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Abstract
The magnetoencephalography (MEG) aims at reconstructing the

unknown neuroelectric activity in the brain from the measurements
of the neuromagnetic field in the outer space. The localization of
neuroelectric sources from MEG data results in an ill-posed and ill-
conditioned inverse problem that requires regularization techniques to
be solved. In this paper we propose a new inversion method based on
random spatial sampling that is suitable to localize focal neuroelectric
sources. The method is fast, efficient and requires little memory stor-
age. Moreover, the numerical tests show that the random sampling
method has a high spatial resolution even in the case of deep source
localization from noisy magnetic data.
Keywords:Neuroimaging; Magnetoencephalography; Inverse Problem;
Random Sampling
MSC 2010]: 92C55, 47A52, 65R32

1 Introduction

Magnetoencephalography (MEG) ([13]) is a completely non-invasive imag-
ing technique to map the neuroelectric activity from the measurements of
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the magnetic field that the activity itself induces outside the head. Due to
its high temporal resolution - in the millisecond scale ([3]) - MEG is partic-
ularly attractive for mapping fast cerebral responses to spontaneous and/or
evoked stimuli. From the analysis of the temporal evolution of the measured
magnetic field distribution we can infer just partial information on the local-
ization of active brain regions. In order to better focus neuroelectric sources,
we have to solve the neuroelectric inverse problem aiming at reconstruct-
ing the neuronal current image once a measured magnetic field distribution
outside the head is given.

Since the magnetic field decreases very fast as the distance between the
electric sources and the sensor sites increases, the measured magnetic field
may be very weak. For this reason MEG magnetometers are equipped with
SQUIDs (Superconducting Quantum Interference Devices), which are very
sensitive detectors of the magnetic flux ([13]). Moreover, MEG measurements
are affected by high noise due to electromagnetic sources in the external en-
vironment and to the bioelectric activity generated by the muscular activity
of the patient himself. Usually, these disturbances generate a magnetic signal
of strength comparable with the signal of interest.

Another challenge of MEG is in its ill-conditioned nature; in fact, the
radial - w.r.t. the inner skull - component of the neuroelectric current does
not produce any magnetic field in the outer space and cannot be detected.
This means that a single measured field could be generated by an infinite
number of current distributions and further assumptions could be made in
order to force the inverse problem to have a unique solution ([11]).

When solving the MEG inverse problem, we are interested in reconstruct-
ing the neuroelectric current image with high accuracy - in the order of few
millimeters - having available only few magnetic data - usually, a few hun-
dreds. Thus, the MEG inverse problem can be seen as an inverse problem
with incomplete data. On the other hand, neurophysiologic studies have put
in evidence that the neuroelectric current distribution is localized in small
regions of the brain, i.e. the neuroelectric current distribution is spatially
sparse. As a consequence, it is reasonable to expect that only few elemen-
tary sources might be sufficient to characterize and reconstruct the unknown
current vector ([2, 4, 6]).

After these observations, in this paper we propose a new method based
on random sampling, suitable to solve the MEG inverse problem under the
sparsity assumption. The key ingredient of the method lies in the fact that
we represent the electric current distribution we want to reconstruct by a
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sample ensemble of few localized elementary sources. Under the sparsity
assumption, just few elementary sources, randomly chosen from a large dic-
tionary, are sufficient to well reconstruct the unknown current distribution.
Some first results on the solution of the MEG inverse problem by the ran-
dom sampling method can be found in ([1]) where it is shown that random
sampling reduces significantly the ill-conditioning of the inverse problem so
acting as a regularization technique. Moreover, the algorithm requires little
memory storage and is very fast. Here, we deal with the problem of localizing
focal deep sources from noisy magnetic data and show that the random sam-
pling method combined with a shrinkage method has a high spatial resolution
so that it can be effectively used in neuroimaging applications.

The paper is organized as follows. In Section 2, we recall the model usu-
ally used to describe the MEG forward problem and set the MEG inverse
problem. In Section 3 we describe the random sampling method for the
solution of the MEG inverse problem. Section 4 is devoted to several numer-
ical tests showing the good performances of the proposed method. Finally,
Section 5 contains some comments and conclusions.

2 The MEG forward and inverse problems

Following the classical model by Geselowitz ([7, 8]), we describe the head as
a conductor consisting of homogeneous, nested, non intersecting regions, Vi,
i = 0, . . .m, each one having constant conductivity, σi. In the following we
assume that the neuroelectric current flows just inside the innermost region
V0, which represents the brain. From the quasi-static Maxwell’s equations, it
follows that the electric current density J(r) flowing in V0, and the external
magnetic field B(r), with r outside Vm, are related by the Biot-Savart law

B(r) =
µ0

4π

∫
V0

J(r′)× (r− r′)

|r− r′|3
dr′ , (2.1)

where µ0 is the magnetic permeability in the vacuum.
The magnetometers are located in N sites, qi, i = 1, . . . , N , that belong to a
surface Σ external to the head. Each magnetometer measures the magnetic
field along the direction e(qi), which is the normal w.r.t. Σ in qi. Now, let
Be(qi,J) := B(qi) · e(qi) be the integral operator relating the neuroelectric
current and the magnetic field it generates in qi, projected along e(qi). Re-
calling that for any three vectors in R3 it holds (v ×w) · z = −(z ×w) · v,
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we obtain the relation

Be(qi,J) =
µ0

4π

∫
V0

(
e(qi)×

r′ − qi

|r′ − qi|3

)
· J(r ′) dr ′ , (2.2)

which is linear w.r.t. J (here, v×w and v ·w are the usual cross and scalar
products of vectors in R3, respectively, and |v| is the Euclidean norm).

In a realistic head geometry the forward MEG problem cannot be solved
analytically, therefore numerical methods are needed. Usually, to solve nu-
merically the forward problem, Boundary Element Method, Finite Element
Method or Finite Difference Method are used ([9, 14]). All these meth-
ods require a large number of computational points to achieve high spatial
resolution so that they both require high memory storage and have high
computational load.

Having at hand the forward model, we can set the MEG inverse problem.
This consists in estimating the neuroelectric current distribution J from the
measurements of the external magnetic field, Gi, i = 1, . . . , N . Therefore,
the MEG inverse problem lies in minimizing the discrepancy

∆(J) =
N∑
i=1

(Gi − Be(qi,J))2 , (2.3)

w.r.t. the current distribution J, once the measurements Gi, i = 1, . . . , N , are
given. Since the integral operator (2.2) has a non-trivial kernel, additional
constraints, coming from the physics of the problem, have to be added so that
the inverse problem has a unique solution ([5, 11]). This a priori information
must be included into the inversion method to produce a physically mean-
ingful solution. Our aim is to use sparsity assumption and random sampling
to reduce the dimensionality of the inverse problem and, at the same time,
its ill-conditioning.

3 The random sampling method

To solve the inverse problem we model the total current as a sum of a finite
number of elementary sources, i.e.

J(r) ≈
M∑
k=1

Jk ψk(r ) , (3.1)
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where Jk = (Jx
k , J

y
k , J

z
k ) is the current intensity of the k elementary source

having spatial distribution ψk.
Dealing with the localization of focal neural sources, it makes sense to

assume the k elementary source to be a point-like source located in rk ∈ V0,
i.e. ψk(r) = δ(rk − r), so that

J(r) ≈
M∑
k=1

Jk δ(rk − r) , (3.2)

where δ is the Dirac delta function.
Substituting (3.2) in (2.2), we obtain the discretized version of the forward
operator Be(qi,J), i.e.

Be(qi,J) ≈ µ0

4π

1

M

M∑
k=1

(
e(qi)×

rk − qi

|rk − qi|3

)
· Jk , (3.3)

from which we obtain the so called lead-field matrix B with entries given by

Bl
ik =

µ0

4π

1

M

(
e(qi)×

rk − qi

|rk − qi|3

)
l

, (3.4)

for i = 1, . . . , N , k = 1, . . . ,M , l = x, y, z.
The MEG inverse problem consists in determining a configuration of

the current density vector J = [J1, . . . ,JM ]T that minimizes the discrep-
ancy ∆(J) := ‖BJ −G‖2RN once the set of the magnetic measurements
G = [g1, . . . , gN ]T is given.

Since the current density we want to reconstruct can be assumed to be
spatially sparse, i.e. non negligible just in few small regions of the brain, just
few elementary sources with a small support are sufficient to reconstruct with
a high accuracy the neuroelectric current distribution ([2, 4, 6]). In the ran-
dom sampling method the elementary sources are randomly extracted from
a large dictionary. To this end we select a sample ensemble of few random
computational points, R = {rk ∈ V0, k = 1, . . .M}, uniformly distributed
inside V0. The number of random points M can be chosen in the order of the
number of measurements N so reducing the ill-conditioning of the matrix B
and making the minimization of the discrepancy feasible. This is equivalent
to select randomly few elementary sources ψk(r).
The accuracy of the localization can be increased by performing a few runs,
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Figure 1: The conducting sphere (red grid) and the magnetometer sites (black
circles).

each one with a different sample R. In this case the source localization will
be the mean of all the localizations obtained in each run. As the examples in
the next section show, the random sampling method allows us to well localize
superficial sources while it fails when the sources are deep. In this latter case
a regularization term based on l1-norm has to be added ([10]).

4 Numerical tests

To test the performances of the random sampling method we ran several tests
on synthetic data. The data were generated by one or more current dipole
sources located inside a spherical homogeneous conducting volume. The
synthetic magnetic data were generated by sampling the radial component
of the magnetic field in N = 144 sites distributed on a hemispherical surface
concentric to the conducting sphere. In the tests the conducting sphere had
radius R = 8 cm while the magnetometer sites were located on an hemisphere
of radius Rmag = 10 cm (see Fig. 1)1.

The different ensembles of computational points were extracted from a
uniform grid filling the whole sphere having step size h = 0.4 cm, so that the
uniform grid had about 30000 points. We performed different runs extracting

1All the figures are in colors in the electronic version of the paper
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Figure 2: Left: A sample ensamble of M = 1000 computational random
points uniformly distributed in the conducting sphere. Right: The amplitude
of the entries of the discretization matrix B corresponding to the ensemble
shown on the left.

in each one a different number of random points, ranging from M = 500 up
to M = 8000, uniformly distributed inside the sphere. As an example, the
point distribution for a sample ensemble of M = 1000 computational points
is shown in Fig. 2 (left) while the corresponding discretization matrix B is
shown in Fig. 2 (right). Note that to better localize deep sources we used
a standard preconditioning technique based on the column balancing of the
matrix B.

We tested the method on two sets of synthetic data. The first set was
generated by a single current dipole, located at two different depths below the
surface of the conducting sphere (Section 4.1). The second set was generated
by three extended sources inside the conducting sphere (Section 4.2). The
runs were performed on a laptop and took just a few seconds for each trial.

4.1 A single source in a homogeneous conducting sphere

In the first test the electric source was superficial, with depth Sd = 1 cm
below the surface of the conducting sphere. The synthetic data are shown in
Fig 3.

To solve the inverse problem we used different numbers of computational
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Figure 3: The magnetic data generated by a single source at depth Sd = 1 cm.

points M and different numbers of trials Nt. As M and Nt increase, the
reconstructed current density becomes more and more accurate. This is put
in evidence in Figs. 4-5 where the reconstructed current intensity is shown
for M = 500, Nt = 10 - a total of 5000 points - and M = 4000, Nt = 20 -
a total of 80000 points - respectively. Note that since the computational
points were chosen independently from a trial to another, different samples
may contain some identical points.

In the second test the electric source was deeper with Sd = 3 cm. The
reconstructed current intensity is shown in Figs. 6-7 for M = 500, Nt = 10
and M = 4000, Nt = 20, respectively.

To better understand how the values of M and Nt affect the accuracy of
the localization, we evaluated the localization distance error (LDEmax), de-
fined as the distance between the point where the current dipole generating
the data is located, and the point where the reconstructed electric current
intensity has its maximum. A more significant error measure is the distance
between the source position and the mean of the points in the region of inter-
est (ROI), i.e. the region where the current intensity is highest (LDEmean).
Fig. 8 shows the behavior of LDEmax and LDEmean as a function of the num-
ber of computational points. We used M = 500, 1000, 2000, 4000, 8000, com-
putational points and performed Nt = 5, 10, 20, 30, 40, 50, trials with a differ-
ent sample ensemble for each value ofNt. To be sure that LDE did not depend
significantly on the ensembleR we used at each trial, for each value of M and

8



Figure 4: The reconstructed electric current intensity for M = 500 and
Nt = 10 when Sd = 1 cm. Left: The electric intensity on the surface of the
conducting sphere. Right: The electric intensity in the computational points.
Just the points where the intensity is significant are shown.

Figure 5: The reconstructed electric current intensity for M = 4000 and
Nt = 20 when Sd = 1 cm. Left: The electric intensity on the surface of the
conducting sphere. Right: The electric intensity in the computational points.
Just the points where the intensity is significant are shown.
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Figure 6: The reconstructed electric current intensity for M = 500 and
Nt = 10 when Sd = 3 cm. Left: The electric intensity on the surface of the
conducting sphere. Right: The electric intensity in the computational points.
Just the points where the electric intensity is significant are shown.

Figure 7: The reconstructed electric current intensity for M = 4000 and
Nt = 20 when Sd = 3 cm. Left: The electric intensity on the surface of the
conducting sphere. Right: The electric intensity in the computational points.
Just the points where the electric intensity is significant are shown.
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Figure 8: LDEmax (higher lines) and LDEmean (lower lines) as a function
of the number of computational points for Sd = 1 cm (left) and Sd = 3 cm
(right). For each value of M the number of trials Nt varies from 5 to 50
(Nt = 5 (red), 10 (orange), 20 (violet), 30 (green), 40 (blue), 50 (cyan) ).

Nt we solved the problem 5 times, each time using different ensembles of com-
putational points. This gave rise to a little spread of the LDE. The graphs
show that even if the spread decreases as the number of points increases,
LDE slightly increases as M increases. Actually, when using all the points
of the uniform grid we obtain LDEmax = 1.1 cm and LDEmean = 0.8 cm for
Sd = 1 cm and LDEmax = 2.9 cm, and LDEmean = 1.9 cm for Sd = 3 cm.
These values are very close to the values obtained for M = 8000.
We observe that the best results are obtained when running 30 trials with
500 points for each trial - less than the 0.2 % of all the points of the uniform
grid - resulting in a total of 15000 points, possibly overlapping.

In the previous tests we solved the inverse problem by the least square
method. Even if the method gives a rather small localization error in the
case of the superficial source, the accuracy in the localization of the deep
source is poor. In order to improve the localization of deep sources we used
a shrinkage method based on `1-penalization as a regularization term ([10]).

In Fig. 9 the localization error as a function of M and Nt when using
a shrinkage method is shown. In this case LDEmax and LDEmean have
approximately the same values and they do not much depend on the number
of points. In particular, the error is in the order of 0.3 cm as soon as Nt ≥ 20,
even in case of depth Sd = 3 cm.

The shrinkage method can be used also to improve the localization when
the data are affected by noise. In Figs. 10-11 the reconstructed current
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Figure 9: LDEmax and LDEmean as a function of the number of computa-
tional points for Sd = 1 cm (left) and Sd = 3 cm (right) when the shrinkage
method was used. For each value of M the number of trials Nt varies from 5
to 50 (Nt = 5 (red), 10 (orange), 20 (violet), 30 (green), 40 (blue), 50 (cyan)
).

intensity when the magnetic data were corrupted by a Gaussian noise with
s.n.r. = 5 is shown. The localization error is in the order of 2 cm when
using least square method while reduces to less than 1mm when using the
shrinkage method.

4.2 Extended sources in a homogeneous conducting
sphere

A more realistic example is the case when the magnetic data are generated
by more extended sources. We simulated a single extended source as a set of
several current dipoles confined in a small ball of radius 0.5 cm, located inside
the conducting sphere. The synthetic data for three extended sources at
depth Sd = 1 cm and Sd = 3 cm are shown in Fig. 12 and Fig. 13, respectively.

The reconstructed current intensity is shown in Figs. 14-15. The method
correctly identifies the three sources but the localization suffers from a shift
towards the surface of the conducting sphere. This effect is higher for weak
sources, that is the source below right in Fig. 14 and all the three sources in
Fig. 15. On the other hand shrinkage methods favor density current config-
urations where just the strongest sources are well detected (see Figs. 16-17).
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Figure 10: The reconstructed electric current intensity for M = 4000 and
Nt = 20 for noisy data. Here, Sd = 1 cm. Left: The electric intensity on
the surface of the conducting sphere. Right: The electric intensity in the
computational points. Just the points where the intensity is significant are
shown.

Figure 11: The reconstructed electric current intensity for M = 4000 and
Nt = 20 for noisy data when the shrinkage method was used. Here, Sd =
1 cm. Left: The electric intensity on the surface of the conducting sphere.
Right: The electric intensity in the computational points. Just the points
where the intensity is significant are shown.
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Figure 12: The magnetic data generated by three extended sources at depth
Sd = 1 cm.

Figure 13: The magnetic data generated by three extended sources at depth
Sd = 3 cm.
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Figure 14: The reconstructed electric current intensity for three extended
sources (red circles) at depth Sd = 1 cm. Here, M = 2000 and Nt = 20.
Left: The electric intensity on the surface of the conducting sphere. Right:
The electric intensity in the computational points. Just the points where the
intensity is significant are shown.

Figure 15: The reconstructed electric current intensity for three extended
sources (red circles) at depth Sd = 3 cm. Here, M = 2000 and Nt = 20.
Left: The electric intensity on the surface of the conducting sphere. Right:
The electric intensity in the computational points. Just the points where the
intensity is significant are shown.
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Figure 16: The reconstructed electric current intensity for three extended
sources (red circles) at depth Sd = 1 cm when the shrinkage method was used.
Here, M = 2000 and Nt = 20. Left: The electric intensity on the surface
of the conducting sphere. Right: The electric intensity in the computational
points. Just the points where the intensity is significant are shown.

Figure 17: The reconstructed electric current intensity for three extended
sources (red circles) at depth Sd = 3 cm when the shrinkage method was used.
Here, M = 2000 and Nt = 20. Left: The electric intensity on the surface
of the conducting sphere. Right: The electric intensity in the computational
points. Just the points where the intensity is significant are shown.
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5 Comments and conclusions

Neuroelectric source localization from MEG data is a challenging problem.
For its solution many different algorithms, based on a variety of different
frameworks and constraints, were proposed in the literature. In this paper,
we introduce a new method which relies on the sparsity assumption. In fact,
we assume that the electric current distribution inside the brain is spatially
sparse so that just few localized elementary sources are sufficient to well
reconstruct its image. These elementary sources have to be chosen randomly
from a large dictionary, each source having the same probability of being
selected at any time of the sampling process.

To show the performances of the proposed method several numerical tests
were carried out. In the tests we used point-like delta functions as elemen-
tary sources and showed that few hundreds of these functions, uniformly
distributed in the sphere, were sufficient to obtain a good localization of su-
perficial electric sources, without the need to add any further constraints.
In case of one deep source a shrinkage method based on `1-regularization is
needed in order to improve the accuracy of the reconstruction, especially in
case of noisy data. The tests showed also that the method is able to iden-
tify multiple sources, even if in this case the localization suffers from a shift
toward the surface of the conducting sphere. This is more evident for deep
weak sources. The shrinkage method does not improve the localization since
it favors configurations where just one source, usually the strongest, is iden-
tified. Regularization methods suitable to deal with multiple deep sources
are under study.

We notice that the random sampling method has a reduced computational
load and takes just few seconds on a laptop. Moreover, the accuracy of the
source localization can be improved just increasing the number of trials,
which slightly increases the computing time but keeping the same memory
storage. For these reasons the random sampling method can be effectively
used in MEG source imaging and especially in real-time applications, such
as brain-machine interfaces or neurofeedback rehabilitation after stroke or
spinal cord injury ([12]). Numerical tests on real MEG data will be the
subject of a forthcoming paper.
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