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Abstract

Would it be possible to automatically associate ancient pictures to modern ones and create fancy cultural heritage city maps? We
introduce here the task of recognizing the location depicted in an old photo given modern annotated images collected from the
Internet. We present an extensive analysis on different features, looking for the most discriminative and most robust to the image
variability induced by large time lags. Moreover, we show that the described task benefits from domain adaptation.
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1. Introduction1

A hundred year old photograph or a postcard can reveal a2

lot about our culture and history. Following this idea, many cul-3

tural heritage campaigns recently started to promote the digiti-4

zation of large amounts of visual data. Several cities and towns5

all over the world, as well as institutions such as universities or6

museums, are bringing archives with their images and footage7

online, providing public access and calling for methods to effi-8

ciently open up and exploit these resources [1, 2].9

At the time when photography was not affordable for pri-10

vate and everyday use, most of the pictures were taken in pub-11

lic places and depict buildings, monuments, statues, or more12

in general, common locations of interest. Some of those are13

landmarks and tourist attractions. Others are locations with his-14

torical value. Popular landmarks often appear in modern dig-15

ital images which are shared online through applications such16

as Flickr. Other historical locations can be associated to their17

geographic coordinates through Google Maps and visualized18

by means of applications like Google Street-View. Despite the19

place correspondence, the visual appearance of old and new im-20

ages is dramatically different. As shown in Figure 1, ancient21

photographs have different colors, texture, and contrast charac-22

teristics compared to modern digital images [3]. Moreover it is23

not possible to control the acquisition perspective: changes in24

the urban planning along the years may have made some view-25

points not accessible.26

Numerous efforts have been dedicated to recognizing land-27

marks in image databases containing photographs of the same28

era [4, 5, 6, 7], but to our knowledge, no previous work focused29

on tackling location recognition over large time lags. Here we30
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Figure 1: Pictures of four locations over large time lags showing an evident
change in visual appearance. The photographs are similar in their high level
scene content, but the color range and texture are significantly different. Mod-
ern photos can be easily found on the World Wide Web, while ancient pictures
are provided by cultural heritage museums. The task we address in this paper
consists in annotating ancient pictures given a set of labeled modern images.

define this task: annotate an ancient photograph with the31

correct location label, given a set of labeled modern photos.32

In particular, we propose several useful tools to cope with this33

problem, making three main contributions:34

• we introduce a collection of images spanning over 25 loca-35

tions and more than one century, with the eldest photographs36

dating back to the 1850s;37

• we present a detailed analysis of existing feature representa-38

tions, looking for the most robust features, suitable to han-39

dle the variability induced by different imaging processes40

adopted over time;41

• old and new images can be considered as belonging to two42

different domains. We use existing domain adaptation meth-43
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ods and we show promising results in both location recogni-44

tion and interactive location retrieval.45

The rest of the paper is organized as follows. Section 2 re-46

vises the related work on location recognition and domain adap-47

tation. Section 3 introduces our Large Time Lags Locations48

dataset and indicates the challenges of location recognition on49

this testbed. Section 4 briefly reviews the domain adaptation50

methods used in our study. In section 5 we present and discuss51

the obtained experimental results. Finally, section 6 concludes52

the paper and points out possible directions for future research.53

2. Related Work54

Location recognition consists in determining where a photo55

was taken by using as reference a database of previously seen56

locations [4]. The interest towards this task grew together with57

the number of freely available images on the Internet, many of58

which are geo-tagged and depict urban outdoor scenes. Today,59

with the widespread use of mobile devices endowed with built-60

in cameras and Internet connectivity, location recognition is a61

useful tool for city guides and smart navigation aids that are62

able to localize an image in near real time [8, 9].63

Given a structured database covering a pre-defined set of64

places, location recognition can be tackled as a classification65

problem [5, 6]. The models for each place are learned offline66

and, at query time, a photograph is localized by assigning to it67

the label of the best scoring location classifier [5] . Previous68

work also considered this task as a retrieval problem: a query69

image is used to find a set of similar images from a database70

which are then returned as place suggestions [7, 10, 11]. This71

setting is mainly adopted when dealing with reference image72

collections possibly containing a large number of distractors.73

Regardless of the chosen setup, one of the main challenges74

for location recognition is the choice of appropriate image de-75

scriptors. The variability in illumination conditions, viewpoint76

and occlusion can dramatically influence the similarity of im-77

ages even depicting the same place or building. The data simi-78

larity is generally based on local descriptors and Bag-Of-Words79

(BOW) based techniques [12], and the retrieval is performed80

by computing distances between sparse BOW histograms [13].81

Several improvements on this core system have been proposed82

by learning better descriptors [14, 15], introducing more ac-83

curate descriptor matching [16], exploiting 3D point clouds as84

powerful representations [4, 17], or carefully handling repeti-85

tive structures such as building facades [7].86

The mentioned large visual variability occurs in spite of the87

standard practice of using photos acquired with high resolu-88

tion modern cameras for location recognition. Although urban89

scenes and landmarks have been often captured even in ancient90

pictures and paintings, these samples are generally neglected91

and the further issues induced by vintage color processes or92

artistic brushstrokes are not considered in this task in the lit-93

erature. One attempt to define robust detectors and descrip-94

tors was presented in [18, 19], where local symmetry features95

and spectral correspondence methods are proposed to match96

urban scenes with lighting, age and rendering style variations.97

The problems of alignment between paintings and photographs98

[20, 21] and viewpoint re-capturing over time [22] have been99

tackled mainly leveraging over 3D models. The pioneering100

work of Shrivastava et al. [23] defined visual similarities be-101

tween paintings and pictures taken in different seasons. The102

proposed method relies on the robustness of HOG features [24]103

and leverages the visual uniqueness of query images against104

millions of negative data. Despite their relevance, all these ap-105

proaches have not been tested before for location recognition.106

Solving the problem induced by data variability is also one107

of the goals of domain adaptation [25]. Instead of focusing108

directly on image-pairs matching, domain adaptation examines109

the data distributions from which the images are drawn. Specif-110

ically, two sets of data are considered as belonging to two dif-111

ferent domains if they cover the same set of classes but their112

marginal distributions differ. The aim of domain adaptation is113

to reduce this distribution shift [25]. Various approaches ful-114

fill this purpose by sample re-weighting and selection [26, 27],115

self-labeling [28, 29] and metric learning [30, 31]. A solution116

that has recently received a lot of attention in the computer vi-117

sion community consists in embedding the samples in a low118

dimensional subspace shared by both the domains and invari-119

ant to their specific characteristics [32, 46, 33, 34]. This strat-120

egy allows to tackle cases where the samples present originally121

high dimensional feature vectors and one of the two domains122

contains only unlabeled samples (unsupervised domain adapta-123

tion).124

Previous work demonstrated that time can naturally cause125

a visual domain shift [35, 36]. Existing methods applied to126

close this time gap proposed to discover object-specific style-127

sensitive patches [37], to predict the behavior of time-varying128

probability distributions [38] or to learn models adaptively over129

a continuous manifold [36]. However, all these approaches130

require details about the time ordering (evolution) of images,131

which is often difficult to obtain, especially with ancient pho-132

tographs. In many cases only two set of data are available, one133

older than the other without any further information. Our work134

fits in this context. We focus on the problem of location recog-135

nition over large time lags where we are given a set of labeled136

modern photos and we want to annotate unlabeled historical137

pictures.138

3. The Large Time Lags Locations Dataset139

As detailed earlier, location recognition has so far been stud-140

ied over modern images and the issues induced by large time141

lags have been only marginally considered for other tasks. There-142

fore one of the contributions of this paper is a database of im-143

ages which spans over a wide time period and numerous loca-144

tions. The dataset is presented in this section and used through-145

out the paper.146

3.1. Details of the dataset147

We introduce here our Large Time Lags Locations (LTLL)148

dataset containing pictures of 25 locations captured over a range149

of more than 150 years. Specifically, we collected images from150
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Image Set minimum maximum mean
New Images 4 22 11
Old Images 1 22 8

Dataset 6 36 19

Table 1: Some dataset statistics. Minimum, maximum and mean number of
images per class is shown.

several cities and towns in Europe such as Paris, London, Merel-151

beke, Leuven and ancient cities from Asia such as Agra in In-152

dia, Colombo and Kandy from Sri Lanka. We chose thirteen153

locations considering the presence of well known landmarks154

for which it has been easy to download old and new pictures155

from the Web. The remaining twelve locations are in the mu-156

nicipality of Merelbeke, Flemish Province of East Flanders in157

Belgium. Ancient images of these historical locations dating158

back to the period 1850s-1950s have been provided by the city159

archive of Merelbeke. We downloaded the corresponding mod-160

ern images from Flickr, Google Street-View and the Google-161

Images search engine, although for some of the locations only162

a limited amount of modern photos could be obtained. Some163

statistics about the dataset is shown in Table 1.164

In total the dataset contains 225 historical pictures and 275165

modern ones. More details on the images and their metadata166

are available from our project web-page2.167

3.2. Goals and Challenges168

Our main goal is to recognize the location of an old pic-169

ture using annotated modern photographs. Primarily, location170

recognition in this setting can be considered as an image clas-171

sification task. In this paper we use the LTLL dataset to inves-172

tigate the effectiveness of existing location recognition tools,173

following the most typical image classification framework and174

using the standard pipeline with feature detection, description175

and encoding [39]. In comparison to previous location recog-176

nition benchmarks, the LTLL dataset poses new challenges re-177

lated to the fact that the photos come from two different eras178

and to the limited amount of reference modern images for some179

historical place of cultural interest.180

Given the LTLL dataset as testbed, we want to establish181

which of the existing feature detectors (Difference of Gaus-182

sians (DoG [40]), Hessian Affine [41], etc.), feature descriptors183

(SIFT, LIOP [42], etc.) and representations ( BOW, Fisher Vec-184

tors [43], DeCAF [44]) is able to cope better with the image185

variability due to large time lags.186

Due to variations in the capturing process as well as image187

degradation, old and new photographs belong to two different188

data distributions. Machine learning adaptive techniques are189

generally used in classification to overcome this kind of distri-190

bution mismatch issues. We investigate whether domain adap-191

tation can help in reducing the distribution shift between old192

and new photographs in the LTLL database. We start our anal-193

ysis by adopting a classification setup with the modern images194

2http://homes.esat.kuleuven.be/˜bfernand/
beeldcanon/

as training set (source) and the historical images as test samples195

(target). Apart from using all the images at once we also eval-196

uate empirically the problems induced by the lack of modern197

data in the extreme case of having from one to five available198

training samples per location.199

Finally, by combining the LTLL database with a large set of200

modern image distractors, we extend our study to cross-domain201

location retrieval. Here the ancient images are used as queries202

and the modern photos constitute the reference archive.203

Before going into the details of the experimental analysis204

(provided in section 5), we dedicate the next section to a brief205

review of the considered domain adaptation methods.206

4. Subspace Domain Adaptation207

Among the existing domain adaptation approaches, we con-208

sider here three methods based on subspace learning. Most209

of the location recognition solutions rely on high dimensional210

features such as HOG or BOW with large vocabulary dimen-211

sion of 103 − 106 words (see e.g. [5, 6]), and Fisher Vec-212

tors (FV, [43, 45]). Thus, using dimensionality reduction tech-213

niques appears to be a viable option. In the following we review214

the Geodesic Flow Kernel (GFK) method [33] and the Sub-215

space Alignment (SA) approach [32] together with its Extended216

(ESA) version presented in [46]. All these domain adaptation217

methods are unsupervised: they operate directly on the data rep-218

resentation with the labels available only for the source domain.219

In the following subsections we specify the differences among220

them and the various strategies used to estimate the subspace221

dimensionality.222

Let’s indicate with xS , xT ∈ R1×D the samples belonging223

respectively to a source (training data, in our case new images224

which are labeled) and a target (testing data, in our case old im-225

ages) domain. We assume to obtain the source domain subspace226

XS ∈ RD×dS , and the target domain subspace XT ∈ RD×dT227

by PCA, where dS , dT < D correspond to the number of se-228

lected eigenvectors associated with the largest eigenvalues.229

4.1. GFK: Geodesic Flow Kernel230

The GFK technique fixes the same dimensionality d = dS =
dT for the subspaces of the two domains and embeds them
onto a Grassmann manifold. The geodesic flow {Φ(t) : t ∈
[0, 1]} between XS = Φ(0) and XT = Φ(1) is then used to
parametrize the connection among the subspaces and to define
infinitely many features varying gradually from the source to
the target z∞ = {Φ(t)�x : t ∈ [0, 1]}. The inner product of
the new features gives rise to a positive semidefinite kernel [33]

Sim(xi, xj) = �z∞i , z∞j � = x�
i

� 1

0

Φ(t)Φ(t)�dt xj = xiGxj ,

(1)
where the matrix G can be calculated efficiently using singu-231

lar value decomposition. The sample similarity obtained in this232

way is far less sensitive to the original domain differences. The233

dimensionality d is chosen by optimizing a subspace disagree-234

ment measure (SDM) that evaluates the similarity among the235

4
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source, the target and the combined source+target subspace.236

For more details, we refer to [33].237

4.2. SA: Subspace Alignment238

The SA method learns a linear transformation matrix M ∈
RdS×dT that aligns the source and target coordinate systems
by minimizing the following Bregman divergence:

F (M) = ||XSM −XT ||2F , (2)

where ||.||2F is the Frobenius norm. It can be easily shown that
the optimal matrix is M = X �

SXT , and the target aligned
source coordinate system is Xa = XSX

�
SXT . Finally, the

similarity among two samples is defined as follows:

Sim(xS , xT ) = (xSXa)(xTXT )
� . (3)

It is possible to demonstrate that the deviation between two suc-239

cessive eigenvalues is bounded [32]. The bound can be used to240

determine the maximum size of the subspaces dmax that allows241

to get a stable and non overfitting matrix M . The choice of the242

subspace dimensionality d can then be done by minimizing the243

classification error through a two fold cross-validation over the244

labeled source data and finally setting dS = dT = d. For more245

details, we refer the reader to [32].246

4.3. ESA: Extended Subspace Alignment247

The function in (3) operates in the original RD space. How-
ever, after the domain transformation any problem can be for-
mulated in the RdT target subspace. To reduce the computa-
tional effort, ESA proposes to evaluate the similarity between
the target aligned source samples and the target subspace pro-
jected data by using directly their Euclidean distance [46]:

Θ(xS , xT ) = ||xSXa − xTXT ||2 . (4)

The cross-validation procedure described to define the best d248

for SA becomes very slow and tedious when working with data249

represented by high dimensional features. Moreover, it is un-250

likely to provide reliable results in cases where some source251

classes have an extremely limited number of annotated sam-252

ples. When starting from a rich and reliable representation,253

one desideratum is to keep its strength and retain the sample254

local neighborhood after dimensionality reduction. With this255

purpose, ESA chooses the domain intrinsic dimensionality ob-256

tained through the method presented in [47]. The Maximum257

Likelihood Estimate (MLE) of the dimensionality for each data258

point is calculated and its average is used as the intrinsic dimen-259

sionality of the corresponding domain [46]. The two domains260

are considered separately, which implies dS �= dT . For more261

details, we refer to [46].262

5. Experiments263

In this section we provide a detailed experimental analysis264

on the task of location recognition over large time lags using265

the new LTLL dataset introduced in section 3.266

In the first part of the experiments, we use an image classifi-267

cation framework to evaluate different feature detectors, feature268

descriptors and image representations (section 5.1). Moreover,269

we investigate the advantages of using existing domain adap-270

tation methods for the considered location recognition problem271

(section 5.2). All these tests are done using a Nearest Neighbor272

(NN) classifier. Given all the modern training images (source),273

each labeled with one of the 25 locations, we annotate a test an-274

cient picture (target) with the location of the closest/most sim-275

ilar modern image. We use the standard Euclidean distance to276

evaluate the sample similarity unless specified otherwise, and277

equations (1), (3), (4) when applying the corresponding domain278

adaptation methods. The final performance is always evaluated279

by the multi-class classification accuracy obtained over the full280

set of old photographs. For this we calculate the percentage of281

correctly classified images over the full test images.282

In the last part of our analysis, we study the task of cross-283

domain location retrieval and give details about the application284

of Extended Subspace Alignment (ESA) with relevance feed-285

back (section 5.3). In this case we consider per-class average286

precision and take the mean average precision over all classes287

to obtain mAP. Several historical query images are accumulated288

together with their corresponding retrieved modern images. We289

show that by applying domain adaptation over them it is pos-290

sible to learn a domain-invariant representation that provides a291

significant improvement in the mean average precision results.292

5.1. Seeking The Best Image Representation293

We start our experimental analysis by establishing which294

is the best image representation for the task of location recog-295

nition over large time lags, focusing on those that have been296

proposed as robust to large appearance changes. Most of them297

are obtained by the combination of local descriptors extracted298

from detected keypoints.299

5.1.1. Setup300

We consider the following301

Detectors. Among the existing detectors we test the Difference302

of Gaussians (DoG [40]), the Hessian Affine (HA, using the ef-303

ficient implementation proposed in [41]), and a standard dense304

sampling strategy (Dense).305

Descriptors. As descriptors we consider root-SIFT (rSIFT, [48])306

and Local Intensity Order Pattern (LIOP, [42]).307

Representation. Each image is represented either through Bag-308

of-Words (BOW), or Fisher Vectors (FV). In both cases the fea-309

tures are square-root and L2 normalized as suggested in [43].310

2× 105 randomly sampled descriptors are used to build a 3000311

visual word vocabulary with k-means, and to train a Gaussian312

mixture model (GMM). For FV we reduce the dimensionality313

of rSIFT and LIOP to 64 with PCA and we use a GMM with 64314

components obtaining a final feature vector of dimension 8192.315

We also evaluate features that have pre-defined detector-descriptor316

pairs.317

5
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Self Similarity (Self-Sym [49]) and Symmetry Features (Sym-318

Feat, [19]). We follow the same procedure described before to319

reduce the Self-Similarity descriptor dimension to 32 and com-320

bine it with a GMM model with 128 components, maintaining321

the final FV dimensionality of 8192.322

Edge Foci detector and Binary Coherent Edge descriptor (Edge-323

Foci+BiCE, [50]). This representation is described as robust324

not only to illumination and pose changes, but also to intra-325

category appearance variation. BiCE is a binary local descrip-326

tor, so using a direct image-to-image matching procedure is327

more natural and meaningful than passing through a BOW vo-328

cabulary or a GMM model for FV encoding. Two images are329

matched by using the descriptors Hamming distance normal-330

ized against the total number of extracted points, and compar-331

ing the obtained value with a pre-defined threshold3.332

Finally, we benchmark the classification results obtained with333

the described representations against the performance of two334

methods that have been previously applied on cross-domain335

tasks. One is the approach presented in [23] based on the com-336

bination of HOG features and Exemplar SVM (ESVM, [51]).337

The other is the NBNN classifier [52], considering its cross-338

domain robustness discussed in [29].339

340

We use Acc. all to indicate the accuracy obtained when341

all new images are used for training a classifier with on average342

eleven samples per location; Acc. one indicates instead the ac-343

curacy obtained when a single (random) new photograph (per344

class) is used in training. This last setup is quite challenging345

due to lack of training samples. For it we report the average346

classification accuracy and its standard deviation over 100 ran-347

dom repetitions to get statistically meaningful results.348

5.1.2. Analysis349

All the recognition results are shown in Table 2, which is350

divided in three parts. The first two are dedicated respectively351

to BOW and FV with the NN classifier. The last part shows the352

results obtained with the other considered representations and353

classification methods.354

With BOW the best performance is obtained when using355

rSIFT as descriptor and a dense point extraction procedure. The356

effect of the last one is evident in comparison with the corre-357

sponding DoG-rSIFT and HA-rSIFT results. Due to the huge358

difference in the visual appearance of old and new images the359

interest points detected by DoG and HA loose their informative360

power and it seems better to rely on a systematic sampling over361

the whole image provided by the dense extraction. Moreover,362

LIOP presents very low performance, close to random, which363

suggests that the relative order of pixel intensities in the de-364

tected local patches changes significantly across the domains.365

The symmetry information coded in the Sym-Feat descrip-366

tors seems not preserved when passing from modern to old im-367

ages, inducing low recognition results. On the other hand, Self-368

3We tested different threshold values and we present here the best obtained
result.

Detec. Descr. Repr. Class. Acc. one (%) Acc. all (%)
DoG rSIFT BOW NN 7.5 ± 2.4 8.7
DoG LIOP BOW NN 7.3 ± 3.5 7.7

Dense rSIFT BOW NN 19.9 ± 3.6 34.7
Dense LIOP BOW NN 6.3± 1.8 4.1

HA rSIFT BOW NN 11.1 ± 3.1 17.9
HA LIOP BOW NN 4.7 ± 1.9 9.2

Self-Sim BOW NN 15.8 ± 3.3 29.6
Sym-Feat BOW NN 6.1 ± 2.4 8.2

DoG rSIFT FV NN 13.3 ± 2.2 20.9
DoG LIOP FV NN 9.2 ± 1.5 16.3

Dense rSIFT FV NN 22.7 ± 2.9 30.1
Dense LIOP FV NN 4.9 ± 1.6 7.7

HA rSIFT FV NN 31.3 ± 3.5 48.5
HA LIOP FV NN 4.1 ± 1.5 4.6

Self-Sim FV NN 17.4 ± 2.8 33.7
Sym-Feat FV NN 14.0 ± 2.5 26.0

Edge-Foci BiCE Matching 10.7 ± 2.6 18.7
HOG ESVM 15.9 ± 3.5 31.4

HA rSIFT FV ESVM 28.0 ± 3.4 44.6
HA rSIFT NBNN 4.7 ± 1.0 7.1

Table 2: Comparison of detectors, descriptors, and image representations. We
report the recognition rate results over the target (ancient) images in case of a
single source (modern) sample per location (Acc. one), and when considering
the full source set (Acc. all).

Similarity produces the second best results, showing the impor-369

tance of mining the local geometric layout within each image370

for cross-domain tasks.371

The recognition rates obtained with FV are better on av-372

erage than the corresponding ones based on BOW. The trend373

among the different detector-descriptor cases is analogous to374

what we discussed before, except that the HA detector appears375

able to complement FV better than dense sampling, leading to376

the highest performance. The disappointing results obtained377

with Edge-Foci+BiCE indicate that this approach is clearly not378

suitable for the task at hand.379

The combination of HOG features and ESVM present a low380

performance: as evident in the examples shown in Figure 2, the381

HOG features mostly focus on the scene alignment, regardless382

of the specific depicted location. As a variant we also combine383

ESVM with HA-rSIFT-FV and the improved results underline384

the importance of the feature representation. Still, compared to385

a simple NN classifier, ESVM needs a set of extra negative sam-386

ples besides the choice of learning parameters (i.e.tuning the C387

value), and does not yield better results. Finally the perfor-388

mance of NBNN is almost random, indicating that for the con-389

sidered task, the image-to-class paradigm is not strong enough390

to overcome the difference among local descriptors in the train391

and test set.392

Overall the combination of HA detector, rSIFT descriptor393

and FV encoding produces the best results and we will use this394

representation for all the following experiments.395

5.2. Domain Adaptation and Subspace Dimensionality396

We investigate here the value of domain adaptation in clos-397

ing the gap between historical and modern images. We test398

6
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Test Image DOG-rSIFT-BOW Dense-rSIFT-BOW Self Similarity-FV HOG-ESVM HA-rSIFT-FV ESA

Figure 2: Examples of the results obtained with different feature representations and with ESA. Given the target test image in the first column, we show here the
most similar source images. Red colour indicates wrongly classified instance whereas green indicates correctly classified instance. In the fifth and sixth rows only
ESA correctly recognizes Notre Dame and Sacre Coeur. The last row shows a failure for all the methods. By comparing the columns it is visible that different
features capture different levels of similarity with the query image and that HOG-ESVM mostly focus on the scene alignment.

the adaptive methods GFK, SA and ESA, comparing SDM399

and MLE against other dimensionality estimation techniques,400

namely401

EIG: the eigenvalue-based estimation is the standard solution402

used in the literature for which we choose the dimension-403

ality that retains 99% of the data variance.404

GMST: the geodesic minimum spanning tree method [53] em-405

beds the data in a geodesic graph and prunes it to obtain406

the graph spanning over all the samples with the mini-407

mum total geodesic length.408

CDM: the correlation dimension technique was proposed in409

[54] to approximate the fractal dimension of a dataset.410

Note that the output of SDM is a single subspace dimension-411

ality value for both the domains while all the other methods412

provide two different values, one for each domain. We also re-413

mark that subspace learning is an unsupervised process, thus all414

the available samples can be used regardless of the availability415

of their class labels. We adopt the standard framework used in416

7
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approaches (indicated in the x-axis) when changing the dimensionality estima-
tion method (indicated in the legend). No-Adapt corresponds to using HA-
rSIFT-FV representation without adaptation. -S and -T indicate that the dimen-
sionality of the subspace was estimated on the source or on the target domain.
For SDM, GFK-S=GFK-T and SA-S=SA-T. The title of the plot indicates that
the results were obtained respectively with one sample per location (Acc. one)
or considering the full source set (Acc. all) of modern images.

previous domain adaptation literature both for the adaptive and417

classification process. All modern training images are used to418

learn the source subspace XS and all ancient testing images are419

used to learn target subspace XT . We then rely on the labels420

of the source modern images (all or a subset depending on the421

experiment) to annotate the unlabeled test ancient photos. We422

report the classification accuracies in Figure 3.423

From the histogram bars it can be immediately noticed that424

all the domain adaptation methods in combination with SDM425

produce worse results than No-Adapt which corresponds to us-426

ing HA+rSIFT+FV and NN without adaptation (which we also427

reported in Table 2). This outcome is not so surprising if we428

consider that, from an original space dimensionality of 8192,429

the samples are projected to a subspace of dimension 16. All the430

other dimensionality estimation approaches provide higher val-431

ues, for example EIG=199, GMST=49, CDM=56 and MLE=95432

respectively. Even-though EIG a is simple technique, the clas-433

sification accuracy is quite sensitive to the chosen energy per-434

centages (99% in our experiments). Finally, MLE produces on435

average the best results with respect to all the other dimension-436

ality estimation techniques.437

When comparing the domain adaptation methods, we can438

see that ESA improves over all the other approaches. We also439

test ESA with MLE when varying the number of classifier train-440

ing images between one and five: Figure 4 shows that even in441

the case of a reduced amount of labeled modern images this ap-442

proach consistently improves over non adaptive classification.443

Finally, to put our results in a wider perspective we add444

a further benchmark against the state of the art deep learning445

method. In the absence of large amount of training data, re-446

training a CNN network is prone to overfitting [55], and fine-447

tuning the last layers of an existing network does not converge,448

not showing any meaningful learning. Thus we exploit directly449

the activation values of a pre-trained network as feature rep-450

resentation, namely DeCAF [56]. The results are reported in451

Table 3 together with what was originally achieved without452

Figure 4: Nearest Neighbor classification performance obtained when changing
the number of source samples per location. The results showed for 1 and “all”
corresponds to what already shown in Figure 3 for ESA-MLE.

Method Acc. one (%) Acc. all (%)
DeCAF 36.3 ± 3.3 49.1

HA-rSIFT-FV 31.3 ± 3.5 48.5
HA-rSIFT-FV + ESA 36.9 ± 3.8 56.1

DeCAF + ESA 39.3 ± 2.7 49.0

Table 3: Classification rate obtained with different methods. The last row re-
ports the best non-adaptive results of Table 2.

adaptation. We notice that ESA applied over FV outperforms453

what obtained with the DeCAF features [44]. However, when454

ESA is applied over DeCAF features, recognition rate obtained455

with one training sample (Acc. one (%)) seems to outperforms456

HA-rSIFT-FV +ESA. But when all training samples are used,457

HA-rSIFT-FV + ESA outperforms DeCAF + ESA. We con-458

clude that in the task of location recognition over large time459

lags domain adaptation has a relevant impact with a particu-460

lar advantage provided by ESA [46] over the other tested ap-461

proaches.462

5.3. Cross-Domain Location Retrieval463

In this section we introduce the task of cross-domain loca-464

tion retrieval. Given a query old image showing a certain lo-465

cation, the goal is to retrieve modern images which depict the466

same location from a database (archive) consisting of few rele-467

vant images and large number of non-relevant images. Typical468

image retrieval databases contain 104 − 106 or more samples.469

To replicate this setting we enlarge our LTLL database by using470

images from the Oxford-building 105K database [48] obtaining471

a retrieval problem with 225 ancient query images and a mod-472

ern image archive with 275 relevant images and 105K distractor473

images.474

As an initial check, we adopt what is considered as best475

practice in standard instance retrieval [13, 48]. We use an im-476

age representation obtained by combining the Hessian Affine477

detector [41] with the root-SIFT [48] descriptor and BOW with478

a dictionary size of [104, 105, 106] created through an approx-479

imate k-means [13] and we use the tf-idf scheme. The perfor-480

mance obtained in this way is lower than what can be achieved481

with Fisher Vectors (see Table 4). A similar behavior can be482

observed with other interest point detectors, confirming what483
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we already discussed before in section 5.1. Motivated by the484

effectiveness of ESA to overcome the visual variability induced485

by large time lags in classification, we evaluate its extension to486

cross-domain location retrieval in the next section.487

Method mAP
BOW - 10K 0.123
BOW - 100K 0.122
BOW - 1M 0.086

Fisher Vectors 0.164

Table 4: Comparison of BOW and Fisher Vectors (FV parameters as in sec-
tion 5.1) on cross domain location retrieval task using the LTLL dataset and
the Oxford-building 105K dataset as distractors. Old photographs are used as
query images and the objective is to retrieve new images of the same location
depicted in the query image.

5.3.1. Interactive Cross-Domain Retrieval With Domain Adap-488

tation489

Using domain adaptation in an instance retrieval setting turns490

out to be quite challenging. The reason is that domain adap-491

tation relies on the samples of both the domains to learn and492

recompose the domain shift, but in image retrieval the query493

(target) samples are not available beforehand, while the source494

data (i.e. the subset of the database corresponding to relevant495

locations) can be identified only as more and more queries are496

issued. To overcome this lack of information we relax the prob-497

lem and make the retrieval process interactive. The idea is to498

ask a user to select three relevant images from the retrieved re-499

sult set of each query. By doing that we are able to collect500

some query images (old photographs or the target domain) and501

new relevant images (the source domain images). Finally, by502

using these collected samples we can estimate the subspaces503

of respective domains and use them to perform adaptation by504

learning the subspace alignment matrix M which is then used505

over new query images.506

For the described process it is necessary to control the source507

and target sample cardinality: we need a minimum number508

of relevance feedback samples and queries to learn a full rank509

transformation matrix. We indicate with nk
S the number of col-510

lected source images obtained with the feedback mechanism at511

round k, and with nk
T the corresponding number of target query512

images. The respective subspace intrinsic dimensionalities �dS513

and �dT can be calculated by using 15 distinct images for each514

of the two domains: this amount of samples allows to evalu-515

ate 100 pairwise distances and provides enough information to516

set the local neighborhood of each sample for MLE [46]. The517

matrix M is then learned at the first iteration k = k∗ which518

satisfies the conditions nk∗
S > �dS and nk∗

T > �dT . For our target519

task �dT = 60 and the source task �dS = 95, so we collect 60520

distinct queries and 180 feedbacks amounting to about 90-115521

distinct modern images.522

After the subspace alignment step over those data we also523

use PCA whitening [43] with the eigenvalues obtained from the524

query images. We repeat this experiment 10 times and we re-525

port the obtained mean average precision in Figure 5, together526

with the results obtained when increasing the number of query527

Figure 5: Retrieval results obtained when changing the number of query im-
ages. In this experiment the modern images are used as the reference database
together with 105 distractors, while the old images are the queries. “No-Adapt”
corresponds to the result obtained by using HA-rSIFT-FV without any adapta-
tion. “ESA-whole dataset” refers to the result that can be obtained when the
transformation matrix M is learned over the full set of old and new images of
the 25 locations in our dataset. “ESA” indicates the interactive cross-domain
retrieval method. We refer to the text for further details.

images. The plot shows that ESA outperforms the non adap-528

tive solution and with 75 query samples it reaches almost the529

same results that would have been obtained by learning the530

transformation matrix M over our whole dataset (i.e. the same531

M used in the classification experiments). We also compare532

the obtained results with a naı̈ve baseline method which ex-533

ploits directly the similarity among the query images. Given a534

query sample we can first search the most similar image among535

the accumulated historical pictures and then use the associated536

modern feedback images to search in the modern archive. This537

procedure gives a mAp of 0.201 ± 0.023, which is still lower538

than what we obtained with ESA (0.313± 0.010).539

Apart from being effective in the retrieval setting as shown,540

ESA makes the use of Fisher Vectors time and memory efficient541

since it operates in the low dimensional target space. In our542

experiments we need about 350Mb of RAM for 100K images543

and a single query is executed in less than 0.03 seconds using a544

single core of 2.8GHz. The matrix M can be learned in a few545

seconds, which allows ESA domain adaptation approach to be546

applied also in an online setup.547

6. Conclusion548

In this paper we introduced the task of recognizing the loca-549

tion depicted in an old photograph using modern digital images.550

We presented a dataset spanning over 25 locations and more551

than one century and we analyzed several representations look-552

ing for the most robust to the variability induced by color degra-553

dation and different image acquisition processes. Our experi-554

mental evaluation has shown that Hessian Affine detector [57,555

41] and root-SIFT [48] in combination with Fisher Vectors [43]556

are more suitable for the task at hand than other detector-descriptor557

pairs originally introduced to cope with non-linear intensity changes [19,558

50].559
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The difference in visual appearance among old and new im-560

ages causes a domain shift at image descriptor level. Conse-561

quently, we obtain poor recognition performance for bag-of-562

words, descriptor matching approaches and NBNN. To over-563

come this problem we investigated the use of domain adapta-564

tion methods. Our analysis demonstrated that among different565

subspace adaptive learning approaches the Extended Subspace566

Alignment method [46] provides the best results and shows a567

significant advantage in recognition over non-adaptive strate-568

gies (from 48.5% to 56.1%) and state-of-the-art CNN features [56]569

(49.1%).570

Finally we proposed and analyzed the task of cross-domain571

location retrieval. We proposed a strategy to interactively use572

domain adaptation and showed the gain in performance pro-573

vided by ESA also in this setting (from 0.201 to 0.313 mAP).574

Our work presents several cues that indicate good directions575

for future research. We believe that the LTLL dataset intro-576

duced in this paper is a good testbed to evaluate the practical577

usefulness of existing domain adaptation methods. We plan578

to extend the collection and to investigate how adaptive meth-579

ods scale in case of more samples and an increasing number580

of classes/locations. Indeed the application of domain adapta-581

tion on large datasets and the effect on their speed/complexity582

and accuracy have not been extensively studied yet. The pro-583

posed dataset may also influence the location recognition com-584

munity to seek novel image representations that are not suscep-585

tible to distribution mismatch due to large time lags. More-586

over our analysis suggests that there is a great necessity of new587

learning algorithms able to overcome the domain-shift issue in588

the cross-domain image retrieval setting. On one side the pre-589

sented study paves the way for online-interactive domain adap-590

tation systems, on the other it may inspire new instance retrieval591

methods and paradigms [58, 59].592
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