represent the standard errors while the
values in square brackets are the maximum values. Note that some values in the
table are scaled by 103 to let the results be more readable.



Conclusions

In this dissertation we presented some novel techniques to tackle crucial di�culties

that arise when dealing with high dimensional data sets. The aim of all our proposals

is to simplify the structure of the data in order to distill meaningful information on

their underlying low dimensional structure.

In Part I we focused on techniques to estimate the intrinsic dimension of a dataset.

Correctly identifying the minimum number of variables needed to describe a dataset

is becoming an unavoidable task in several �elds including physics, genomics, statis-

tics, �nance and machine learning. The method we propose model the neighbor of

each observation as a point process. Looking at the resulting approximate genera-

tive model within the realm of composite likelihoods, we combine the local likelihood

functions and �nd a closed form maximum likelihood estimator for the quantity of

interest. We compute a correction term for the composite likelihood that should

adjust its shape and curvature in order to compensate for the overall model miss�

speci�cation. We also present a cross�validation techniques to �nd the optimal

neighborhoods size which is treated basically as a tuning parameter for the intrin-

sic dimension estimation techniques we introduced. Numerical results on arti�cial

datasets shown that our CV scheme leads to estimates well concentrated around the

true value of the intrinsic dimension under di�erent scenarios.

In Part II we presented some methods to �nd the underlying low dimensional

structure of a dataset observed in high dimension. The �l rouge of these techniques

is the use of a multiscale singular value decomposition (MSVD) approach. The

�rst method introduced is a model selection technique for the plane arrangement

problem. In this setting the data points are drawn from several low dimensional in-

tersecting planes embedded in a high dimensional space. We propose an algorithm

that reconstructs the plane arrangement by estimating the number of planes needed,

their dimension and how they are displaced in the space. In particular we presented

a novel method to estimate the dimension of the planes which, according to the nu-

merical simulation on arti�cial data sets at hand, performs well. The second method

is a manifold learning technique which approximates the underlying structure of the
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data (i.e. a manifold) with a collection of planes, each of which is in charge of a sub�

region of the manifold. This approximation is made in a multiscale fashion, which

means that one get better and better approximations simply digging into �ner and

�ner scales. Hence, applying this method, we can reconstruct the manifold providing

the desired level of precision and controlling the reconstruction error at each scale.

The simulation study we conducted shows that the algorithm is able to guarantee

the desired level of precision with a limited number of planes. Both methods rely

on a sub�sampling technique which make the computational time independent from

the sample size. This property is, of course, extremely important when handling

large sample sizes and/or feature spaces. In the simulation study we have shown

how our manifold learning algorithm is able to reconstruct the underlying structure

of the data in few seconds whereas the use of other more standard methods would

be impractical or even impossible given the unbearable computational time.
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