
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Use of Kriging to Surrogate Finite Element Models of Bonded
Double Cantilever Beams

Salvatore Sessa
Research Fellow, Department of Structures for Engineeringand Architecture, University
of Naples Federico II, Naples, Italy

Nunziante Valoroso
Associate Professor, Department of Engineering, University of Naples Parthenope,
Naples, Italy

ABSTRACT: An algorithm based on kriging statistical interpolation for computing the surrogate re-
sponse of a Finite Element model is presented. The interpolation model is calibrated via computation
of Finite Element responses at a set of random occurrences ofa material parameter. Such random gen-
eration concentrates at locations where the numerical model requires a higher amount of data to get the
desired accuracy. As a model problem a standard fracture propagation test is analyzed. The proposed
procedure is shown to be robust and accurate since responsesobtained via a direct computation and use
of the surrogate model turn out to be undistinguishable.

1. INTRODUCTION
We discuss a kriging-based surrogate model ap-
plied to the inverse identification of mode-I fracture
parameters on a bonded Double Cantilever Beam
(DCB) specimen.

Finite Element(FE) based inverse identification
of fracture parameters from a DCB test has been
recently assessed byValoroso et al.(2013); the ba-
sic idea developed therein amounts to simulating
the test via a numerical model depending on a set
of (unknown) material parameters whose value is
computed via minimization of a least-squares resid-
ual between the computed response and the experi-
mental one. Objective of the present work is to de-
velop a kriging-based surrogate model able to com-
pute the response of a finite element model for the
DCB depending on varying material parameters.

The theoretical basis of kriging interpolation, or
Gaussian process regression, has been set up by
Matheron(1973) based on the research ofKrige
(1951). The theory has acquired increasing pop-
ularity due to many successful applications devel-
oped mainly in spatial analysis and geostatistical

estimation, see e.g.Cressie(1993) for a complete
overview on the subject. The basic idea of the
method consists in predicting the value of a func-
tion at a given point as a weighted average of ob-
served data, whose weights are defined by means of
a stochastic model related to the observations cross-
covariance. The main appeal of kriging interpola-
tion consists in its capability to compute fast esti-
mations of the function values at unknown place-
ments regardless of the complexity of the observed
data providing at the same time the estimation of a
confidence interval.

The surrogate model discussed in this paper uses
the responses of a set of FE simulations as theob-
served data setof the kriging interpolation. Specif-
ically, a set of random points is generated in a suit-
able admissibility range of the material parameters
parameters to be identified and, at each point, a
FE analysis is performed in order to get the cor-
respondingobservedresponse. The kriging model
based on theseobservationsallows evaluating es-
timations of the surrogate response and a corre-
sponding confidence interval. A peculiar feature
of the presented algorithm consists in the gener-
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ation procedure of the random occurrences which
is governed by the confidence interval amplitude,
whereby newobservationswill cluster at those lo-
cations where the surrogate model is less precise.

It is worth emphasizing that the phase of data
generation remains computationally costly since
each point of the data set requires a full direct
FE analysis. Nevertheless, in case of experimental
test campaigns, the proposed procedure provides is
expected to provide improved performances com-
pared to the procedure presented inValoroso et al.
(2013) since specimens and protocols are usually
fixed. Hence, the surrogate model should be gen-
erated only once and its redundant employment
amounts to a set of linear computations, whereby
it is faster than direct computations.

The outline of the paper is as follows. The test
protocol and the relevant FE analysis is summa-
rized in section2. Section3 describes the krig-
ing interpolation procedure. The random gener-
ation algorithm and the calibration of the kriging
model are presented in section4; herein practi-
cal applications and numerical results are presented
that show the capabilities of the procedure. Specif-
ically, the model is employed for the computation
of the response surrogate of cohesive bonding in-
terface models presented inFedele et al.(2012) and
Valoroso et al.(2013) belonging to a Mode–I frac-
ture test campaign. Finally, section5 summarizes
advantages and drawbacks of the proposed algo-
rithm and future research directions.

2. MODE-I FRACTURE TEST AND FI-
NITE ELEMENT ANALYSIS

The symmetric DCB test depicted in Figure1 is
the standard test employed for obtaining the mode-
I fracture energyGIc of bonded assemblies. The
specimen analyzed byValoroso et al.(2013) con-
sists of two adherends made of aluminum alloy
Al 2024-T351 with lengthl = 200mm, width b =
20mm and thicknessh = 8mm; each adherend is
connected to stainless steel load block.

Tests were carried out on an electromechanical
material testing system shown in figure Figure2
following the guidelines of standardISO 25217
(2009); load and displacements data were recorded
during the test.

Figure 1: DCB specimen geometry.

Figure 2: DCB delamination test configuration.

Figure 3: DCB specimen. Geometry and FE mesh used
for identification.

The FE mesh used in computations is shown in
Figure3; it consists of 3580 4-node Enhanced As-
sumed Strain elements for the bulk material and
125 2-node interface elements. The left end of the
model is free while the right part presents two sim-

2



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

ple supports at the centroids of the load blocks with
an increasing vertical displacement prescribed to
the upper block, see e.g.Valoroso et al.(2013) for
a full detail.
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Figure 4: DCB specimen. Experimental VS computed
load-deflection curves.

Measured and computed load-deflection curves
are given in Figure4. Here on the x-axis is re-
ported the displacementδ [mm] of the upper con-
straint and on the y-axis the corresponding load
P[N]. The experimental load–deflection is plotted
in blue; the green and the red curves are two nu-
merical responses computed using different values
of GIc, which is the target parameter of the present
identification exercise.

3. KRIGING INTERPOLATION
Kriging interpolation performs a weighted average
of the known values of a function in the neighbor-
hood of the point of interest; it is a form of Bayesian
inference of observed, or measured, data since av-
erage weights are obtained from a Gaussian regres-
sion of data. The function of interest is modeled
as a Gaussian process which is defined by aprior
normal distribution; then, a set of values associated
with a spatial location is observed and the covari-
ance of these evidences is computed. This defines,
for each of the observations, a Gaussian likelihood
function which is combined with the prior one in
order to get an updated,posterior Gaussian pro-
cess. The recondite action of the weighted average,
concealed in the definition of the weights, consists

in computing the expected value of the posterior
Gaussian process at the point of interest.

Let r = [r1 . . . rn]
T a vector containing then ob-

served values of the function of interestR(x), x =
[x1 . . .xn]

T the vector containing their spatial loca-
tion andx̂ the point of interest in the domain of the
functionR(x). The weighted average consists in the
following:

R(x̂)≃ r̂ = wTr (1)

wherew is the weight vector and ˆr the estimated
value ofR.

3.1. Computation of the average weights
Average weights are obtained via Bayesian updat-
ing of the prior Gaussian process by inference of
the cross-correlation of the observed data. From an
operational point of view, it is more convenient to
employ a function derived by the cross-correlation
named thevariogram, which is defined as the vari-
ance of the difference between process values at
two locations (xi and x j ) across realizations of a
stochastic process or a random field:

γi j = γ
(
∣

∣xi −x j
∣

∣

)

= Var
[

R
(

x j
)

−R(xi)
]

(2)

the computation of the variogram at then observed
points defines then+1×n+1 matrixSd as:

Sd =











γ11 · · · γ1n 1
...

...
...

...
γn1 · · · γnn 1
1 · · · 1 0











(3)

while the variogram at the point of interest ˆx defines
then+1 vectors0 as:

s0 =
[

γ (|x̂−x1|) · · · γ (|x̂−xn|) 1
]T

(4)

Average weights are obtained by the combination
of Sd ands0:

[

w
λ

]

= S−1
d s0 (5)

wherew is the weight vector to be used in Eq. (1)
andλ is an error parameter. Finally, the estimation
of R(x̂) and its confidence interval amplitudeτ are:

R(x̂)≃ r̂ = wTr

τ =
√

wTs0+λ
n

(6)
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wheren is the number of observations andr is the
vector containing the observed values.

The computation of Eq. (3) and Eq. (4) requires
a proper definition of the variogram function. As
long as the theoretical variogram can be computed,
the described procedure is quite straightforward;
nonetheless, it is frequent that the observed func-
tion is not available in mathematical form. In
such circumstances approximated or empirical var-
iograms can be used, see e.g.Cressie(1993). In
the present work the Gaussian variogram has been
used; it is defined as:

γ
(

xi ,x j
)

=











0; xi = x j

c0+(cs−c0)

(

1−e−
3|xi−xj |

a2

)

; xi 6= x j

(7)
wherec0 is the nugget parameter, i.e. the jump
of the variogram function atxi − x j = 0; cs is the
sill parameter, i.e. the limit of the variogram for
∣

∣xi −x j
∣

∣→ ∞ anda is the range parameter, i.e. the
value of

∣

∣xi −x j
∣

∣ where the difference between the
variogram and its sill becomes negligible. Here-
after, the nugget parameter will be setc0 = 0 since
the FEM responses are not affected by any local
randomness.

4. MODEL CALIBRATION ALGORITHM
The kriging interpolation procedure summarized
in the previous section requires a set of observed
data in order to completely define its mathemati-
cal model. While in traditional applications exper-
imental evidences are used, in this work the ob-
served data are defined as the responses of finite el-
ement analysis. This section presents an algorithm
which aims to calibrate a kriging model for the esti-
mation of the surrogate response of a finite element
DCB test simulation.

Let thenRFE (x) be a response of interest com-
puted via a finite element analysis. Such a response
depends on a generic parameterx with xl and xu

as lower and upper bound respectively. Please note
that the procedure described in this section is gen-
eralized and it can be used to describe any of the
responses which are usually computed by finite el-
ement analysis (such as displacements, stresses, in-
ternal forces etc). Analogously, the parameterx can

be any of the input variables of the FEM model. It
is worth to emphasize that, for simplicity purposes,
the presented formulation considers a single, scalar
parameter only; though, an extension to multiple–
parameters cases can be easily implemented but it
goes beyond the aims of this work.

In order to define the set of observed data, the al-
gorithm randomly generates occurrences of the pa-
rameterx following a Cumulative Probability Func-
tion (CDF). At the stage of the initialization of the
procedure, the uniform CDFF0

X (x) = x−xl/xu−xl

is considered so that a set ofm occurrences of
the parameter is generated and, for each one of
them, the finite element analysis computes the cor-
responding observed valueRFE:

rFE
i = RFE (xi) ; i = 1· · ·m (8)

Such a set of observationsrFE
i and its location in

the parameter spacexi are capable to define a sur-
rogate response by kriging interpolation as long as
a variogram is defined. For this purpose, the Gaus-
sian variogram of Eq. (7) is considered; however,
its parametersc0, cs anda need to be conveniently
calibrated taking into account the observationsrFE

i .
This can be easily done by a minimization symplex
algorithm applied to the optimization problem:

[

ĉ0 ĉs â
]

=

= arg min

[

c0,cs,a

∣

∣

∣

∣

∣

m

∑
i=1

(

rFE
i −w(c0,cs,a)rFE

j 6=i

)2
]

(9)
whererFE

i is theith observation andw(c0,cs,a)rFE
j 6=i

is the kriging estimate ofrFE
i provided by the re-

maining observations. In this sense, the minimizing
argument is the mean square of the residual com-
puted at each one of the observation points.

Once that the variogram is calibrated, a first–
tentative surrogate model is easily defined by com-
putingS0

d, s0
0 andw0 by Eq. (3), Eq. (4) and Eq. (5)

respectively, while the surrogate response at the
point x̂ comes from Eq. (6).

The accuracy of the surrogate model depends on
the number of observationsmand on their distribu-
tion in the parameter domain: a larger value ofm
would provide better results, however, the random
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generation above does not consider any informa-
tion about the features of the actual response. It is
convenient to perform the generation of the random
locationsxi by the following recursive procedure:
after the firstm generations, Eq. (6) provides, for
any point of the domain ofx, the surrogate response
and its confidence intervalτ (x) which is obviously
larger where the surrogate response is less accurate.
The functionτ (x) can be used as the probability
density function of the random generation, if conve-
niently normalized. Specifically, an updated CDF
can be defined as:

F1
X (x) =

∫ x
xl

τ0(ξ ) dξ
∫ xu

xl
τ0(ξ ) dξ

(10)

so that the random generation will provide out-
comes with higher probability where the surrogate
model lacks of precision. Note that the denomina-
tor of Eq. (10) is a measure of the accuracy of the
whole surrogate model since it is its cumulative er-
ror. This allows one to iterate such procedure with
subsequent generations ofm observation points as
long as the overall error is greater than a tolerance
value.

The iterative procedure for generating the sur-
rogate model can be summarized in the following
steps:

1. generationmnew values ofxi with CDFFk−1
X ;

2. computation ofrFE
i by Finite Element analy-

sis;
3. calibration of the variogramγk and identifica-

tion of the parameterŝck
0 ĉk

s âk through the
optimization problem:

[

ĉk
0 ĉk

s âk
]

= arg min[c0,cs,a|
∣

∣

∣

∣

∣

(k+1)m

∑
i=1

(

rFE
i −w(c0,cs,a)rFE

j 6=i

)2
]

(11)

4. computation ofSk
d, sk

0 and wk by Eq. (3),
Eq. (4) and Eq. (5);

5. evaluation of the overall errorεk =
∫ xu

xl
τ0(ξ ) dξ and convergence check;

6. updating of the CDF:

Fk
X (x) =

∫ x
xl

τk (ξ ) dξ
∫ xu

xl
τk (ξ ) dξ

(12)

while convergence is not reached, then the proce-
dure is iterated updatingk= k+1 and returning to
step1.

4.1. Numerical Application
In order to provide a clearer idea about the proposed
algorithm, a numerical application is presented in
this section. It concerns the finite element simu-
lation of a DCB test whose specifications are pro-
vided in Section2, with maximum displacement
of the upper load blockδ = 2.4mm. The critical
fracture energy release rateGIc has been used as
varying parameterx while the total energy release
(i.e. the integral of the constraint reaction among
the whole test) is the response of interest.

Considering the experimental results presented
in Valoroso et al. (2013), the upper and lower
bounds ofGIc have been set to 75 and 750J/m2.
Finally, the number of generated random observa-
tions at each iteration of the algorithm has been set
atm= 8. This is in order to take advantage of paral-
lel computing: the algorithm has been implemented
so that several FEM analysis run separately on dif-
ferent cores and a commitment of eight cores is the
optimal choice for the employed hardware.
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Figure 5: Surrogate response (solid line) and observa-
tions (diamonds) at the 1st iteration.

Figure5 shows the surrogate response at the first
iterations with the parameterGIc reported on the
x–axis and the surrogate responseR(GIc) on the y–
axis. The blue diamonds represent the responses
computed by the FEM algorithm at each one of the
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Figure 6: Normalized amplitude of the confidence in-
terval after the 1st iteration (solid curve) and random
values of the parameter generated at the 2nd iteration
(blue dashed lines).

first eight randomly generated values of the param-
eter. The surrogate response has been subsequently
computed by the kriging procedure described above
and it is plotted as the red solid line. The corre-
sponging amplitude of the confidence intervalτ is
plotted as a black line in Figure6 where the blue
vertical lines correspond to the eight values of the
parameter generated at iteration 2. It is worth to
emphasize how the new random observations clus-
ter where the error results higher. After five iter-
ations (40 FEM analysis) the algorithm provides a
sufficiently accurate surrogate model shown in Fig-
ure7.
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Figure 7: Surrogate response (solid line) and observa-
tions (diamonds) at the 5th iteration.

Once that the observation set corresponding to
the total energy release is defined, the calibration
of a kriging model can be performed for any other
output of the FEM analysis.

The peculiar surrogate model has been also com-
puted for the load–displacement response of the
considered DCB specimen; specifically, each time–
step of the DCB test simulation can be treated as
a single, scalar response so that a kriging surrogate
model can be defined. The whole set of surrogate
models corresponding to each one of the responses–
in–time leads to the definition of a complete load–
displacement curve surrogate.

Figure 8 shows a comparison between the out-
put of the FEM analysis (black curves) and the cor-
responding surrogate response (colored diamonds)
for three values of the parameterGIc. A good fit of
the surrogate model can easily be appreciated since
the corresponding plots are not distinguishable; the
maximum error of the surrogate model, for this spe-
cific case, results about 0.1%.
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Figure 8: Comparison between surrogate responses
(colored curves) and FEM analysis (black curves).

5. DISCUSSION AND CONCLUSIONS
A surrogate model of finite element simulations
based on a kriging interpolation procedure is pre-
sented in this work. kriging interpolates observed
data of a function of interest in order to predict the
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function’s value at an assigned point in the param-
eter domain. The presented procedure uses as ob-
servations the outcomes of finite element analysis
performed at randomly generated values of the pa-
rameter. The peculiar capability of kriging inter-
polation to provide a confidence interval leads to
an efficient random generation of the observations
so that the generated points cluster where the surro-
gate model lacks of precision. The numerical appli-
cation shown in Section4.1 shows the consistency
of the presented algorithm: the maximum error of
the surrogate model results about 0.1% of the cor-
responding finite element response.

The presented algorithm is not strictly limited to
applications similar to the one shown in Section4.1.
Since the procedure processes numerical responses,
it is possible to perform it for any kind of numer-
ical analysis or structural models. Even the lim-
itation about the parameter domain can be easily
overtaken: from a mathematical point of view, a
convenient definition of the CDFs could generate
unbounded random values of the parameter. Up-
per and lower bounds introduced in Section4 are
aimed at obtaining an easy implementation of the
algorithm.

An interesting consideration concerns the com-
putational times: the calibration of the kriging
model required about 40 finite element analysis,
thus, the pre–processing stage turns out quite com-
putationally demanding. Although, once that the
kriging model is calibrated, the presented numeri-
cal application requires about 120 sec. for a com-
plete finite element analysis while the surrogate
model runs in about 2 seconds. This enormous
advantage makes such method appealing whenever
several analysis are required, as in case of inverse
analysis in experimental test campaigns. In general,
it results convenient as long as redundant analysis
are required.

The algorithm high speed is due to the fact that,
once the kriging model is calibrated, the surro-
gate response prediction consists in linear opera-
tions with matrices and vectors. This aspect con-
cerns a straightforward improvement of the pro-
cedure which has been omitted for lack of space.
Specifically, the algorithm can be extended with a

Direct Differentiation routine in order to get the sur-
rogate response derivatives. This is a further ap-
pealing benefit since several application cases re-
quire finite differences for the computation of their
derivatives as in the case of the parameter identifi-
cation presented inValoroso et al.(2013) and con-
cerning the same structural model employed in this
work. The availability of a surrogate model provid-
ing the response derivative would permit the em-
ployment of gradient algorithm which are faster and
more reliable than gradient–free algorithms. An
exhaustive focus on direct differentiation would be
beyond the purposes of this work but are one of the
future research direction.

Further improvements concern the case of multi-
ple parameters analysis. The procedure can be eas-
ily extended in order to be performed in a multi–
dimensional parameter space; nevertheless, in this
case the peculiar relationship between the parame-
ters strongly influences the definition of the auto-
correlation functions, thus, specific investigations
are required. This further extension will also be a
topic of the upcoming research.
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