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1 Introduction

The AdS/CFT correspondence conjectures a mathematical equivalence between string the-

ories and gauge theories. Generically, when the field theory is strongly coupled, the string

theory description is weakly coupled and reduces to supergravity. Naturally, most of the

explorations have been centered in understanding strong coupling gauge theory phenomena

using a weakly coupled gravity description enhanced with classical strings and branes in

the corresponding supergravity backgrounds. Going beyond the supergravity limit, that is,
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solving the full string theory in curved spacetimes, such as AdS5×S5 or AdS4×CP 3, with

Ramond-Ramond fluxes presents a formidable challenge. Given these technical difficulties,

it would be particularly illuminating to use the AdS/CFT duality to understand quantum

aspects of string perturbation theory in these situations.

The field theory side of the correspondence has recently provided a plethora of exact

results by means of supersymmetric localization. For example, in N = 4 Supersymmetric

Yang-Mills (SYM) and in a N = 6 Cherns-Simons theory known as ABJM [1], which are

the field theory duals of string theories on AdS5 ×S5 and AdS4 ×CP 3, respectively, exact

expressions for the vacuum expectation value of some supersymmetric Wilson loops have

been obtained [2, 3]. These exact results provide fertile ground to explore the holographic

side beyond the leading semi-classical approximation and, in particular, generate guidance

as how to enhance string perturbation theory by pointing to crucial missing elements in

the standard semi-classical quantization approach.

Indeed, there has been a concerted effort toward matching the holographic one-loop

corrections with subleading terms in the field theory side [4–8]. More recently, in an

attempt to tame some of the intrinsic ambiguities on the holographic side, the ratio of 1/4

and 1/2 BPS Wilson loops has been compared to the field theory ratio [9, 10] yielding some

improvement in the comparison and pointing to interesting aspects of string perturbation

theory. One of our main motivations is to continue to construct ever more stringgent tests

that will clarify the nature and aspects of the corrections.

There is also an ongoing program of extending one-loop corrections to holographic

configurations dual to Wilson loops in higher rank representations of the SU(N) gauge

group in N = 4 SYM [11–14].

In this manuscript we take a step towards the understanding, beyond the leading order,

of holographic configurations that are expected to correspond to supersymmetric Wilson

loops in higher rank representations [15] in the ABJM theory. Namely, we construct the

spectra of quantum fluctuations of a D6 and a D2 brane discussed in [15]. We present a

complete analysis including the bosonic and fermionic excitations, thus completing some

preliminary attempts undertaken in the literature. We find that the systems present some

peculiar couplings not seen before in similar situations.

The rest of the paper is organized as follows. In section 2 we review the supergravity

background and reproduce the leading, classical value of the corresponding D-brane actions.

In section 3 we study the fluctuations of the D6 brane in both its bosonic and fermionic

sectors and summarize the spectrum of dual operators. The analysis of the D2 fluctuations

and the calculation of the corresponding spectrum of dual operators is carried out in

section 4. In section 5, we relate our findings to the structure of supersymmetric multiplets

known from the literature, and we conclude in section 6. We treat a number of more

technical and additional aspects in a series of appendices. In particular, in appendix A we

review the metric representations of CPn needed in the main text. In appendix B we recall

some details of the representation of OSp(4|2). The harmonic analysis on the coset space

T̃ 1,1, which we need for the D6 fluctuations, is presented in appendix C.
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2 Background configurations

2.1 SUGRA background

We start by reviewing the AdS4 × CP 3 solution of type-IIA SUGRA, which is the dual of

the ABJM theory [1]. This solution was described more than three decades ago by Nilsson

and Pope [16] and we rely heavily on their presentation.

Our conventions will be as follows. We work with a Minkowski metric with (−+ . . .+)

signature. The AdS4 and CP 3 coordinates are denoted by the sets of indices 0, 1, 2, 3 and

4, . . . , 9, respectively. The corresponding flat indices are underlined. Moreover, we set

α′ = 1.

For our analysis, we shall use the string frame expressions for the background geometry

given in [15], but we find it more convenient to work with dimensionless fields. Given the

scope of the manuscript we start by considering the bosonic Dp-brane action, which, in

Minkowski signature, is given by

SB
Dp = −Tp

∫

dp+1ξ e−Φ
√

− det(gab + Fab) + Tp

∫

eF ∧
∑

q

Cq . (2.1)

with Fab = Bab + 2πFab, and Tp = (2π)−p is the Dp-brane tension. The metric gab,

the 2-form Bab and the RR fields Cq are intended as the pull-backs of the respective 10d

background fields.

The AdS4 × CP 3 solution is given by [15]

ds210 =
1

β

(

ds2AdS4 + dΣ2
3

)

, e2Φ0 =
4

βk2
, F4 =

3k

2β
ǫAdS4 , F2 =

k

2
J3 . (2.2)

Here, dΣ3 and J3 are the line element and the Kähler form of unit-2 CP 3, respectively,

see appendix A for the definitions. AdS4 is of unit radius. The relations to the dual field

theory parameters and to the parameters used in [15] are

β =
4k

R3
=

(

π
√
2λ

)−1
, λ =

N

k
. (2.3)

This suggests the following rescalings,

dŝ210 = βds210 , Φ̂ = Φ− Φ0 , F̂ = βF , Ĉp = eΦ0 β
p

2Cp . (2.4)

Thus, the action (2.1) becomes

SB
Dp = −T̂p

∫

dp+1ξ e−Φ̂
√

− det(ĝab + F̂ab) + T̂p

∫

eF̂ ∧
∑

q

Ĉq , (2.5)

where the Dp-brane tension T̂p is now

T̂p = Tp e
−Φ0 β− p+1

2 . (2.6)

In particular,

T̂2 =
N

4π
√
2λ

=
1

4
βN , T̂6 =

N
√
2λ

(4π)3
=

N

(4π)3πβ
. (2.7)
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The same rescaling procedure can be applied on the fermion action. Henceforth, we shall

omit the hats for simplicity.

Applying (2.4) to (2.2), we find the dimensionless expressions

ds210 = ds2AdS4 + dΣ2
3 , Φ = 0 , F4 = 3ǫAdS4 , F2 = J3 . (2.8)

The dual field strengths are given by1

F6 = ∗F4 = −3ǫCP 3 , F8 = ∗F2 = −1

2
ǫAdS4 ∧ F2 ∧ F2 , (2.10)

where ǫCP 3 denotes the volume form of the unit-2 CP 3.

To conclude this review, we recall from [15] the explicit expressions for the metric

which we will use in this manuscript2

ds2AdS4 = cosh2 u ds2AdS2 + du2 + sinh2 u dφ2 ,

dΣ3 = dα2 + cos2
α

2
(dϑ2

1 + sin2 ϑ1 dϕ
2
1) + sin2

α

2
(dϑ2

2 + sin2 ϑ2 dϕ
2
2) (2.11)

+ sin2
α

2
cos2

α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)

2 ,

and the C-forms

C1 =
1

2
(cosα− 1)dχ+ cos2

α

2
cosϑ1dϕ1 + sin2

α

2
cosϑ2dϕ2 ,

C3 =
(

cosh3 u− 1
)

ǫAdS2 ∧ dφ ,

C5 =
1

8
(sin2 α cosα+ 2 cosα− 2) sinϑ1 sinϑ2 dϑ1 ∧ dϕ1 ∧ dϑ2 ∧ dϕ2 ∧ dχ ,

C7 = −1

6

(

cosh3 u− 1
)

ǫAdS2 ∧ dφ ∧ F2 ∧ F2 . (2.12)

Our conventions for the volume forms are

ǫ(10) = ǫAdS4 ∧ ǫ4CP 3 ,

ǫAdS4 = cosh2 u sinhu ǫAdS2 ∧ du ∧ dφ , (2.13)

ǫCP 3 =
1

8
sin3 α sinϑ1 sinϑ2 dα ∧ dϑ1 ∧ dϕ1 ∧ dϑ2 ∧ dϕ2 ∧ dχ .

It is known that there are two inequivalent AdS4 × CP 3 solutions of IIA SUGRA,

one N = 6 supersymmetric, the other one without supersymmetries [16]. We are, of

course, interested in the N = 6 solution. The difference between the two solutions lies in a

relative sign of F2 and F4, and one is well advised, in view of diverse conventions, to check

the supersymmetry of the above configuration. For doing so, we use the supersymmetry

1In our conventions, the Kähler form is

J3 = −
(

e
4
∧ e

9 + e
5
∧ e

6 + e
7
∧ e

8)
. (2.9)

2For CP 3, this is the m = n = 1 foliation (A.10). The CP 3 coordinates take values α, ϑ1,2 ∈ (0, π),

ϕ1,2 ∈ (0, 2π), χ ∈ (0, 4π).
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transformations given in [17], because we will rely on that paper for the construction of

the fermion action. The supersymmetry transformation of the gravitino and dilatino are

δǫψm = Dmǫ , δǫλ = ∆ǫ , (2.14)

where (dropping terms that vanish in our case)

Dm = ∇m − 1

8

(

1

2
FnpΓ

npΓ(10) +
1

4!
FnpqrΓ

npqr

)

Γm , (2.15)

∆ =
1

8

(

3

2
FnpΓ

npΓ(10) −
1

4!
FnpqrΓ

npqr

)

. (2.16)

The 10d chirality matrix is defined by Γ(10) = Γ0···9. To check whether (2.8) is supersym-

metric, one first considers the dilatino variation in (2.14). Defining

Q =
1

2
FmnΓ

mnΓ456789 = Γ5678 + Γ4569 + Γ4789 , (2.17)

and using (2.8), (2.16) can be written as

∆ =
3

8
Γ0123(Q− 1) . (2.18)

Moreover, it follows from (2.17) that Q satisfies

(Q+ 3)(Q− 1) = 0 , (2.19)

and has the eigenvalues (−3,−3, 1, 1, 1, 1, 1, 1). The degeneracies follow from trQ = 0.

There are, therefore, six CP 3 spinors that solve

Qǫ = ǫ . (2.20)

Comparing with [16] we find that this is indeed the N = 6 solution. We also recall from [16]

that the AdS4 components of (2.15) yield four AdS4 Killing spinors, and that by virtue

of (2.20) the integrability condition for the CP 3 components of (2.15) is satisfied.

2.2 D6 and D2-branes

The D6-brane purportedly dual to the 1/6 BPS totally antisymmetric Wilson loop wraps

AdS2 ⊂ AdS4 at the point u = 0 and T̃ 1,1 ⊂ CP 3 at constant α. The latter is a squashed

T 1,1 space [18]. The internal gauge field F has electric flux only in the AdS2 factor,

F = EǫAdS2 , where E is conjugate to the fundamental string charge p. Because the

latter is fixed, the potential that yields the Wilson loop expectation value is the Legendre

transform of the D6-brane action [15]. It is straightforward to obtain3

SWL = SB
D6−

1

β
pE =

N

4β

[

sin3 α
√

1− E2 − E
(

sin2 α cosα+ 2 cosα− 2
)

]

− 1

β
pE . (2.21)

3The renormalized volume of the unit AdS2 is VAdS2
= −2π [12].
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The equation of motion for α fixes

E = − cosα , (2.22)

and that for E yields

p = β
δSB

D6

δE
=

N

2
(1− cosα) . (2.23)

The fact that p ranges from 0 to N is a signature of the antisymmetric representation. This

evidence for the anti-symmetric representation is a typical phenomenon in many brane

configurations originally understood in the case of the giant gravitons [19, 20]. Finally, the

expectation value of the Wilson loop is found as

SWL =
p(N − p)

βN
. (2.24)

Note the symmetry under p ↔ N − p. It was shown in [15] that this D6-brane is 1/6-BPS.

The D2-brane dual to the 1/6 BPS symmetric Wilson loop wraps AdS2 ⊂ AdS4 at the

point u = 0 and the circle S1 ⊂ CP 3 along χ. Again, F = EǫAdS2 . With this configuration,

the Wilson loop potential is

SWL = SB
D2 −

1

β
pE = βNπ2

[

sinα
√

1− E2 − E (cosα− 1)
]

− 1

β
pE . (2.25)

The field equation for α yields again (2.22), while the equation for E yields

p = β
δSB

D2

δE
= β2Nπ2 =

1

2
k , (2.26)

corresponding to k/2 fundamental strings. Finally, the Wilson loop expectation is

SWL =
k

2

√
2λπ . (2.27)

It was shown in [15] that a single D2-brane is 1/3-BPS. Smearing on CP 1 reduces super-

symmetry to 1/6-BPS. There are outstanding questions as to in which precise higher rank

representation each of the classical solutions discussed here and their generalizations reside.

We leave a precise study of these questions to a separate publication. Let us simply note

that other possible classical configurations do not seem to fit nicely with their AdS5 × S5

counter-part. For example, the symmetric representation in that case corresponds to a D3

brane discussed in [21] (see [22, 23] for the stringy derivation) whose spectrum of quantum

excitations was presented in [11]. This D3 branes wraps AdS2 × S2 ⊂ AdS5 and the value

of its electric flux can be arbitrarily large. We have verified that the analogous D2 config-

uration wrapping the AdS2 × S1 ⊂ AdS4 does not seem to have the expected properties.

The beautiful construction of the 1/2 BPS Wilson loop on the field theory side [24]

and some of its generalizations discussed in [25–27] are still largely unexplored on the

holographic side; the gap is particularly glaring in the case of higher rank representations.

Let us advance a few observations we have briefly explored in this regard. On grounds of

the supergroup symmetries, one expects that the 1/2 BPS D6 configuration should wrap

– 6 –
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CP
2 ⊂ CP

3 as to have U(3) symmetry realized in its worldvolume. Correspondingly, there

are potential D2 configurations that wrap a circle transverse to CP
2 ⊂ CP

3 and therefore,

contain the action of U(3) in the flucutations transverse to the worldvolume. A very

preliminary exploration of these possibilities also yields puzzling results and we will report

on these configurations separately.

3 D6-brane fluctuations

In this section, we consider the bosonic and fermionic fluctuations of the 1/6-BPS D6-

branes. The notation in this section will be as follows. The 10d curved coordinates are de-

noted by Latin indices from the middle of the alphabet, m,n = 0, . . . , 9. Latin indices from

the beginning of the alphabet denote generic D6-brane coordinates, a, b = 0, 1, 5, 6, 7, 8, 9.

When the worldvolume is split into AdS2 × M5, α, β = 0, 1 are used for the AdS2 part,

while Greek indices from the middle of the alphabet, µ, ν = 5, . . . , 9, are reserved for the

factor M5 ⊂ CP 3. Latin indices i, j = 2, 3, 4 denote the normal directions. Flat indices

are underlined.

3.1 Bosonic fluctuations

For the bosonic fluctuations, we start with the action (2.5). We follow the procedure

described in detail in [12], which relies on the geometry of embedded manifolds and renders

all expressions manifestly covariant. We refer the reader to section 3 and appendix B of

that paper for the relevant formulae. Following this strategy, the fluctuations of the D6-

brane worldvolume are parameterized by three scalars χi corresponding to the three normal

directions. They consist of a doublet (i = 2, 3) characterizing the normals of AdS2 ⊂ AdS4
and a singlet (i = 4) for the normal within CP 3. The worldvolume displacement is described

by a geodesic map,

xm → (expx y)
m , ym = Nm

i χi . (3.1)

In addition, there are the fluctuations of the 2-form gauge field,

Fab → Fab + fab , f = da . (3.2)

Defining Mab = gab + Fab, we have to second order [cf. (3.10) of [12]]

δMab = −2Hiabχ
i + fab +∇aχ

i∇bχ
j δij +

(

Hia
cHjbc −Rmpnqx

m
a xnbN

p
i N

q
j

)

χiχj . (3.3)

Here, H
i
ab is the extrinsic curvature (second fundamental form) of the embedding. The

expansion up to second order of the Born-Infeld (BI) term may be obtained from the

general formula

√
− detM →

√
− detM

[

1 +
1

2
trX +

1

8
(trX)2 − 1

4
trX2

]

, (3.4)

– 7 –
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where X = M−1δM . This yields

√

− detMab →
√

− det gab sinα

{

1 + 3 cotαχ4 − cosα

sin2 α

(

1

2
ǫαβfαβ

)

(3.5)

+
1

2 sin2 α
∇αχi∇αχi +

1

2
∇µχi∇µχi

+
1

sin2 α

[

(χ2)2 + (χ3)2
]

+

(

3

sin2 α
− 9

2

)

(χ4)2

+
1

4 sin4 α
fαβf

αβ +
1

4
fµνf

µν +
1

2 sin2 α
fαµfαµ − 3 cos2 α

sin3 α
χ4

(

1

2
ǫαβfαβ

)

}

.

Here we have used

Hiαβ = 0 , H4
µ
µ = −3 cotα , H4

µνH4µν = 3 cot2 α+ 1 , (3.6)

and the fact that CP 3 is Einstein, R4CP 3

mn = 2·3+2
4 g4CP

3

mn = 2g4CP
3

mn .

The Wess-Zumino (WZ) terms are obtained taking into account the expansion of the

form fields and the tangent vectors for the pull-back, cf. (3.3) and (3.4) of [12]. The C7

WZ term gives

P [C7] → d7ξ
√

− det gab
1

2
eµ9

(

χ2∇µχ
3 − χ3∇µχ

2
)

, (3.7)

where the indices 2 and 3 denote the normals in the u- and φ-directions, respectively. This

contribution is somewhat unexpected, because both C7 and its first u-derivative vanish for

u = 0. However, one must carefully consider the small-u behaviour, because the normal

componentNφ
3 goes like 1/u. This leads to the finite result (3.7), which is absent in previous

discussions of similar classical configurations.

The C5 WZ term leads to

F ∧ P [C5] → d7ξ
√

− det gab

{

− cosαC(α) + 3 cosαχ4 − C(α)

(

1

2
ǫαβfαβ

)

(3.8)

+ 3χ4

(

1

2
ǫαβfαβ

)

+
9 cos2 α

2 sinα
(χ4)2

}

,

where

C(α) = sin−3 α
(

sin2 α cosα+ 2 cosα− 2
)

. (3.9)

The C3 WZ term vanishes, and the C1 WZ term gives a contribution, which is found

easily after an integration by parts

1

6
F3 ∧ P [C1] =

1

2
F ∧ f ∧ f ∧ P [C1] → −1

2
cosα ǫAdS2 ∧ a ∧ f ∧ P [F2] , (3.10)

where f = da. This form has the advantage of being independent of any exact terms in

C1. Using (2.9), one finds

1

6
F3 ∧ P [C1] → d7ξ

√

− det gab
1

2
cosα Eµνρaµ∂νaρ , (3.11)

– 8 –
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where Eµνρ is the totally antisymmetric tensor known as the Betti 3-form [28, 29],

1

6
Eµνρ dξµ ∧ dξν ∧ dξρ = e4 ∧

(

e5 ∧ e6 + e7 ∧ e8
)

. (3.12)

Finally, we sum the contributions (3.5), (3.7), (3.8) and (3.11), drop total derivatives

and express the resulting quadratic action in terms of the open string metric, which rescales

the AdS2 part to the radius sinα,

ds̃2 = sin2 α gαβdξ
αdξβ + gµνdξ

µdξν . (3.13)

This yields

SB,2
D6 = − T6

sinα

∫

d7ξ
√

− det g̃ab

{

1

2
∇̃aχi∇̃aχ

i +
1

sin2 α

[

(χ2)2 + (χ3)2
]

− 3

2 sin2 α
(χ4)2

+
1

sinα
eν9χ

3∇νχ
2+

1

4
f̃abf̃ab−

3

sinα
χ4

(

1

2
ǫ̃αβfαβ

)

− 1

2
cotα Eµνρaµ∂νaρ

}

, (3.14)

which is our final result for the bosonic action of the 1/6 BPS D6-brane. Note that our

result completes a preliminary discussion of the quadratic excitations presented in [18].

3.2 Fermionic fluctuations

For the fermionic fluctuations, our starting point is eq. (17) of [17],

SF
D6 =

T6

2

∫

d7ξ e−Φ
√

− detMab θ̄ (1− ΓD6)
[

(M̃−1)abΓbDa −∆
]

θ , (3.15)

where θ is a 32-component, 10d Majorana spinor, θ̄ = iθ†Γ0, M̃ab = gab + Γ(10)Fab, Da =

∂aX
mDm, Dm and ∆ were defined in (2.15) and (2.16), respectively, and ΓD6 is

ΓD6 =

√− det gab
√

− det(gab + Fab)

(

−Γ0156789
)

∑

q

(−Γ(10))
q

q!2q
Γb1...b2qFb1b2 . . .Fb2q−1b2q

=
1

sinα

(

−Γ0156789
) (

1 + cosαΓ01Γ(10)

)

. (3.16)

The pullback of the covariant derivative on spinors is given by [12]

∂aX
m∇m = ∇a −

1

2
HiabΓ

bΓi +
1

4
AijaΓ

ij . (3.17)

The combinations we need are

∂αX
m∇m = ∇α , Γµ∂µX

m∇m = Γµ∇µ +
3

2
cotαΓ4 . (3.18)

Direct evaluation of the operator in squared brackets in (3.15) yields

(M̃−1)abΓbDa −∆ =
1

sin2 α

(

1− cosαΓ01Γ(10)

)

Γα∇α + Γµ∇µ +
3

2
cotαΓ4 (3.19)

+
1

4 sin2 α

(

1− cosαΓ01Γ(10)

) [

−
(

Γ49 + Γ56 + Γ78
)

Γ(10) + 3Γ0123
]

+
1

4

(

Γ56 + Γ78
)

Γ(10) −
3

2
Γ0123 .
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To proceed, we fix the κ-symmetry by imposing θ to be chiral. What matters here is

that only terms in (3.15) with an odd number of Γ-matrices survive the chiral projection.

In fact, the chirality is irrelevant. Hence, we find

θ̄ (1− ΓD6)
[

(M̃−1)abΓbDa −∆
]

θ =

= θ̄ eRΓ01Γ(10)

[

Γ̃a∇̃a−
1

4
cotα

(

Γ569+Γ789
)

+
1

4 sinα
Γ239

(

1−3Γ5678
)

]

eRΓ01Γ(10) θ , (3.20)

where the spinor rotation parameter R is determined by sinh 2R = − cotα. In what follows,

we simply work with the rotated spinor, eRΓ01Γ(10) θ → θ. The Dirac operator in (3.20) is

the one corresponding to the open string metric (3.13).

To proceed, it is necessary to decompose the 32×32 Γ-matrices into a 7d representation.

We shall use

Γa = γa ⊗ I2 ⊗ σ1 , (a = 0, 1, 5, 6, 7, 8, 9)

Γi = I8 ⊗ τi−1 ⊗ σ2 , (i = 2, 3, 4) , (3.21)

where γa, τi and σi denote 7dMinkowski Gamma matrices and two copies of Pauli matrices,

respectively. The representation (3.21) is chiral with,

Γ(10) = −γ0156789 ⊗ I2 ⊗ σ3 = ±I8 ⊗ I2 ⊗ σ3 , (3.22)

where the sign depends on the representation of the 7d gamma matrices. Hence, a 10d

chiral spinor (16 components) decomposes into a doublet of 7d spinors, and the matrices

τi act on the doublet.

The Majorana condition on θ translates into a symplectic Majorana condition on the

7d spinor doublet. To see this, decompose the the Majorana intertwiner [30] into

B+(9,1) = B+(6,1) ⊗B−(3,0) ⊗ I2 . (3.23)

Finally, after applying the decomposition (3.21) to (3.20) and substituting the result

into (3.15), we obtain the fermionic action

SF
D6=

T6

2 sinα

∫

d7ξ
√

− det g̃ab θ̄±

[

γ̃a∇̃a−
1

4
cotα

(

γ569 + γ789
)

± i

4 sinα
γ9

(

1− 3γ5678
)

]

θ± .

(3.24)

There is an implicit sum over the spinor doublet index (±), and the sign of the last term

in the brackets agrees with the doublet index.

We conclude this section by writing eq. (3.24) in a 2 + 5 form, which is useful for the

calculation of the spectrum. We shall use the decomposition

γα = γα ⊗ I4 , γµ = γ01 ⊗ γµ , (3.25)

where the matrices γα and γµ on the right hand sides are intended as 2d and 5d gamma

matrices, respectively. Hence, we can rewrite (3.24) as

SF
D6 =

T6

2 sinα

∫

d7ξ
√

− det g̃ab θ̄±

(

γ̃α∇̃α ⊗ I4 + γ01 ⊗D±

)

θ± , (3.26)
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where the differential operators D± acting on the T̃ 1,1 part are

D± = γ̃µ∇̃µ − 1

4
cotα

(

γ569 + γ789
)

± i

4 sinα
γ9

(

1− 3γ5678
)

. (3.27)

3.3 Field equations

For completeness, we list here the field equations deriving from the actions (3.14) and (3.26).

The doublet of scalars χi, i = 2, 3, satisfy
(

−∇̃a∇̃a +
2

sin2 α

)

χ2 − 1

sinα
eµ9 ∇̃µχ

3 = 0 , (3.28)

(

−∇̃a∇̃a +
2

sin2 α

)

χ3 +
1

sinα
eµ9 ∇̃µχ

2 = 0 . (3.29)

Introducing χ± = χ2 ± iχ3, (3.28) and (3.29) become
(

−∇̃a∇̃a +
2

sin2 α
± i

sinα
eµ9 ∇̃µ

)

χ± = 0 . (3.30)

It is worth noting that this is a generalization of what would traditionally be a couple of

massive fields describing the embedding of AdS2 ⊂ AdS4. Namely, in the absence of the

last term above, one has two scalar fields with m2 = 2 just as in the case [31]. Similarly for

the embedding of supersymmetric branes in AdS5×S5, one gets three m2 = 2 modes from

AdS2 ⊂ AdS5 for the D3 and D5 respectively [11, 12]. It is easy to track this term to the

C7 contribution from the WZ part of the action (see eq. (3.7)); we will see that there is a

corresponding C3 contribution to the D2 fluctuations, thus leading to a sort of universality.

The scalar χ4 couples to the AdS2-components aα of the vector field. Their field

equations are given by
(

∇̃a∇̃a +
3

sin2 α

)

χ4 +
3

sinα
f = 0 , (3.31)

∇̃a(∇̃aaα − ∇̃αaa) +
3

sinα
ǫ̃αβ∂βχ

4 = 0 , (3.32)

where f stands for f = 1
2 ǫ̃

αβfαβ . We adopt the Lorentz gauge, ∇̃aa
a = 0. The remaining

gauge freedom can be used to further impose ∇̃αa
α = ∇̃µa

µ = 0 on-shell. Acting with

∇̃γ ǫ̃γα on (3.32), one obtains

∇̃a∇̃af +
3

sinα
∇̃α∇̃αχ4 = 0 . (3.33)

Hence, we can write (3.31) and (3.33) in the matrix form
(

∇̃α∇̃α + ∇̃µ∇̃µ + 3
sin2 α

3
sinα

3
sinα

∇̃α∇̃α ∇̃α∇̃α + ∇̃µ∇̃µ

)(

χ4

f

)

= 0 . (3.34)

The vector components aµ satisfy, in Lorentz gauge,

−
(

∇̃α∇̃α + ∇̃ν∇̃ν
)

aµ +Rµ
νa

ν − cotα Eµνρ∂νaρ = 0 . (3.35)

The field equations for the spinors are simply
(

γ̃α∇̃α ⊗ I4 + γ01 ⊗D±

)

θ± = 0, (3.36)

where D± is defined by (3.27).
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3.4 Spectrum of D6-brane fluctuations

In this section, we calculate the spectrum of fluctuations of the D6-brane and obtain the

conformal dimensions of the dual operators. The bosonic fluctuations were considered

in [18], but the result is partially incorrect because of missing terms in the quadratic

action. To obtain the spectrum, the equations of motion listed in subsection 3.3 must be

solved. This requires to construct the (generalized) harmonics on the T̃ 1,1 factor of the D6

world volume, which we defer to appendix C due to its rather technical nature.

We start with the doublet of scalars, χi, (i = 2, 3). The field equation for the combi-

nations χ± = χ2 ± iχ3 is given by (3.30). Substituting (C.31) and (C.29), it becomes a

field equation on AdS2,
(

∇̃α∇̃α −m2
±

)

χ± = 0 , (3.37)

where

m2
± =

Cj,l + 1± r

sin2 α
. (3.38)

Because the radius of AdS2 in the open string metric is sinα, the standard relation between

m2 and the conformal dimension of the dual operator yields

∆(±) =
1

2
+

√

5

4
+ Cj,l ± r . (3.39)

We recall the definition (C.29) of Cj,l,

Cj,l = sin2
α

2
(2j + 1)2 + cos2

α

2
(2l + 1)2 . (3.40)

As explained in appendix C.3, j, l are either both integer or half-integer, and |r| ≤ l̄, where

l̄ = 2min(j, l) . (3.41)

The field equations of the scalar χ4 and the AdS2-components of the vector field are

given by (3.34). Substituting the eigenvalues of the scalar Laplacian on T̃ 1,1 (C.27), one

obtains
(

−∇̃α∇̃α +
Cj,l−4

sin2 α
− 3

sinα

− 3
sinα

∇̃α∇̃α −∇̃α∇̃α +
Cj,l−1

sin2 α

)(

χ4

f

)

= 0 . (3.42)

The characteristic polynomial of this matrix is equivalent to the product of two massive

Klein-Gordon equations on AdS2, with two mass values. To these correspond the following

conformal dimensions of the two dual operators,

∆(4) ∈
{

√

Cj,l + 2;
√

Cj,l − 1
}

. (3.43)

The eigenvalues are (l̄ + 1)-fold degenerate, because they are independent of r. From the

second value one must exclude the case j = l = 0 (Cj,l = 1), because the corresponding

bulk mode is not dynamical [12, 18]. (It is the gauge mode that allows to impose ∇̃αa
α =

∇̃µa
µ = 0, which is more restrictive than the Lorentz gauge ∇̃aa

a = 0.)

Consider the T̃ 1,1 components of the vector field. Their field equations are given

by (3.35), which becomes a massive Klein-Gordon equation on AdS2 of the form (3.37)
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2(l̄ + 1) fermion supermultiplets (n = −l̄,−l̄ + 2, . . . , l̄)

boson/fermion# f b ∗ 2 f

∆n ∆n0 =
√

Cj,l +
5
4 + n ∆n0 +

1
2 ∆n0 + 1

2(l̄ + 1) boson supermultiplets

boson/fermion# b f ∗ 2 b

∆ ∆1 =
√

Cj,l + 1 ∆1 +
1
2 ∆1 + 1

∆ ∆2 =
√

Cj,l − 1 ∆2 +
1
2 ∆2 + 1

Table 1. Conformal dimensions and supermultiplet structure in the generic case j 6= l.

(the T̃ 1,1 vector is an AdS2 scalar) once the results of the harmonic analysis on T̃ 1,1

have been used. The mass-square is simply given by the eigenvalues of the modified vector

Laplacian, which are listed in appendix C.4. The conformal dimension of the dual operator

then follows from the standard formula. We list the results in tables 1 and 2 for the generic

case j 6= l and the special case j = l, respectively.

The conformal dimensions of the operators dual to the spinor fields are found from

the spinor field equation (3.36). After using the results of the harmonic analysis, one may

consider
(

γ̃α∇̃α + λγ01
)

ϑ⊗ θλ , (3.44)

where λ = ich represents the eigenvalue of D± corresponding to the eigenvector θλ, which

is a T̃ 1,1 spinor, while ϑ is a spinor on AdS2. Denoting by ϑµ (µ ≥ 0) a solution of the

AdS2 Dirac equation
(

γ̃α∇̃α − µ
)

ϑµ = 0 , (3.45)

and using γ01ϑµ = ϑ−µ, one finds that (3.44) is solved by ϑ = ϑµ + iϑ−µ, with µ = ch.

It follows from the standard formula that the conformal dimension of the dual fermionic

operators are simply ∆f = 1
2 + h. The values of h that can be found in the tables in

appendix C.4. Again, we list the results in tables 1 and 2 for the generic case j 6= l and

the special case j = l, respectively.

4 D2-brane fluctuations

In this section we consider the bosonic and fermionic fluctuations of the classical 1/3-BPS

D2-brane discussed in section 2. The procedure that leads to the quadratic action is the

same as the one used in section 3 for the D6-brane. The notation remains essentially the

same, with the following logical differences due to dimensionality. Generic D2-brane indices

are denoted by a, b = 0, 1, 9. When the worldvolume is split into AdS2×S1, α, β = 0, 1 are

used for the AdS2 part, while µ = 9 refers to the S1 part. Latin indices i, j = 2, 3, 4, 5, 6, 7, 8

denote the normal directions.
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4j fermion supermultiplets (n = −2j,−2j + 2, . . . , 2j − 2)

boson/fermion# f b ∗ 2 f

∆n ∆n0 =
√

(2j + 1)2 + 5
4 + n ∆n0 +

1
2 ∆n0 + 1

2 fermion supermultiplets

boson/fermion# f b —

∆ 2j + 3
2 2j + 2

boson supermultiplets

boson/fermion# b ∗ (2j + 1) f ∗ (4j + 2) b ∗ (2j + 1)

∆ 2j + 2 2j + 5
2 2j + 3

boson/fermion# b ∗ (2j + 1) f ∗ (4j) b ∗ (2j − 1)

∆ 2j 2j + 1
2 2j + 1

Table 2. Conformal dimensions and supermultiplet structure in the special case j = l.

4.1 Bosonic fluctuations

The starting point is, again, the action (2.5). For the D2-brane, there are three terms, the

BI term and two CS terms (C3 and F ∧ C1). Expanding the BI term to quadratic order,

one obtains

√

− detMab →
√

− det gab sinα

{

1 + cotαχ4 − cosα

sin2 α

(

1

2
ǫαβfαβ

)

(4.1)

+
1

2 sin2 α
∇αχi∇αχi +

1

2
∇µχi∇µχi

+
1

sin2 α

[

(χ2)2 + (χ3)2
]

− 1

2
(χ4)2 − 1

8

[

(χ5)2 + (χ6)2 + (χ7)2 + (χ8)2
]

+
1

4 sin4 α
fαβf

αβ +
1

2 sin2 α
fαµfαµ − cos2 α

sin3 α
χ4

(

1

2
ǫαβfαβ

)

}

.

Note that the covariant derivative contains the normal bundle connection,

∇aχ
i = ∂aχ

i +Aa
i
jχ

j , (4.2)

which, in contrast to the D6-brane case, has non-zero components

Aµ56 =
1

2
sin2

α

2
, Aµ78 = −1

2
cos2

α

2
. (4.3)

The only non-zero component of the second fundamental form is

H4
µ
µ = − cotα . (4.4)

The WZ term with C3 is similar to the C7 term in the D6-brane case, and leads to the

following contribution

P [C3] → d3ξ
√

− det gab
3

2
eµ9

(

χ2∇µχ
3 − χ3∇µχ

2
)

. (4.5)
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The C1 WZ term is similar to the C5 term in the D6-brane case, but contains some

additional terms,

F ∧ P [C1] → d3ξ
√

− det gab

{

cotα(1− cosα) + cosαχ4 +
1− cosα

sinα

(

1

2
ǫαβfαβ

)

(4.6)

+ χ4

(

1

2
ǫαβfαβ

)

+
cos2 α

2 sinα
(χ4)2

+
1

2
cosα eµ9

(

χ5∇µχ
6 − χ6∇µχ

5 + χ7∇µχ
8 − χ8∇µχ

7
)

}

.

Finally, we sum the three contributions (4.1), (4.5) and (4.6), drop total derivatives

and express the resulting quadratic action in terms of the open string metric, which again

rescales the AdS2 part to have radius sinα,

ds̃2 = sin2 α gαβdξ
αdξβ + gµνdξ

µdξν . (4.7)

The final action is:

SB,2
D2 = − T2

sinα

∫

d3ξ
√

− det g̃ab

{

1

2
∇̃aχi∇̃aχ

i +
1

sin2 α

[

(χ2)2 + (χ3)2
]

+
3

sinα
eµ9χ

3∇µχ
2

− 1

8

[

(χ5)2 + (χ6)2 + (χ7)2 + (χ8)2
]

+ cotα eµ9
(

χ6∇µχ
5 + χ8∇µχ

7
)

− 1

2 sin2 α
(χ4)2 +

1

4
f̃abf̃ab −

1

sinα
χ4

(

1

2
ǫ̃αβfαβ

)

}

. (4.8)

Note that, as in the D6 case, there are a number of terms describing a modification of the

naive embedding of AdS2 ⊂ AdS4. The fluctuations χ2 and χ3 contain an extra mixing

term that arises from the C3 contribution to the WZ action, see eq. (4.5). In addition,

there are mixing terms for the pairs of scalars (χ5, χ6) and (χ7, χ8), and these pairs of

scalars are affected by the non-zero connections in the normal bundle.

4.2 Fermionic fluctuations

The construction of the fermionic action for the D2-brane is similar to the D6-brane case.

We start with eq. (17) of [17],

S
(F )
D2 =

T2

2

∫

d3ξ e−Φ
√

− detMab θ̄ (1− ΓD2)
[

(M̃−1)abΓbDa −∆
]

θ, (4.9)

where Γa is the pullback of the gamma matrices Γm, the fermionic field θ is a 10d Majorana

spinor, and ΓD2 is given by

ΓD2 =
1

sinα

(

−Γ019
) (

1 + cosαΓ(10)Γ
01
)

. (4.10)

The pullback of the covariant derivative is again given by (3.17). Explicitly, using (4.4)

and (4.3), we have

∂αX
m∇m = ∇α , Γµ∂µX

m∇m = Γµ∇µ +
1

2
cotαΓ4 +

1

4
ΓµAijµΓ

ij , (4.11)
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where

AijµΓ
ij = sin2

α

2
Γ56 − cos2

α

2
Γ78 . (4.12)

The κ-symmetry is fixed by taking θ to be chiral, which implies that only terms with an

odd number of Γ-matrices survive in the action. The result for the fermionic action after

a straightforward calculation, expressed in terms of the open string metric (4.7), is

S
(F )
D2 =

T2

2 sinα

∫

d3ξ
√

− det g̃ab θ̄ e
RΓ01Γ(10)

{

Γ̃a∇̃a (4.13)

+
1

4 sinα

[

Γ569 − Γ789 + Γ239
(

3− Γ5678
)]

}

eRΓ01Γ(10) θ ,

where the spinor rotation parameter R is given by sinh 2R = − cotα. In what follows, we

shall simply work with the rotated spinor, eRΓ01Γ(10) θ → θ.

Given the symmetries of our problem, it is convenient to decompose the 10d Lorentz

group as

SO(9, 1) ⊂ SO(2, 1)× SO(2)× SO(5), (4.14)

corresponding to the (0,1,9), (2,3) and (4,5,6,7,8) directions, respectively. A representation

of the 10d gamma matrices compatible with the above decomposition is

Γa = γa ⊗ I⊗ I⊗ σ1 , (a = 0, 1, 9) ,

Γi = I⊗ τ i−1 ⊗ I⊗ σ2 , (i = 2, 3) ,

Γj = I⊗ τ3 ⊗ λj ⊗ σ2 , (j = 4, 5, 6, 7, 8) , (4.15)

where σi and τ i are two sets of Pauli matrices, and λi are 5d Euclidean γ-matrices. The

representation (4.15) is chiral,

Γ(10) = ±I⊗ I⊗ I⊗ σ3 , (4.16)

where the sign depends on the representations of the SO(2, 1) and SO(5) Clifford algebras.

To be specific, let us choose the γa such that γ9 = γ01, i.e., γ019 = 1.

Hence, under the decomposition (4.15), the 16-component chiral θ becomes an octet of

2-component 3d spinors. It is useful to decompose this octet into eigenspinors of the three

mutually commuting matrices τ3, λ56 and λ78,

λ56θabc = ipθpqr , λ78θabc = iqθpqr , τ3θpqr = rθpqr , (p, q, r = ±1) . (4.17)

The action (4.13) now becomes

S
(F )
D2 =

T2

2 sinα

∫

d3ξ
√

− det g̃ab θ̄pqr

{

γ̃a∇̃a +
i

4 sinα
γ01[p− q + r(3− pq)]

}

θpqr , (4.18)

where the sum over the octet is implicit.
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4.3 Spectrum of D2-brane fluctuations

The doublet of scalars χi, i = 2, 3, satisfies

(

−∇̃a∇̃a +
2

sin2 α

)

χ2 − 3

sinα
eµ9 ∇̃µχ

3 = 0 , (4.19)

(

−∇̃a∇̃a +
2

sin2 α

)

χ3 +
3

sinα
eµ9 ∇̃µχ

2 = 0 . (4.20)

The system is diagonalized by introducing χ± = χ2 ± iχ3, for which (4.19) and (4.20)

become
(

−∇̃a∇̃a +
2

sin2 α
± 3i

sinα
eµ9 ∇̃µ

)

χ± = 0 . (4.21)

Decomposing into the modes on the S1 factor of the D2-brane worldvolume, which are

characterized by an integer n, (4.21) gives rise to

(

�− n2 ∓ 3n+ 2

sin2 α

)

χ±
n = 0 , (4.22)

where � = g̃αβ∇α∇β . The conformal dimensions of the dual operators are obtained from

the standard formula,

∆±
n =

1

2
+

∣

∣

∣

∣

n∓ 3

2

∣

∣

∣

∣

. (4.23)

These are positive integers.

As for the D6-brane the scalar χ4 couples to the AdS2-components aα of the vector

field. Their field equations are

(

∇̃a∇̃a +
1

sin2 α

)

χ4 +
1

sinα
f = 0 , (4.24)

∇̃a(∇̃aaα − ∇̃αaa) +
1

sinα
ǫ̃αβ∂βχ

4 = 0 , (4.25)

where f stands again for f = 1
2 ǫ̃

αβfαβ . Proceeding as in the D6-brane case gives rise to

(

�+ ∇̃µ∇̃µ + 1
sin2 α

1
sinα

1
sinα

� �+ ∇̃µ∇̃µ

)(

χ4

f

)

= 0 . (4.26)

Expanding into modes on S1, (4.26) yields

(

�+ 1−n2

sin2 α
1

sinα

1
sinα

� �− n2

sin2 α

)(

χ
4
n

fn

)

= 0 . (4.27)

To obtain the conformal dimensions of the dual operators, one formally solves the char-

acteristic equation of (4.27) for � and translates the two AdS2 mass eigenvalues into the

dual conformal dimensions. The result is

∆±
n =

1

2
+

∣

∣

∣

∣

|n| ± 1

2

∣

∣

∣

∣

. (4.28)
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Doublet ∆±
n

(χ
2
n, χ

3
n)

1
2 + |n∓ 3

2 |
(χ

4
n, fn)

1
2 + ||n| ± 1

2 |
(χ

5
n, χ

6
n)

1
2 + |n∓ 1

2 |
(χ

7
n, χ

8
n)

1
2 + |n∓ 1

2 |

Table 3. Bosonic Spectrum.

Consider the doublet of scalars (χ5, χ6). Their field equations are given by

(

∇̃a∇̃a +
1

4

)

χ5 + cotα eµ9∇̃µχ
6 = 0 , (4.29)

(

∇̃a∇̃a +
1

4

)

χ6 − cotα eµ9∇̃µχ
5 = 0 . (4.30)

Remember that the covariant derivative ∇µ contains the normal connection (4.3). Intro-

ducing χ± = χ5 ± iχ6, we diagonalize the covariant derivative

∇µχ
± =

[

∂µ ± i

4
(cosα− 1)

]

χ± (4.31)

and the field equations, which become

[

�+ g̃µµ∂2
µ ∓ i

sinα
eµ9∂µ

]

χ± = 0 . (4.32)

After the decomposition into S1 modes and using the standard dimension formula, one

obtains the dual operator conformal dimensions

∆±
n =

1

2
+

∣

∣

∣

∣

n∓ 1

2

∣

∣

∣

∣

. (4.33)

The analysis for the doublet (χ7, χ8) proceeds in an identical fashion and yields the same

result.

To obtain the fermionic spectrum, consider the field equations for the octet of 3d spinors

arising from the action (4.18), in which we split the Dirac operator into the AdS2×S1 parts,

[

γ̃α∇̃α +
1

sinα
γ01

(

2∂χ +
i

2
Dpqr

)]

θpqr , (4.34)

where

Dpqr =
1

2
[p− q + r(3− pq)] (4.35)

takes the odd integer values Dpqr ∈ (−3,−1,−1,−1, 1, 1, 1, 3). The S1 dependence is solved

by the a simple exponential,

θ ∼ ei(n+
1
2)

χ

2 , (4.36)
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θnpqr λnpqr ∆n

θn+++, θn−++, θn−−+ n+ 1 1
2 + |n+ 1|

θn−−−, θn+−−, θn++− n 1
2 + |n|

θn−+− n− 1 1
2 + |n− 1|

θn+−+ n+ 2 1
2 + |n+ 2|

Table 4. Fermionic Spectrum.

where n is an integer. (Remember χ ∈ (0, 4π).) Hence, (4.34) reduces to the form
(

γ̃α∇̃α +
iλnpqr

sinα
γ01

)

θnpqr , (4.37)

which is familiar from the D6-brane case. The resulting dual conformal dimensions

∆npqr =
1

2
+ |λnpqr| (4.38)

are positive half-integers (1/2, 3/2, · · · ), which nicely complement the bosonic spectrum to

fill supersymmetric multiplets. (It may be useful to shift the value of n depending on the

value of Dpqr.)

5 Comments on supersymmetry and the spectrum

The ABJM theory is a three-dimensional Chern-Simons theory with U(N)× U(N) gauge

group. It contains four complex scalar fields CI , (I = 1, 2, 3, 4) in the bifundamental rep-

resentation (N, N̄), the corresponding complex conjugates in the (N̄,N) representation,

as well as the fermionic superpartners. The gauge fields are governed by a Chern-Simons

action with opposite integer levels for the two gauge groups, k and −k (see [1] for de-

tails). The bosonic symmetry subgroups of this theory are the conformal group in three

dimensions SO(3, 2) and the R-symmetry group SU(4)R ∼ SO(6)R; these combine into

the supergroup OSp(6|4). In the ’t Hooft limit (large N with fixed N/k ratio) the ABJM

theory is conjectured to be dual to type IIA string theory on AdS4 × CP
3. The bosonic

subgroups act as isometries of AdS4 and of CP3.

Let us now discuss the supersymmetric operator whose dual gravity configurations

we have studied in this manuscript. To build these type of Wilson loops one considers

only one of the gauge fields of the whole U(N) × U(N) gauge group, we call it Aµ. We

are mostly guided by the construction of similar operators in N = 4 SYM but in the

absence of adjoint fields one considers the appropriate combination of bi-fundamentals, CI .

Namely [15, 32, 33],

W =
1

N
TrR P

∫ (

iAµẋ
µ +

2π

k
|ẋ|M I

JCIC̄
J

)

ds. (5.1)

It was shown in [15, 32, 33] that the above operator preserves a 1/6 of the 24 super-

charges when the loop is a straight line or a circle, and the matrix takes the form M I
J =
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Representation ∆ (2p1 + 1, 2p2 + 1) Degeneracies

|Φ〉 h (1, 1) 1

Q†|Φ〉 h+ 1
2 (2, 2) 1 3

Q†Q†|Φ〉 h+ 1 (1, 3) + (3, 1) 3 3

Q†Q†Q†|Φ〉 h+ 3
2 (2, 2) 3 1

Q†Q†Q†Q†|Φ〉 h+ 2 (1, 1) 1

Table 5. Supermultiplet for the D2 brane fluctuations.

diag (1, 1,−1,−1). It is worth mentioning that 1/2 BPS Wilson loops have also been

constructed and have a very different pattern of symmetry breaking [24]. The Wilson

loops (5.1) are invariant under an SL(2,R) × U(1) ⊂ SO(3, 2). The SL(2,R) part of this

subgroup is generated by translation along the line P0, dilatation D and a special conformal

transformation K0; the U(1) symmetry is generated by rotations around the line, J12. Of

the R-symmetry, the Wilson loop preserves an SU(2)×SU(2) ⊂ SU(4), as follows from the

explicit form of the matrix M I
J , which admits C1 ↔ C2 and C3 ↔ C4. The classification of

AdS superalgebras that are of interest to us was presented in [34]. One supergroup in that

list that contains the bosonic symmetries discussed here is OSp(4|2). In the original clas-

sification list of [34], this is series (i) using the algebra isomorphism so(4) ∼ su(2)× su(2).

In appendix B we recall details of the representations of OSp(4|2); in the main text we use

a slightly modified notation more akin to our considerations.

Let us first consider the spectrum of the D2 brane which is given in tables 3 and 4. We

see that the degeneracies agree precisely with those of the multiplet of OSp(4|2) presented
in table 5. Here supersymmetry plays a crucial role. Notice that the D2 brane preserves

1/3 of the 24 bulk supersymmetries. At the level of the multiplet representation we denote

the supercharges by Q,Q†; four can be interpreted as creation operators.

There are a total of 16 states in the multiplet: 8 bosons + 8 fermions. The degeneracies

follow directly from states being singlets or triplets of the respective su(2) as indicated in

the last column of the table. We found it necessary to shift some of the AdS2 quantum

numbers to fit in one multiplet, but the spacing was respected. Thus, the spectrum of

excitations of the D2 brane falls neatly into long representations of OSp(4|2).
Let us now consider the spectrum of the D6 brane. This configuration is 1/6 BPS,

meaning that there are only four supercharges, two of which can be considered as creation

operators in the representation, more precisely, they raise the AdS2 quantum number.

Given that these supercharges are a doublet of Sp(2) we obtain generic multiplets of oper-

ators with dimensions (h, h+ 1
2 , h+1). This is nicely respected by the values of h that are

listed in tables 1 and 2, with the exception of two short fermion multiplets. We emphasize

that, generically, the dimensions of bosonic operators are not integers. This is a non-trivial

result of our calculation. Because all the states in a given row in tables 1 and 2 have the

same values of the SO(4) quantum numbers (j, l), we see that the supercharges are singlets

under SO(4) in contrast to the situation for the D2, where the supercharges were vectors
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under SO(4). In any case, the fact that the spectra for the D6 fluctuations can be organized

into supermultiplets is a nice check of our calculation.

6 Conclusions

We have computed the spectra of quantum fluctuations of particular embeddings of D6

and D2 branes with electric flux in their worldvolumes in the background of AdS4 ×CP 3,

which is dual to ABJM theory. These brane configurations are expected to be dual to

supersymmetric Wilson loops in higher dimensional representations of the gauge group of

ABJM theory.

The results represent by themselves interesting progress within a well-defined class of

holographic problems. In particular, regardless of the field theory motivation, the general

question of semiclassical quantization of certain brane configurations in string theory back-

grounds is of great interest. In this respect we have found a peculiar mixing term that are

induced by the top, with respect to the worldvolume dimension, RR potential Cp form in

the WZ part of the D-brane action.

The construction of supersymmetric field theories in curved spacetimes plays a central

role in localization. In this respect, our results provide explicit constructions of super-

symmetric field theories living in curved spaces containing an AdS2 factor. Arguably, the

simplest example in this class is provided by the spectrum of excitations of a supersym-

metric D3 brane in AdS5 × S5 which was obtained in [11] and later identified as an N = 4

Abelian vector multiplet living in AdS2×S2 in [13]. The study of supersymmetric field the-

ories on non-compact spaces is an important problem from the field theoretic point of view

and presents a, hopefully surmountable, challenge to the program of supersymmetric local-

ization. To first approximation, the supersymmetric field theory describing the quadratic

fluctuations constructed here is more similar to the one for D5 brane fluctuations obtained

in [12], which lead to a field theory on AdS2 × S4 with non-canonical couplings between

the scalars and the Abelian gauge field. In this manuscript, in comparison with [12], we

have found an interesting new mixing term of the embedding that has not been seen before

in any of the embeddings in AdS5 × S5 analyzed in [11, 12]. It is worth highlighting that

the mixing is intrinsic to brane embeddings; clearly the string, as discussed in [31] cannot

contain this type of mixing term.

One set of questions that clearly deserves further investigation is the precise classifica-

tion of all supersymmetric brane configurations with flux on their worldvolume embedded

in AdS4 × CP
3. In particular, there should be other classical solutions corresponding pre-

cisely to the 1/2 BPS configurations where the nature of CP2 is manifest as a realization of

the unbroken SU(3) R-symmetry group. One particular candidate which we studied pre-

liminarily (but chose not to report on it here) is a D2 brane that wraps AdS2×S1 ⊂ AdS4.

Another configuration is a D6 whose worldvolume contains CP
2 ⊂ CP

3. We expect to

report on such matters systematically in a future publication.

A logical continuation of our work would be the computation of the one-loop effective

actions of the D2 and D6 configurations we considered in this manuscript. In the con-

text of the AdS/CFT correspondence such calculation yields the one-loop correction to the
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vacuum expectation value of Wilson loops in the strong ’t Hooft coupling limit of ABJM.

Indeed, such an effective action computation was undertaken for the fundamental string

in [35] based on the spectrum obtained in [31]. Since the results for the fundamental repre-

sentation, as they currently stand, do not seem to agree with the field theory side, we defer

a systematic analysis of the one-loop effective action to a separate publication. It is worth

noting that there has been some success in matching the holographic one-loop corrections

to field theory results for certain Wilson loops in ABJM [36]. On the field theory side,

to the best of our knowledge, some of the vacuum expectation values of Wilson loops in

higher rank representations have not been systematically studied, although some results

for representations with a small number of boxes were reported in [37]. The configurations

we consider here are dual to Wilson loops in representations whose Young tableaux have a

number of boxes of the same order as the rank of the gauge group N . To the best of our

knowledge the expectation values of such Wilson loops have not been systematically com-

puted on the field theory side. Having the corresponding exact field theory results will ulti-

mately provide grounds for a precision holographic comparison between ABJM theory and

strings and branes in AdS4×CP 3. We hope to report some progress in this direction soon.
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A Representations of CP n

Our starting point is a recursion formula for unit CPn spaces [38]. In that paper, unit CPn

is defined as the CPn space that arises from the Hopf fibration of a unit S2n+1. Hence, unit

CP 1 is a 2-sphere of radius 1
2 . Let dΣ̂n and Ĵm = 1

2dÂm be the line element and the Kähler

form of unit CPn, respectively. Then, for any m and n, the following formulas hold [38],

dΣ̂2
m+n+1 = dξ2 + c2dΣ̂2

m + s2dΣ̂2
n + c2s2(dψ + Âm − Ân)

2 , (A.1)

Âm+n+1 = c2Âm + s2Ân +
1

2
(c2 − s2)dψ , (A.2)

where c = cos ξ, s = sin ξ, ξ ∈ (0, π/2), ψ ∈ (0, 2π).

In the present paper, we deal with CPn spaces with line elements dΣn = 2dΣ̂n. Let

us call these unit-2 CPn spaces, because they arise from the Hopf fibration of an S2n+1

of radius 2. Therefore, unit-2 CP 1 is just a unit S2. Let dΣn = 2dΣ̂n, An = 2Ân and

introduce two new angles by α = 2ξ ∈ (0, π), χ = 2ψ ∈ (0, 4π). In terms of these, (A.1)

and (A.2) become

dΣ2
m+n+1 = dα2 + c2dΣ2

m + s2dΣ2
n + c2s2(dχ+Am −An)

2 , (A.3)

Am+n+1 = c2Am + s2An +
1

2
(c2 − s2)dχ , (A.4)
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where

c = cos
α

2
, s = sin

α

2
. (A.5)

The Kähler form of unit-2 CPn is Jn = 4Ĵn = 2dÂn = dAn, i.e., there is no factor of 2

now. Explicitly, from (A.4),

Jm+n+1 = c2Jm + s2Jn − csdα ∧ (dχ+Am −An) . (A.6)

With the help of the above formulas we can recursively construct various coordinate

systems of unit-2 CPn. One starts with the unit-2 CP 1, which is a unit 2-sphere,

dΣ2
1 = dΩ2 = dϑ2 + sin2 ϑdϕ2 , A1 = cosϑdϕ , J1 = − sinϑdϑ ∧ dϕ . (A.7)

CP 2 is obtained for m = 1, n = 0,4

dΣ2
2 = dα2 + cos2

α

2
dΩ2 + cos2

α

2
sin2

α

2
(dχ+ cosϑdϕ)2 , (A.8)

A2 = cos2
α

2
cosϑdϕ+

1

2
cosαdχ . (A.9)

For CP 3, one has two choices. One is m = n = 1, which yields the representation used

in [15].

dΣ2
3 = dα2+cos2

α

2
dΩ2

1+sin2
α

2
dΩ2

2+cos2
α

2
sin2

α

2
(dχ+cosϑ1dϕ1−cosϑ2dϕ2)

2 , (A.10)

A3 = cos2
α

2
cosϑ1dϕ1 + sin2

α

2
cosϑ2dϕ2 +

1

2
cosαdχ . (A.11)

The other choice is m = 2, n = 0, which gives

dΣ2
3 = dα2 + cos2

α

2
dΣ2

2 + cos2
α

2
sin2

α

2
(dχ+A2)

2 , (A.12)

A3 = cos2
α

2
A2 +

1

2
cosαdχ . (A.13)

As a corollary of the recursion formula with n = 0 one easily derives the volume of the

unit-2 CPn,

Vn =
(4π)n

n!
. (A.14)

B Representations of OSp(4|2)

The supergroup OSp(4|2) with bosonic subgroup Sp(2) and SO(4) is the relevant super-

group for the classification of 1/3 BPS states in ABJM theory, i.e., of states that preserve

8 supercharges. The representation theory of this supergroup has been discussed in vari-

ous articles. Some key general remarks on the construction of unitary super OSp(2N |2)
representations were given, for example, in [34]. A dedicated publication to the represen-

tations of OSp(4|2) appeared, for example, in [39]. The key quantum nubers arise from

the following embedding and isomorphism:

OSp(4|2,R) ⊃ Sp(2,R)× SO(4) ∼= Sp(2,R)× SO(3)× SO(3) . (B.1)

4The alternative m = 0, n = 1 is equivalent by a change of coordinate α → π − α.
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We can relate the SO(4) labels (p1, p2) to SO(3)× SO(3) labels (j, l),

j =
1

2
(p1 + p2), l =

1

2
(p1 − p2) . (B.2)

The irreducible representations of OSp(4|2) are as follows, with the conditions for the

existence of each multiplet given below the corresponding labels (we quote from [39]):

(h, j, l)

⊕
(

h+
1

2
, j+

1

2
, l+

1

2

)

2h−j−l 6=0

⊕
(

h+
1

2
, j+

1

2
, l− 1

2

)

l 6=0

⊕
(

h+
1

2
, j− 1

2
, l+

1

2

)

j 6=0

⊕
(

h+
1

2
, j− 1

2
, l− 1

2

)

j 6=0,l 6=0

⊕ (h+ 1, j + 1, l)
2h−j−l 6=0

⊕ (h+ 1, j, l)
j 6=0,2h−j−l 6=0

⊕ (h+ 1, j − 1, l)
j 6=0, 1

2

⊕ (h+ 1, j, l + 1)
2h−j−l 6=0

⊕ (h+ 1, j, l)
l 6=0,2h+j−l 6=0

⊕ (h+ 1, j, l − 1)
l 6=0, 1

2

⊕
(

h+
3

2
, j+

1

2
, l+

1

2

)

2h−j−l 6=0

⊕
(

h+
3

2
, j+

1

2
, l− 1

2

)

l 6=0,2h+j−l 6=0

⊕
(

h+
3

2
, j− 1

2
, l+

1

2

)

j 6=0,2h−j−l 6=0

⊕
(

h+
3

2
, j− 1

2
, l− 1

2

)

j 6=0,l 6=0

⊕ (h+ 2, j, l)
2h−j−l 6=0

This is the long multiplet in which we accommodated the spectrum of excitations of

the D2 brane.

C Harmonic analysis

The field equations listed at the end of the previos section involve certain differential

operators on the T̃ 1,1 part of the D6-brane world volume. To deal with these operators, it

is appropriate to view T̃ 1,1 as a coset manifold [18, 29, 40], T̃ 1,1 = SU(2)×SU(2)
U(1) , and to apply

the powerful technique of harmonic expansion [41]. In this way, their spectrum is obtained

in a purely algebraic fashion. The spectrum of Laplace-Beltrami operators on T̃ 1,1 was

found in [18, 29, 40], but the operators arising in our field equations are slightly different.

To be self contained, we include a brief review of the geometry of coset manifolds. For a

pedagogical introduction to the subject we refer to van Nieuwenhuizen’s lectures [42]. Our

signature and curvature conventions agree with those of [42]. In this section, our notation

regarding indices is independent of the other sections.

C.1 Geometry of coset manifolds

Consider a Lie group G with a subgroup H and their respective Lie algebras G and H.

Decompose G into G = H + K, such that, for the generators Ta ∈ K and Ti ∈ H and

assuming H to be compact or semi-simple, the structure equations of G take the form

[Ti, Tj ] = Cij
kTk ,

[Ti, Ta] = Cia
bTb ,

[Ta, Tb] = Cab
cTc + Cab

iTi .

(C.1)
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Starting from any coset representative L(x), define the Lie-algebra valued one-form

V (x) = L−1(x)dL(x) = r(a)V a(x)Ta +Ωi(x)Ti . (C.2)

Here, V a are the (rescaled) vielbeins, r(a) denote scale factors, which are independent for

each irreducible block of Cia
b, and Ωi are the H-connections. The Maurer-Cartan equation

for V yields

dV a +
1

2

r(b)r(c)

r(a)
Cbc

aV b ∧ V c + Cib
aΩi ∧ V b = 0 , (C.3)

dΩi +
1

2
r(a)r(b)Cab

iV a ∧ V b +
1

2
Cjk

iΩj ∧ Ωk = 0 . (C.4)

Indices will be lowered and raised using a flat coset metric ηab and its inverse ηab, respec-

tively. Later, we shall choose ηab to be positive definite Euclidean, but for the time being

it is sufficient to state that ηab is pseudo-Euclidean with arbitrary signature.

The geometry of the coset manifold is characterized, as usual, by a torsionless connec-

tion defined by

dV a + Ba
b ∧ V b = 0 , Bab = −Bba . (C.5)

The Riemann curvature 2-form is

Ra
b = dBa

b + Ba
c ∧ Bc

b . (C.6)

Comparison of (C.3) and (C.5) yields

Ba
b =

1

2
Ccb

aV c + Cib
aΩi , (C.7)

where

Ccb
a =

r(b)r(c)

r(a)
Ccb

a +
r(a)r(c)

r(b)
Ca

cb +
r(a)r(b)

r(c)
Ca

bc . (C.8)

The SO(d) covariant derivative is defined by

D = d+
1

2
Bab

D(Tab) , (C.9)

where D is a representation of SO(d) satisfying

[D(Tab),D(Tcd)] = ηbcD(Tad) + ηadD(Tbc)− ηacD(Tbd)− ηbdD(Tac) . (C.10)

A coset harmonic is given, in an arbitrary representation of G, by the inverse of a coset

representative,

Y (x) = L−1(x) . (C.11)

By definition, it satisfies

dY = −V Y = −
[

r(a)V aTa +Ωi(x)Ti

]

Y , (C.12)
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where the algebra elements act on Y by right action. Y also forms a representation of

SO(d), if the action of Ti is given by

[

Ti +
1

2
Ci

ab
D(Tab)

]

Y = 0 . (C.13)

As a consequence, the covariant derivative (C.9) of an harmonic reduces to

DY = V aDaY = −V a

[

r(a)Ta +
1

4
Ca

bc
D(Tbc)

]

Y . (C.14)

C.2 Geometry of T̃ 1,1

Let us now apply these general results to T̃ 1,1 = SU(2)×SU(2)
U(1) . Take T1, T2, T3 and T1̂, T2̂, T3̂

to be the generators of the first and second SU(2), respectively, let i = 1, 2, î = 1̂, 2̂, and

define

T5 = T3 − T3̂ , TH = T3 + T3̂ , (C.15)

where TH generates the U(1). In this basis, the structure equations of G = SU(2)× SU(2)

read

[Ti, Tj ] =
1

2
ǫij(TH + T5) ,

[

Tî, Tĵ

]

=
1

2
ǫ̂iĵ(TH − T5) ,

[TH , Ti] = [T5, Ti] = ǫi
jTj ,

[

TH , Tî

]

= −
[

T5, Tî

]

= ǫ̂i
ĵTĵ .

(C.16)

Defining the scale parameters of the irreducible blocks by

r(i) = a , r(̂i) = b , r(5) = c , (C.17)

the spin connections (C.7) are found as

B5i =
a2

4c
V jǫj

i , Bij = −ǫij
[

ω +

(

c− a2

4c

)

V 5

]

,

B5̂i = − b2

4c
V ĵǫĵ

î , B îĵ = −ǫîĵ
[

ω −
(

c− b2

4c

)

V 5

]

.

(C.18)

The Ricci tensor Rab = Rc
acb turns out to be block-diagonal,

Ri
j = δij

(

a2 − a4

8c2

)

, Rî
ĵ = δî

ĵ

(

b2 − b4

8c2

)

, R5
5 =

a4 + b4

8c2
. (C.19)

In is convenient to work in a complex basis, with

x± =
1

2
(x1 ± ix2) , x±̂ =

1

2
(x1̂ ± ix2̂) , (C.20)

such that the positive definite Euclidean metric ηab is given by

η+− = η+̂−̂ = 2 , η55 = 1 , (C.21)

and the components of the ǫ tensors are

ǫ±
± = ǫ±̂

±̂ = ±i . (C.22)
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In this basis, the covariant derivatives (C.14) are given by

D± = −aT± ± ia2

4c
D(T5±) , (C.23)

D±̂ = −bT±̂ ∓ ib2

4c
D(T5±̂) ,

D5 = −cT5 +
i

2

(

c− a2

4c

)

D(T+−)−
i

2

(

c− b2

4c

)

D(T+̂−̂) .

A suitable representation (by right action) of the SU(2)× SU(2) generators is5

T±Y
j,l,r
q = −i

(

j ± q + r

2

)

Y j,l,r∓1
q∓1 , (C.24)

T±̂Y
j,l,r
q = −i

(

l ± q − r

2

)

Y j,l,r±1
q∓1 ,

T5Y
j,l,r
q = irY j,l,r

q ,

THY j,l,r
q = iqY j,l,r

q .

C.3 Spectrum of operators on T̃
1,1

We are interested in the spectrum of the differential operators on T̃ 1,1, which appear in

the field equations listed in subsection 3.3. The scale parameters a, b and c are related to

the angle α by

a2 =
1

cos2 α
2

, b2 =
1

sin2 α
2

, c2 =
1

sin2 α
. (C.25)

This leaves a sign ambiguity, which will be resolved shortly. Notice that (C.25) implies

a2 + b2 = 4c2 , (C.26)

which will simplify many expressions in the sequel.

Scalar fields. Scalar fields transform trivially under SO(d), which implies q = 0

by (C.13). Vectors (with covariant indices) transform under D(Tab)c
d = ηacδ

d
b − ηbcδ

d
a.

Notice that DaY is a vector. We can now calculate the Laplacian �0 = DaD
a of a scalar

harmonic, which results in

−�0Y
j,l,r
0 = H0Y

j,l,r
0 , (C.27)

where

H0 = a2j(j + 1) + b2l(l + 1)− r2

4

(

a2 + b2 − 4c2
)

. (C.28)

This is independent of r by virtue of (C.26). Using (C.25), let us rewrite it as

H0 = c2(Cj,l − 1) , Cj,l = sin2
α

2
(2j + 1)2 + cos2

α

2
(2l + 1)2 , (C.29)

5Notice that the role of T± and T±̂ as SU(2) raising and lowering operators is the opposite compared to

what is indicated by their indices. This is a consequence of right action.
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Because of the relations q = m3 + m3̂ = 0 and r = m3 − m3̂, where m3 and m3̂ are

SU(2) quantum numbers, it must hold that j and l are either both integer or half-integer.

Accordingly, r is an even or odd integer with |r| ≤ l̄ = 2min(j, l).

The field equation (3.30) contains, however, the operator

−�
′
0Y = (−�0 ± icD5)Y , (C.30)

where the sign depends on whether χ+ or χ− is considered (and on the still ambiguous

sign of c). It is straightforward to obtain

−�
′
0Y

j,l,r
0 =

(

H0 ± c2r
)

Y j,l,r
0 . (C.31)

Vector fields. Consider vector fields with covariant indices. The Laplace-Beltrami op-

erator is given by

−�1Ya =
(

−δbaDcD
c +Rb

a

)

Yb , (C.32)

From (C.13) and (C.24) we deduce that the components of Ya must carry the follwing

quantum numbers,

Y =









Y j,l,r∓1
∓1

Y j,l,r±1
∓1

Y j,l,r
0









. (C.33)

After evaluating the covariant derivatives and using (C.19), one obtains the matrix form

−�1Ya =









H0 ± a2

2 r 0 ±a3

4c (2j ± r)

0 H0 ∓ b2

2 r ∓ b3

4c(2l ∓ r)

±a3

8c (2j + 2∓ r) ∓ b3

8c(2l + 2± r) H0 +
a4+b4

4c2









Y . (C.34)

We remark that this result corrects some opf the results of Benincasa and Ramallo [18].

In fact, in contrast to what was found in [18], H0 always is an eigenvalue of this matrix,

belonging to the longitudinal vector DaY
j,l,r
0 .

For the field equation (3.35) we need the operator

−�
′
1Ya = −�1Ya − cotα EacbDcYb . (C.35)

Direct evaluation yields

EacbDcYb = −









±rc 0 ±a
2 (2j ± r)

0 ±rc ± b
2(2l ∓ r)

±a
4 (2j + 2∓ r) ± b

4(2l + 2± r) a2−b2

2c









Y (C.36)

The factor cotα is determined (C.25) up to a sign, which is related to the (unfixed) frame

orientation. One realizes that the terms in (C.34) and (C.36) combine very nicely (can-

celling the asymmetries in a and b), if the sign is fixed such that6

c =
1

sinα
⇒ cotα =

b2 − a2

4c
. (C.37)

6In [29], the sign was fixed imposing supersymmetry on T̃ 1,1. In our case T̃ 1,1 is not Einstein, so there

are no Killing spinors.
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component SU(2)× SU(2) rep. restrictions on r

+ Y j,l,r−1
−1 −2j + 2 ≤ r ≤ 2j + 2 −2l ≤ r ≤ 2l

− Y j,l,r+1
1 −2j − 2 ≤ r ≤ 2j − 2 −2l ≤ r ≤ 2l

+̂ Y j,l,r+1
−1 −2j ≤ r ≤ 2j −2l − 2 ≤ r ≤ 2l − 2

−̂ Y j,l,r−1
1 −2j ≤ r ≤ 2j −2l + 2 ≤ r ≤ 2l + 2

5 Y j,l,r
0 −2j ≤ r ≤ 2j −2l ≤ r ≤ 2l

Table 6. Restrictions on r for non-zero components of the vector (C.33).

Therefore, simplifying also by (C.26), we obtain

−�
′
1Ya =









H0 ± rc2 0 ±ac
2 (2j ± r)

0 H0 ∓ rc2 ∓ bc
2 (2l ∓ r)

±ac
4 (2j + 2∓ r) ∓ bc

4 (2l + 2± r) H0 + 2c2









Y . (C.38)

It is straightforward to calculate the eigenvalues of this matrix, but we have to be slightly

more detailed in the analysis of the spectrum. The fact that each non-zero component

of the vector (C.33) must be a valid representation of SU(2) × SU(2) poses a number of

restrictions. As for scalar fields, j and l must both be integers or half-integers, with r even

or odd, respectively. The restrictions on the range of r that arise from the non-zero vector

components are summarized in table 6. The overall range of r for a given eigenvector is ob-

tained as the intersection of all the restrictions, taking care of vanishing vector components.

Our results for the eigenvectors, eigenvalues, and ranges of r are listed in appendix C.4.

Spinor fields. In our conventions, the SO(d) generators acting on spinors are D(Tab) =

Σab =
1
4 [γa, γb], where the Dirac matrices satisfy γaγb + γbγa = 2ηab. We choose them as

γi = σi × I , γî = σ3 × σi , γ5 = σ3 × σ3 . (C.39)

Notice that they satisfy γ121̂2̂5 = −1. Furthermore, in the complex basis (C.20), we have

σ+ = σ1 − iσ2 =

(

0 0

2 0

)

, σ− = σ1 + iσ2 =

(

0 2

0 0

)

. (C.40)

This implies that the SO(d) generators needed in the covariant derivatives (C.23) are

Σ5± = ∓1

2
σ± × σ3 , Σ5±̂ = ∓1

2
I× σ± ,

Σ+− = −σ3 × I , Σ+̂−̂ = −I× σ3 .
(C.41)

The branching of this representation into representations of U(1) is given by

− 1

2
CH

abΣab = i















−1

0

0

1















. (C.42)
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We can now construct the Dirac operator, /D = γaDa. Direct evaluation yields

/D = −a

2
(σ−T+ + σ+T−)× I− b

2
σ3 × (σ−̂T+̂ + σ+̂T−̂)− cT5σ3 × σ3

− i

2

(

c+
a2

4c

)

I× σ3 +
i

2

(

c+
b2

4c

)

σ3 × I

=















−cT5 −bT+̂ −aT+ 0

−bT−̂ cT5 0 −aT+

−aT− 0 cT5 bT+̂

0 −aT− bT−̂ −cT5















+
i

8c















−(a2 − b2)

8c2 + a2 + b2

−(8c2 + a2 + b2)

a2 − b2















. (C.43)

The field equation (3.36) contains the operators (3.27). They become, in the notation of

this section,

D± = /D +
i

4
cotα (Σ+− +Σ+̂−̂)±

i

4 sinα
(γ5 + 3) . (C.44)

Using (C.37), the additional terms have the following matrix form,

i

8c
(a2 − b2)















1

0

0

−1















± ic

2















2

1

1

2















. (C.45)

As for the vector case, we realize that the sign of c implied by (C.37) is such that (C.45)

cancels the asymmetries between a and b in the Dirac operator (C.43).

By inspection of (C.43), (C.42) and (C.24), we can establish that the spinor compo-

nents must carry the following quantum numbers,

Y =















Y j,l,r
−1

Y j,l,r−1
0

Y j,l,r+1
0

Y j,l,r
1















. (C.46)

This makes it possible to replace the coset generators in (C.43) by numerical values. Using

also (C.26) we obtain

D±Y =
i

2















c(−2r ± 2) b(2l + 1− r) a(2j + 1 + r) 0

b(2l + 1 + r) c(2r + 1± 1) 0 a(2j + 1 + r)

a(2j + 1− r) 0 c(2r − 1± 1) −b(2l + 1− r)

0 a(2j + 1− r) −b(2l + 1 + r) c(−2r ± 2)















Y . (C.47)
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SU(2)× SU(2) rep. restrictions on r

Y j,l,r
−1 −2j + 1 ≤ r ≤ 2j + 1 −2l − 1 ≤ r ≤ 2l − 1

Y j,l,r−1
0 −2j + 1 ≤ r ≤ 2j + 1 −2l + 1 ≤ r ≤ 2l + 1

Y j,l,r+1
0 −2j − 1 ≤ r ≤ 2j − 1 −2l − 1 ≤ r ≤ 2l − 1

Y j,l,r
1 −2j − 1 ≤ r ≤ 2j − 1 −2l + 1 ≤ r ≤ 2l + 1

Table 7. Restrictions on r for non-zero components of the spinor (C.46).

We proceed as for the vectors, evaluating first the restrictions the SU(2) × SU(2)

representations of the single spinor components impose. Here, j and l are both integer

or half-integer, with r odd or even respectively (vice versa with respect to the scalar and

vector cases). The restrictions arising from the non-zero components are listed in table 7.

C.4 Tables of harmonics and eigenvalues

The following tables list the solutions of the harmonic analysis on T̃ 1,1 for the vector and

spinor fields. One must distinguish the generic case j 6= l, from the special case j = l,

for which Cj,l simplifies to Cj,l = (2j + 1)2. Some of the generic solutions simplify in the

special case j = l, because common factors can be pulled out of the vectors and spinors.

As a consequence, the associated range of r may be smaller than in the generic case.

As discussed in the main text, j and l are both non-negative integer or half-integer, with

r even or odd (odd or even), respectively, for vectors (spinors). We define l̄ = 2min(j, l).
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−�
′
1 eigenvector eigenvalue range of r

j 6= l



























a(2j + r)

a(2j − r)

b(2l − r)

b(2l + r)

−2cr



























H0 |r| ≤ l̄



























a(2j + r)(r + h)

a(2j − r)(r − h)

b(2l − r)(r − h)

b(2l + r)(r + h)

2c(h2 − r2)



























H0 + hc2

h = 1±
√

Cj,l

|r| ≤ l̄



























b(2l + 2− r)

0

0

−a(2j + 2− r)

0



























H0 + rc2 |r − 2| ≤ l̄



























0

b(2l + 2 + r)

−a(2j + 2 + r)

0

0



























H0 − rc2 |r + 2| ≤ l̄

Table 8. Eigenvectors and eigenvalues of the modified vector Laplacian, −�
′
1, defined in (C.35)

and given in (C.38) in matrix form. Generic case j 6= l.
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−�
′
1 eigenvector eigenvalue range of r

j = l



























a(2j + r)

a(2j − r)

b(2j − r)

b(2j + r)

−2cr



























4j(j + 1)c2 |r| ≤ 2j > 0



























a(2j + r)(r + h)

a(2j − r)(r − h)

b(2j − r)(r − h)

b(2j + r)(r + h)

2c(h2 − r2)



























[4j(j + 1) + h]c2

h = 2j + 2
|r| ≤ 2j



























a

−a

−b

b

−2c



























[4j(j + 1) + h]c2

h = −2j
|r| ≤ 2j − 2



























b

0

0

−a

0



























[(2j + 1)2 + (r − 1)]c2 |r − 1| ≤ 2j − 1



























0

b

−a

0

0



























[(2j + 1)2 − (r + 1)]c2 |r + 1| ≤ 2j − 1

Table 9. Eigenvectors and eigenvalues of the modified vector Laplacian, −�
′
1. Special case j = l.

Only the h = 2j + 2 solution exists for j = 0, while the h = −2j solution does not exist for j = 1

2
.
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eigenvector h range of r

D+



















b(2l + 1− r)

2c(h+ r − 1)

0

a(2j + 1− r)



















1±
√

Cj,l |r − 1| ≤ l̄



















a(2j + r + 1)

0

2c(h+ r − 1)

−b(2l + r + 1)



















1
2 ±

√

1
4 + Cj,l − r |r + 1| ≤ l̄

D−



















a(2j + r + 1)

0

2c(h+ r + 1)

−b(2l + r + 1)



















−1±
√

Cj,l |r + 1| ≤ l̄



















b(2l + 1− r)

2c(h+ r + 1)

0

a(2j + 1− r)



















−1
2 ±

√

1
4 + Cj,l + r |r − 1| ≤ l̄

Table 10. Eigenvectors and eigenvalues of the spinor operators D±, defined in (C.44) and given

in (C.47) in matrix form. The eigenvalue is related to h by λ = ich. Generic case j 6= l.
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eigenvector h range of r

D+



















b(2j + 1− r)

2c(h+ r − 1)

0

a(2j + 1− r)



















1± (2j + 1)
|r − 1| ≤ 2j (+)

|r| ≤ 2j − 1 (−)



















a(2j + r + 1)

0

2c(h+ r − 1)

−b(2j + r + 1)



















1
2 ±

√

1
4 + (2j + 1)2 − r

|r| ≤ 2j − 1 (+)

|r + 1| ≤ 2j (−)

D−



















a(2j + r + 1)

0

2c(h+ r + 1)

−b(2j + r + 1)



















−1± (2j + 1)
|r| ≤ 2j − 1 (+)

|r + 1| ≤ 2j (−)



















b(2j + 1− r)

2c(h+ r + 1)

0

a(2j + 1− r)



















−1
2 ±

√

1
4 + (2j + 1)2 + r

|r − 1| ≤ 2j (+)

|r| ≤ 2j − 1 (−)

Table 11. Eigenvectors and eigenvalues of the spinor operator D+. The eigenvalue is related to h

by λ = ich. Special case j = l. Notice that the range of r depends on the sign in the eigenvalue.
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