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Abstract

Major currently used anticancer therapeutics either directly damage DNA or target and upset basic cell division
mechanisms like DNA replication and chromosome segregation. These insults elicit activation of cell cycle checkpoints,
safeguard mechanisms that cells implement to correctly complete cell cycle phases, repair damage or eventually
commit suicide in case damage is unrepairable. Although cancer cells appear to be advantageously defective in some
aspects of checkpoint physiology, recent acquisitions on the biochemical mechanisms of the various checkpoints are
offering new therapeutic approaches against cancer. Indeed, chemical manipulation of these mechanisms is providing
new therapeutic strategies and tools to increase the killing efficacy of major cancer therapeutics as well as to directly
promote cancer cell death. In this review we summarize developing concepts on how targeting cell cycle checkpoints
may provide substantial improvement to cancer therapy.
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Background
The mechanisms of cell division and the genome itself
are routinely endangered by endogenous and exogenous
insults. For instance reactive oxygen species, produced
during metabolic reactions, inflammation or exciting
and ionizing radiations, can damage chromosomes and
upset chromosome replication and segregation [1, 2]. To
avoid transmission of altered genome to daughter cells,
elaborate checkpoint pathways have evolved to arrest
cell cycle progression and promote repair or, in case of
unrepairable damage, stimulate cell death. Cancer cells
are often defective in these checkpoint mechanisms [3].
Such defects very likely contribute to neoplastic trans-
formation and progression by coupling genetic instability
with resistance to apoptotic cell death. Nevertheless, the
actual information on checkpoint biochemistry and its
deregulation in cancer, along with the development of
relative pharmacologic tools, is now offering new

opportunities for cancer treatment. Here we will review
how recent efforts to identify new strategies and drugs
targeting cell cycle checkpoints will likely translate soon
into benefit to clinical practice in oncology. As outlined
in Table 1, we will focus our attention on drugs targeting
key players of the S and G2/M checkpoints activated in
response to DNA damage and on drugs targeting the
mitotic spindle assembly checkpoint (SAC). For more
details on other regulators of the DNA damage response,
including microRNAs and long-non coding RNAs, and
on their small molecule inhibitors the readers may refer
to other publications [4–8].

G1-S, S and G2/M checkpoints
The overall cellular response to damaged DNA, known
as DNA damage response (DDR), is composed of sensor
proteins that detect and signal DNA damage to down-
stream effectors that, in turn, arrest cell cycle progression
and promote repair. In response to DNA damage, cell
cycle checkpoints can be activated in G1 phase, in S phase
and at the G2/M transition [9, 10]. In particular, the
Ataxia Telangiectasia Mutated (ATM) kinase is activated
by DNA double strand breaks (DSBs) and triggers the G1
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checkpoint by phosphorylating and activating the Check-
point Kinase 2 (Chk2) [11]. Chk2 inhibits Cdc25A, a
phosphatase that removes inhibitory phosphorylation of
the cyclin A/Cyclin-dependent kinase (Cdk)2 and cyclin
E/Cdk2 complexes, preventing cells from proceeding into
S phase [12]. Of note, the G1 checkpoint is critically
dependent on p53. In addition, ATM induces phosphoryl-
ation of p53, reducing its affinity for the negative regulator,
the ubiquitin ligase Mdm2, leading to p53 stabilization
[13–15]. Stabilized p53 induces p21, that binds and further
inhibits cyclin A/Cdk2 and cyclin E/Cdk2 complexes,
DNA repair proteins and, upon protracted checkpoint
activation, apoptotic cell death promoters [16–20].
When DNA damage occurs in S phase, arising from

stalled replication forks, nucleotide excision/repair process
or as intermediates of DSB resolution, the intra S phase
checkpoint is activated to prevent further replication
[21, 22]. The damage is sensed by the Ataxia Telangiecta-
sia and Rad3-related (ATR) kinase that, by activating
Checkpoint Kinase 1 (Chk1), induces Cdc25A proteoso-
mal degradation, blocking further progression through S
phase [23, 24]. ATR and Chk1 also trigger the G2/M
checkpoint, which prevents cells with damaged DNA from
entering mitosis. Mitosis onset requires activity of the
master mitotic kinase cyclin B-dependent kinase 1 (Cdk1)
[25]. Cdk1 catalytic activity is inhibited during the S and
G2 phases through the phosphorylation on T14 and Y15
induced by the kinases Wee1 and Myt1 [26, 27]. These
phosphorylations are removed at the G2/M transition by
the Cdc25C phosphatase [26]. To prevent cells with
damaged DNA from entering mitosis, ATR inhibits cyclin

B/Cdk1 activation by stimulating the Cdk1 inhibitory
kinase Wee1 and inhibiting Cdc25C via Chk1 [28, 29].
In response to DNA damage ATM and ATR not only

stop cell cycle progression but also initiate DNA repair
by phosphorylating several other substrates. If damage
cannot be repaired, the cell destiny might be death or
permanent growth arrest (senescence) [30, 31]. When
cells with irreparable DNA damage are forced to enter
into mitosis, they undergo permanent growth arrest or
cell death through a so-called mitotic catastrophe mech-
anism. Although the mitotic catastrophe mechanistic de-
tails are still unclear, it has been recently proposed as an
oncosuppressive mechanism, initiated during the M phase
and requiring a prolonged mitotic arrest. Mitotic catas-
trophe results either in cells dying in mitosis or in cells
reaching the subsequent G1 phase of the cell cycle and
then dying or undergoing senescence. It is unclear
whether mitotic catastrophe kills the cells by apoptosis,
necrosis or autophagy; however, likely it is the result of
simultaneous activation or sequential triggering of dif-
ferent cell death-inducing pathways [32]. These obser-
vations suggest that forced entry of DNA-damaged cells
into mitosis may provide a substantial increase in
therapeutic efficacy.
Damaging DNA with either chemo- or radiotherapy is

the most frequently used strategy for treating human
cancer; however, collateral DNA damage to normal cells,
particularly in highly proliferative tissues, often limits
clinical efficacy. Recently, starting from the observation
that cancer cells that have defective checkpoints, often
because of p53 pathway mutations, can still stop the cell
cycle and avoid DNA damage-induced cell death by rely-
ing on the other checkpoint branches [33], a novel anti-
cancer therapeutic strategy has begun to develop. This is
based on combining DNA damaging drugs with drugs
targeting the Chk1/2 pathways to force cancer cells to
bypass the S and G2/M arrest and enter mitosis with
DNA damage, leading to mitotic catastrophe [32, 34].
Many specific Chk1 inhibitors have been developed,

that showed promising results in preclinical studies.
UCN-01 and its analog ICP-1 have mostly shown efficacy
in combination with drugs inducing replication stress such
as the DNA cross-linker cisplatinum and the topoisomer-
ase I targeting drugs, suggesting that the intra-S-phase
checkpoint bypass is indeed a key step to chemotherapy
sensitization [35, 36]. Phase I trials with the Chk1 inhibi-
tor UCN-01 in combination with cisplatinum provided
important proof of principle that a Chk1 inhibitor pre-
vented cell cycle arrest caused by cisplatinum-induced
DNA damage [37, 38]. Indeed, in cisplatinum-treated pa-
tients, UCN-01 infusion caused a drastic reduction of
geminin, a biomarker of DNA damage-induced cell cycle
arrest, as detected by immunohistochemistry in tumor bi-
opsies [38]. However, phase II clinical trials with UCN-01

Table 1 Cell cycle checkpoint targeting drugs

Target Drug References

S and G2/M checkpoint targeting drugs

Chk1/2 UCN-01 [35, 37–40]

ICP-1 [36]

PF00477736 [41, 42]

XL9844 [43]

PD321852 [44]

CEP3891 [45]

AZD7762 [46]

LY2603618 [47]

Gö6976 [48]

SCH900776 (MK-8776) [49, 50, 53]

CCT244747 [51]

ATR NU6027 [54]

Wee1 MK-1775 [55–65]

Spindle assembly checkpoint targeting drugs

Microtubular β-tubulin Taxanes, Vinca alkaloids [68, 77]

Wee1 MK-1775 [92]

Visconti et al. Journal of Experimental & Clinical Cancer Research  (2016) 35:153 Page 2 of 8



have been discontinued, mostly because of low target spe-
cificity and unfavorable pharmacokinetics [39, 40]. Many
other Chk1 inhibitors have been developed and tested
proving efficacy alone and in combination with other gen-
otoxic drugs in preclinical settings [41–45]; however, the
few tested in Phase I and Phase II trials have shown severe
side effects and none or limited efficacy [46, 47]. Thus,
many second-generation Chk1 inhibitors have recently
been developed [48–51]. Preclinical studies have shown
that second-generation Chk1 inhibitors are effective if
used in combination with DNA-damaging drugs [48, 49].
Moreover, they are greatly effective at sensitizing cells to
antimetabolites such as cytarabine or the pyrimidine an-
tagonist gemcitabine [49, 50, 52]. These compounds, once
metabolized, are incorporated into DNA, causing strand
termination. Moreover, gemcitabine inhibits ribonucleotide
reductase, thus depleting dNTP pool and inhibiting DNA
synthesis. As Chk1 is required to stabilize the stalled repli-
cation forks, it is hypothesized that the second-generation
Chk1 inhibitors cause replication fork collapse and DNA
double strand breaks. Recently the phase I clinical trial re-
sults of the second generation Chk1 inhibitor SCH900776
in association with antimetabolite drugs have been re-
ported showing promising, preliminary evidence of clinical
activity in small groups of patients [50, 53]. SCH900776 is
currently undergoing testing in a phase II trial in associ-
ation with cytarabine in adult leukemia patients.
To target the S and G2/M checkpoint, a potent, selective

ATR inhibitor, NU6027, has been developed and preclin-
ical studies in breast and ovarian carcinoma cell lines show
promising results. NU6027, in fact, was not cytotoxic as
single agent; however, the drug acted to sensitize tumor
cells to a variety of genotoxic insults, including ionizing ra-
diation, cisplatinum and doxorubicin, among others [54].
Wee1 is a crucial kinase that prevents the onset of mi-

tosis in cells that have incompletely replicated or have
damaged genomes. In case of DNA damage, ATR-activated
Wee1 arrests the cells at the G2/M checkpoint, allowing
time for repair [28]. A Wee1 small-molecule inhibitor,
MK-1775, a pyraxolo-pyrimidine derivative, is already
available for oral administration and several preclinical
studies have demonstrated its potency and selectivity for
Wee1 (with an IC50 of 5 nmol/L) [55]. MK-1775, by abro-
gating the G2/M checkpoint, allows cells with damaged
DNA to progress into mitosis, leading to mitotic catastro-
phe. Thus, most of the preclinical studies have tested MK-
1775 in combination with DNA damaging drugs. Indeed,
MK-1775 has been shown to synergize with a wide variety
of DNA damaging agents (such as radiation [56], the topo-
isomerase inhibitor doxorubicin [57], the anti-metabolite
5-fluorouracil [57], the DNA cross-linker cisplatinum [55]).
As expected, MK-1775 cytotoxicity was more pronounced
in p53 minus, G1 checkpoint-deficient cells that are strictly
dependent on the G2/M checkpoint to avoid mitotic entry

with DNA damage and, in turn, death [55–57]. Xenograft
studies in nude mice bearing cervical, ovarian, colorectal,
lung, glial and pancreatic cancers have demonstrated that
oral administration of MK-1775 in combination with
several DNA damaging agents induces tumor regression
[55, 56, 58, 59]. Phase I trials testing MK-1775 in combin-
ation with DNA damaging drugs have shown promising
results, as the toxicity was easily manageable. Currently
several phase II trials are underway [60].
Besides its key role in the G2/M checkpoint, Wee1

kinase controls proper timing of mitosis onset by perform-
ing inhibitory phosphorylation of Cdk1 [26]. Accordingly,
using sarcoma cell lines and patient-derived tumor ex-
plants, it has been demonstrated that MK-1775, by indu-
cing premature mitosis entry, has cytotoxic effects even
when utilized as single agent [61]. On the basis of the
Wee1 role in mitosis entry regulation, a novel therapeutic
regimen has been suggested by combining MK-1775 with
gemcitabine that, as discussed before, by targeting ribonu-
cleotide reductase, depletes dNTP pool, thus inhibiting
DNA synthesis. MK-1775 forced gemcitabine-arrested
cells into mitosis without completing S-phase thereby
resulting in extensive DNA damage, micronuclei forma-
tion and ultimately apoptotic death [62].
Of note, it has been demonstrated that Wee1 also regu-

lates initiation and progression of DNA replication forks,
preventing DNA double strand breaks during replication
[63]. Thus, it has been suggested that MK-1775 might kill
the cells by inducing DNA double stand breaks as a
consequence of deregulated DNA replication rather than
premature mitosis [64]. Accordingly, MK-1775 cytotox-
icity does not correlate with the mitotic indexes of several
cancer cell lines [64].
Irrespective of the controversial mechanism, a phase I

single agent study of MK-1775 in patients with advanced
solid tumors has been carried out to assess safety, toler-
ability and pharmacokinetics of the drug [65]. The only
reported dose-limiting toxicities were supraventricular
tachyarrhythmia and myelosuppression. Of twenty-five
enrolled patients, two carrying BRCA mutations (one with
head and neck cancer and one with ovarian cancer)
showed partial responses. The trial has also evaluated the
MK-1775 effects on pY15-Cdk1 (reduction in two of five
paired tumor tissue biopsies) and on DNA damage
markers (increase in γH2AX levels in three of five
tumor tissue paired biopsies). The results indicated that
MK-1775 induced stalled replication forks and DNA
double strand breaks.

The spindle assembly checkpoint
In mitosis, correct partitioning of replicated genome is
granted by a safeguard mechanism, called Spindle Assem-
bly Checkpoint (SAC), that prevents errors in chromo-
some segregation by delaying progression into anaphase
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until mitotic spindle assembly completion. SAC inhibits
the ubiquitin ligase anaphase-promoting complex/
cyclosome (APC/C) and delays degradation of cyclin B
and of the anaphase inhibitor securin until bipolar at-
tachment of all chromosome pairs [66]. SAC is imposed
by the recruitment to unattached or tensionless kineto-
chores (the proteinaceous centromeric structures that
interact with spindle microtubules) of the Mitotic Check-
point Complex (MCC). MCC is composed by the proteins
BubR1, Bub3 and Mad2 associated with the essential
APC/C coactivator Cdc20 [67]. SAC is activated by
taxanes (Paclitaxel, Docetaxel, etc.) and vinca alkaloids
(Vinblastine, Vincristine, etc.), which are among the
most widely used anticancer drugs. These drugs are re-
ferred to as anti-microtubule cancer drugs (AMCDs).
They bind β-tubulin and affect microtubule dynamics
and mitotic spindle assembly. The taxanes stabilize pre-
existing microtubules, while the vinca alkaloids prevent
microtubule polymerization [68]. Thus, in their presence,
malformed or incomplete spindles activate the SAC. Cells
held in mitosis by AMCDs-induced SAC undergo apop-
tosis after prolonged mitotic duration [69]. Although
Cdk1 phosphorylates and inhibits caspase 9 (thereby pro-
tecting against apoptosis during normal mitosis), caspase
9 ultimately becomes dephosphorylated upon prolonged
arrest in mitosis [70]. In addition, it has been demon-
strated that prolonged activity of cyclin B/Cdk1 causes
degradation of the antiapoptotic protein Mcl1, leading to
caspase-dependent cell death of AMCDs-treated cells
[71]. Moreover, Cdk1 has a role in the inhibition of the
anti-apoptotic proteins Bcl-XL and Bcl-2 [72, 73]. Thus,
the SAC arrest-dependent apoptosis induced by AMCDs
provides a mechanistic rationale for the therapeutic use of
these drugs. However, cancer cells can also slip through
mitosis, despite malformed spindles, by adapting to the
SAC. Slippage occurs because, despite an active SAC,
cyclin B is slowly degraded to levels below that needed
to sustain Cdk1 activity and the mitotic state [74]. A re-
cently developed model suggests that proapoptotic sig-
nals accumulate during AMCDs-induced prolonged
mitosis; however, cells can survive the treatment if they
slip through mitosis before a certain proapoptotic sig-
nal threshold has been reached [75]. Conversely, if the
threshold is reached before slippage, cells die [75, 76].
Most of the cells that slip through mitosis either stop
dividing in a tetraploid G1 state, become senescent, or
die at later stages [76]. Nevertheless, a small fraction of
slipped cancer cells, especially if p53-negative, may con-
tinue dividing, thus, resisting the treatment and generating
further aneuploidy via aberrant mitosis [75, 76]. By gener-
ating higher genomic instability rates, this process predis-
poses, in principle, cells to the acquisition of a more
malignant phenotype (development of metastatic capabil-
ity, drug resistance, etc.). Thus, mitotic slippage is believed

a crucial mechanism for the development of resistance to
AMCDs, in addition to the first described enhanced activ-
ity of MDR efflux pumps [69, 75–77]. AMCDs clinical
benefits are curtailed not only by resistance but also by
significant, dose-limiting, collateral damage [68, 78]. The
most relevant side effects are neutropenia, consequence of
toxicity on hematopoietic precursor cells, and peripheral
neuropathy, due to the critical role of microtubules in
neuronal axoplasmic transport [68]. To circumvent side
effects, in particular peripheral neuropathy, new strategies
to arrest mitotic progression without directly affecting
microtubule physiology have been implemented. Indeed, a
new class of drugs targeting kinesin motor proteins, that
are crucially required for bipolar spindle assembly, are
currently under clinical trials. It is noteworthy, however,
that to date the clinical trials for this novel mitosis-
targeting drugs have not confirmed the promising ef-
fects seen in preclinical models as single agents [79–83].
As an additional strategy to target mitosis, a large number
of molecules has been developed and evaluated to inhibit
Plk1, Aurora A and Aurora B kinases as their inactivation
results in gross aneuploidy, by lack of chromosome segre-
gation, and eventual cell death [84–86]. Nevertheless, ini-
tial clinical trials with Plk and Aurora inhibitors have not
confirmed the promising preclinical data [87]. Therefore,
the actual improvement in cancer cell killing efficiency of
several, new mitosis-targeting compounds still wait to be
established [79, 87]. Thus, novel therapeutic regimens,
perhaps combining AMCDs with other drugs that prevent
mitotic slippage, are needed to improve cancer cell killing
efficiency helping to limit resistance occurrence and re-
duce side effects.

A novel combined therapy targeting SAC-induced arrest
in mitosis
Besides side effects and resistance, AMCDs are still
among the most successful anti-tumor drugs, validating
mitotic spindle as an excellent target for cancer chemo-
therapy. Thus, much effort has been directed to developing
novel inroads that target spindle assembly and dynamics to
improve AMCDs efficacy. A novel mitosis-targeting
therapeutic approach is here proposed, based on our
recent findings on mechanisms regulating mitosis exit
and the SAC. We recently unveiled a novel, transcription-
independent, crucial role for the essential RNA polymer-
ase II-carboxy-terminal domain phosphatase Fcp1 in bring
about Cdk1 inactivation at the end of mitosis [88–90]. We
identified cyclin B degradation pathway components,
like Cdc20 and the deubiquitinating enzyme USP44,
and the Cdk1 inhibitory kinase Wee1 as crucial Fcp1
targets. At mitosis exit, Fcp1 promoted inhibitory Cdk1
phosphorylation by dephosphorylating Wee1, and ubiquitin-
dependent cyclin B degradation by dephosphorylating
Cdc20 and USP44. This lead us to hypothesize that,
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during prolonged mitosis in AMCDs-treated cancer cells,
progressive Fcp1-induced Wee1 reactivation might lead to
progressive loss of Cdk1 activity that weakens the SAC to
a point in which the mitotic state could not be sustained
[91]. This will translate into mitotic slippage, survival and
AMCDs-resistance. Indeed, we validated this hypothesis
by demonstrating that, in AMCDs-treated cells, SAC
slippage depends on Fcp1-Wee1-Cdk1 (FWC). In Pacli-
taxel- or Vincristine-treated cells, in fact, progressive
Fcp1-dependent Wee1 dephosphorylation lead to Cdk1
inactivation, SAC slippage and mitotic exit [92]. Re-
markably, siRNA down modulation of Fcp1 or Wee1
significantly delayed slippage and mitotic exit in AMCDs-
treated cells. Moreover, the anti-apoptotic Mcl1 protein
levels were reduced to a minimum and apoptotic cell
death was substantially augmented. Thus, inhibiting the
FWC axis can sustain the SAC-dependent mitotic delay
induced by AMCDs, substantially delaying slippage and
increasing AMCDs therapeutic efficacy. Wee1 is inhibita-
ble by orally available drugs such as MK-1775; therefore
our data present a rational framework for testing the
therapeutic efficiency of AMCDs in combination with
Wee1 inhibitors. Indeed, we have shown that MK-1775
treatment greatly enhanced mitotic arrest, Mcl1 deg-
radation and caspase-dependent apoptosis in several
Paclitaxel-treated cell lines as well as in Vincristine-

treated primary lymphoblastic leukemia cells [92]. More-
over, we predict that the combination MK-1775 plus
AMCDs may allow substantial reduction of AMCDs dos-
age. This approach may also reduce collateral damage in
patients without loosing overall AMCDs therapeutic effi-
cacy. Therefore, the observation that the FWC axis plays a
critical role in SAC slippage and mitotic exit in AMCDs-
treated cancer cells provides a strong rationale for the use
of MK-1775 in combination with AMCDs.

Conclusions
DNA- and mitotic spindle-damaging drugs still remain
mainstream in cancer therapy. However, it has become
progressively clear that cancer cells have defective cell
cycle checkpoints. These defects, which very likely con-
tribute to neoplastic transformation and progression by
increasing genetic instability, can be exploited to envision
strategies that will increase our armoury against cancer.
As recapitulated in Fig. 1 and extensively discussed in

the review, Chk1/2, ATR or Wee1 inhibitors can sensitize
cancer cells to DNA damaging drugs forcing the cells with
DNA damage to bypass the S and G2/M arrest and enter
mitosis, leading to cell death by mitotic catastrophe.
Strong preclinical evidences for the use of checkpoint tar-
geting drugs alone or in combination with standard radio
and/or chemotherapy have been accumulating during the

Fig. 1 Targeting the cell cycle checkpoints in cancer. a Chk1/2 or ATR inhibitors in combination with DNA damaging drugs forces cancer cells
with DNA damage to bypass the S and G2/M checkpoint arrest and enter mitosis, leading to cell death. b Wee1 inhibitors in combination with
DNA damaging drugs forces cancer cells with DNA damage to bypass the G2/M checkpoint arrest and progress into mitosis, leading to cell death.
c Wee1 inhibitors sustain the SAC-dependent mitotic delay induced by AMCDs, substantially increasing AMCDs therapeutic efficacy
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recent years. It has to be noticed, however, that many
Phase I trials have been terminated for toxicity and/or low
target specificity, or merely for business reasons. Few
Phase I trials, though, do have helped in selecting the
drugs well tolerated and with some preliminary clinical ef-
ficacy. Thus, now we eagerly wait for the results of the on-
going Phase II trials.
As an alternative approach to the challenging testing

of new drugs alone or in combination with standard
therapy, we have here proposed the combinatory use of
two already clinically usable drugs, the Wee1 inhibitor
MK-1775 and AMCDs, on the basis of the novel role we
unveiled for Wee1 in regulating mitosis exit. Our pre-
clinical studies have demonstrated that MK-1775 limits
AMCDs resistance; moreover, we predict that MK-1775
will allow substantial dosage reduction of AMCDs, de-
creasing their side effects. By suggesting that Wee1 in-
hibitors could be beneficial in combination with AMCDs,
our data may further expand our options for cancer
treatment. In particular, we hypothesize that the associ-
ation of Wee1 inhibitors with AMCDs could be poten-
tially beneficial in several cases, in which AMCDs are
used as monotherapeutic agents as, for instance, in sec-
ond line therapeutic regimens for several hematological
and solid tumors.
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