
Setting up CLUE telepresence sessions via the WebRTC
data channel

R. Presta, S. P. Romano
University of Napoli Federico II, Napoli, Italy

{roberta.presta,spromano}@unina.it

ABSTRACT
In this paper we present the current results of our ongoing
work in the field of standardization of the CLUE telepres-
ence framework within the Internet Engineering Task Force.
We first introduce the CLUE architecture and data model.
Then, we move to the definition of an application-level pro-
tocol for the negotiation and setup of telepresence sessions
between CLUE-enabled entities. We propose to transport
CLUE protocol messages on top of the WebRTC data chan-
nel, which is a further ongoing effort involving both the In-
ternet and the World Wide Web standards organizations.
The data channel allows for low-latency, secure transmission
of generic data in a peer-to-peer fashion. The paper also de-
scribes a proof-of-concept implementation of the mentioned
features. Such an implementation aims to represent a living
playground for the collection of real-world data for the defi-
nition of a call flows standard document illustrating protocol
interactions and use cases.

Keywords
Telepresence, IETF, W3C, RtcWeb/WebRTC, Network Pro-
tocols, Data Channel, Web communication, JavaScript

1. INTRODUCTION
Telepresence refers to the set of technologies allowing for
real-time communication among several remote participants
who have the sensation of being in a shared environment.
The main aim of such technologies is to let users feel like be-
ing present in a place other than their true location, by prop-
erly describing, transmitting and rendering an integrated set
of real-time multimedia streams. Telepresence session par-
ticipants have to be immersed in a properly equipped room
providing them with multi-sensorial stimuli replicating in
space and time what is going on in the remote location they
are connected to. The equipment within the room must be
able to capture and send all the information needed to allow
a high-fidelity reproduction at a remote site of local partic-
ipants’ movements, voice, appearance, background sounds,

IPTComm ’14 September 30 - October 2, 2014, Chicago, IL, USA

etc.. This can be accomplished by using ad hoc designed
rooms with, for example, multiple displays permitting life
size image reproduction, multiple cameras, microphones and
loudspeakers.

Of course, video conferencing can be seen as a basic way
of doing telepresence. However, it is not conceived at the
outset to provide such an immersive experience. Partici-
pants’ high quality video is certainly one of the main media
streams a telepresence session involves. Nonetheless, en-
riched telepresence sessions are conceptually made of more
media streams than a typical video conference. Indeed,
telepresence rooms are equipped with several capture de-
vices wisely distributed to best capture the local scene from
multiple view points. Each of these streams should be sent
to the remote site in order to make it able to choose the set
of streams that best fits its rendering capabilities, i.e., the
displays and loud-speakers installed at the remote location.
Remote sites must be informed of the contents of all received
media streams and select the most suitable combination they
wish to be provided with. The same holds for information
about original spatial distribution of the streams, which has
to be transferred to the remote site to better duplicate the
source environment.

Similarly to the case of multimedia web conferencing [4], the
need for standardization arises to address interoperability is-
sues. Several proprietary telepresence systems exist to date
but, although mainly based on open standards (SIP, RTP,
H.264, the H.323 suite), their interoperability is achievable
only by means of operator assistance and expensive addi-
tional equipment allowing for intercommunication among
heterogeneous vendor platforms. The main obstacle is the
lack of a common way for fully describing and negotiating
the multiple media streams involved in a telepresence ses-
sion. The Internet Engineering Task Force (IETF) standard-
ization body created in 2010 a dedicated working group to
address the problem, named “CLUE” (ControLling mUltiple
streams for tElepresence) [1].

The authors of this paper are active participants in the
mentioned working group, with special focus on the defi-
nition of the data model associated with the description of
telepresence sessions, as well as of the protocol used to ex-
change this type of information between CLUE-enabled par-
ticipants. Within the framework of such activities, we have
worked on prototype implementations of the proposed ideas,
so to make available to the community a living experimen-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/74316001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tation playground to be leveraged for on-the-field evaluation
of the actual operation of the ongoing standard proposals.
More precisely, we have recently focused on the realization
of a simple architecture involving two CLUE-enabled enti-
ties willing to negotiate, through the CLUE protocol and
by leveraging the CLUE data model, a simple yet complete
telepresence session. Since the protocol we are defining runs
at the application level, we chose to rely, for the transport
of its messages, on the WebRTC [3] data channel, which is a
logical abstraction for a generic, peer-to-peer data commu-
nication link between any pair of WebRTC-enabled entities
(either browsers or a different kind of endpoints compliant
with the WebRTC specification). The data channel is a
further ongoing standardization effort being developed as
part of a joint initiative between the IETF (where a work-
ing group called RtcWeb [2] has been created) and the World
Wide Web Consortium (W3C).

This paper deals with the above mentioned activities and
is structured in eight sections. We start by providing the
reader with some related work in Sec.2 and with the needed
background information about telepresence standardization
activities within the IETF in Sec. 3. Then, we dig into some
of the details of the CLUE protocol, in Sec. 4. A quick intro-
duction to WebRTC and the data channel is hence provided
in Sec. 5, which preludes to the definition of an integrated
approach to the setup of CLUE sessions on top of such an
advanced communication means. A simple explanatory ex-
ample of the mentioned ideas is reported in Sec. 7, which
illustrates how to negotiate and properly set up (between
any pair of WebRTC-compatible browsers) a simple telep-
resence session by exchanging, on top of the data channel,
CLUE protocol messages. Sec. 8 concludes the paper, by
summarizing its main achievements, at the same time dis-
cussing open issues and identifying some directions of our
future investigations in the field.

2. RELATED WORK
Telepresence, conceived in a broad sense as the sharing of
a virtual environment among remote communicating users,
has been widely investigated in the literature [11]. The term
first appeared in a well known work on the topic from Min-
sky, published in 1980 and referring to a teleoperation sce-
nario with a human agent having the perception of being
and acting in the remote site thanks to the stimuli provided
by the user interface of the system. The user experience, and
the human factors design issues in general, are indeed among
the main targets of the research efforts [6] for technology in-
novations. Three-dimensional technologies have become one
of the most active areas of investigation. Their incorpo-
ration into dedicated conference rooms provides end users
with life-sized and realistic 3-D virtual audio-visual immer-
sive environments [8].

From a communication network perspective, commercial telep-
resence systems typically rely on proprietary conferencing
architectures realized ad-hoc to best exploit the features of
the inter-communicating conference rooms. As already men-
tioned in Sec. 1, though such systems usually exploit existing
standard technologies, conference sites equipped by different
vendors are not able to interoperate because of the lack of a
common framework enabling for the comprehensive descrip-
tion and negotiation of the involved media streams. This is

recognized as one of the main limits of the current telepres-
ence systems1 and that’s why, besides the IETF, also the
ITU standardization body activated some study groups on
the topic2.

At the time of writing, the IETF interoperability research
effort on telepresence systems is near to completion. The
paper discusses such an effort from an insiders’ perspective
and provides a prototype implementation of the developed
framework. The prototyping activity has already proved to
be useful for the standards development process, thanks to
the insights deriving from the practical implementation of
real world scenarios [5].

To the best of our knowledge there are no other works in
the literature about CLUE results and experimentation. In
particular, this work represents a first attempt of combining
CLUE mechanisms with the upcoming web real time com-
munication technologies.

3. THE CLUE FRAMEWORK AND DATA
MODEL

Among the major interoperability requirements imposed by
telepresence, there are those related to the description of
the available media streams a transmitting site can send to
remote sites. Such a description should help the receiver
in the selection process and in the rendering phase which is
critical for the provisioning of a real“being-there”experience
to the telepresence user.

In SIP-based conferencing, media streams in a multimedia
session are usually described (in terms of their type, as well
as available encodings) by means of the Session Description
Protocol (SDP). Nonetheless, SDP and its extensions do not
address the aforementioned description needs. First, SDP
does not envision the possibility to provide spatial informa-
tion about media streams. Second, the“content”SDP exten-
sion [9], conceived to specify the information represented by
the media stream in a more detailed fashion than the media
description line, has been considered unsatisfactory to rep-
resent the complete semantics of the streams involved in a
telepresence session, since it does not cover all of the desired
facets. Moreover, its intrinsic ambiguity makes it unsuit-
able to be machine-interpreted. Such a limitation explains
why the media streams negotiation carried out by means of
SDP within SIP cannot fulfill completely the telepresence
requirements.

The CLUE framework aims to define information for the
set up of a telepresence session. Negotiation mechanisms
are also specified on the basis of both the collected require-
ments [16] and the envisioned use cases [17]. The CLUE
framework document [7] provides the big picture about the
overall architecture.

For the sake of simplicity, the focus is on the communica-
tion between a Media Provider (transmitting endpoint, MP)
and a Media Consumer (receiving endpoint, MC), though

1http://www.forbes.com/sites/ciocentral/2012/05/03/5-
reasons-cisco-and-polycom-are-in-trouble-in-telepresence/
2http://www.itu.int/ITU-T/studygroups/com16/sg16-
q5.html



Figure 1: CLUE signaling overview

each dialogue should be considered bidirectional and mul-
tiple endpoints communication scenarios are allowed by in-
troducing Multipoint Control Units acting as the center of
a star communication topology.

From a signaling [12] perspective (Fig.1), the two endpoints
first set up a signaling channel (the CLUE data channel
[10]) and then start to exchange the metadata about the
media streams and their desired configuration by means of
a dedicated protocol (the CLUE protocol [15], which will
be further detailed in the following). Such a protocol essen-
tially envisions an ADVERTISEMENT message, sent from the
MP to the MC, and a CONFIGURE message, flowing along the
opposite direction as a response to the received ADVERTISE-

MENT message. By means of the ADVERTISEMENT message,
the Media Provider informs the Media Consumer about its
telepresence capabilities, i.e., a set of properly arranged in-
formation about the available media and related metadata.
On the other hand, the CONFIGURE message allows the re-
ceiver to communicate to the sender the results of its in-
ternal selection process, by indicating the media streams of
interest, as well as their detailed configuration.

Besides the big picture, the CLUE framework drills down
the details about the information that needs to be exchanged
by means of the protocol. Such an information is formally
defined in [14] by using the XML Schema language. The
telepresence capabilities of the MP are mainly described in
terms of:

• media captures: within the CLUE framework, media
captures are the fundamental representations of the
streams an endpoint can transmit. They can represent
the immediate output of either a physical source (e.g.,
camera, microphone) or a “synthetic” source (e.g., lap-
top, computer, DVD player), but also concepts such
as “the loudest speaker stream”.

• encoding groups: groups of encodings sharing a certain
maximum bandwidth. Each media capture is indeed
associated with an encoding group, meaning that it can
be encoded with the encodings included in the group.
Media captures sharing the same group must respect
the maximum bandwidth constraints when encoded.

• capture scenes: aggregates of media captures seman-
tically and/or spatially related, i.e., representing the
same subjects/portion of the room and/or sharing the
same coordinate space. This grouping of captures helps
the Media Consumer understand which captures rep-
resent a certain view of the remote telepresence end-
point.

• simultaneous sets: groups of captures that can be en-
coded and sent simultaneously.

On the other hand, the Media Consumer needs to specify
the desired streams in terms of capture encodings, a term
used in CLUE to indicate the real media streams resulting
from the instantiation of a certain media capture encoded
with certain encodings. Capture encodings allow a Media
Consumer to specify also some options about the selected
captures.

A significant part of the efforts in CLUE has been devoted
to the design of the attributes that can be used to charac-
terize media captures. Such attributes include of course the
spatial information about the captures, that can be repre-
sented with the position of the capturing device within the
source environment and, when dealing with video captures,
also with the coordinates of the represented area. Besides
that, other features like the potential mobility of the capture
point, information about the represented participants (e.g.,
their names and roles in the conference), the switching pol-
icy according to which the content of the capture is changed
(e.g., the loudest segment representation), can be indicated.

Such an organization of the advertised information allows
the Media Consumer to clearly understand (both spatially
and semantically, not to say quantitatively) the telepresence
options available on the Media Provider’s side. As a con-
sequence, the Media Consumer can formulate its request of
media streams being aware of all the necessary information
and constraints that need to be mapped with its receiving
and rendering capabilities.



Figure 2: CLUE protocol state machine

4. CLUE PROTOCOL
The CLUE protocol is the client-server application proto-
col conceived for the set up and configuration of a CLUE
telepresence session. CLUE protocol messages are textual,
XML-based messages flowing between the CLUE endpoints
linked by the CLUE data channel. They basically carry in-
formation imported from the XML-based CLUE data model
in order to let Media Providers announce their telepresence
capabilities (in terms of media captures, encoding groups,
etc.) and Media Consumers request the desired multimedia
streams among those advertised.

Fig.2 represents the state machine of a CLUE endpoint. If
the data channel set up phase is successfully completed, the
CLUE endpoints move from the IDLE state to the ESTAB-
LISHED one, where the initiation phase takes place. The
CLUE protocol comes into action at that moment (NEGO-
TIATING state). By means of a special couple of CLUE
messages (OPTIONS and OPTIONS RESPONSE), the CLUE
endpoints agree on the version of the CLUE protocol and on
the options to be used in the telepresence session. At the
end of that basic negotiation, each CLUE endpoint starts
its activity as a Media Provider and/or Media Consumer
(SUBIDLE-MP and SUBIDLE-MC macro states, respec-
tively).

Media Provider and Media Consumer state machines are
not presented for the sake of brevity. On the MP’s side,
the ADVERTISEMENT message is sent to the other endpoint
as soon as the initiation phase is completed, while on the
MC’s site, the endpoint is idle waiting for an ADVERTISE-

MENT, from which a reply is properly built in the form of a
CONFIGURE message. Besides ADVERTISEMENT and CONFIG-

Figure 3: Schema of the ADVERTISEMENT message

URE, other messages have been conceived in order to provide
all the needed mechanisms and operations.

All CLUE messages show a common basic structure which
is specialized with specific information from case to case. In
Fig.3 the ADVERTISEMENT example, extrapolated from
the schema file under standardization, is depicted. The com-
mon part (“clue message type”) includes information like the
version of the protocol and the sequence number, while all
the information presented in Sec. 3 and needed to appropri-
ately describe the telepresence offer of the MP appears in
the specialized part of the message (“advertisement message
type”).

5. WEBRTC AND THE DATA CHANNEL
Web Real Time Communication (WebRTC) [13] is the new
frontier of web-based interaction and collaboration. It is an
upcoming new standard which aims to enable real time com-
munication among web browsers in a Peer-to-Peer fashion.
The IETF RTCWeb and the W3C WebRTC working groups
are jointly defining both the Application Programming In-
terfaces and the underlying communication protocols for the
setup and management of a reliable communication channel
between any pair of next-generation web browsers. The ob-
jective of the mentioned standardization activities is to de-
fine a W3C Application Programming Interface (API) that
enables a web application running on any device, through
the secure access to the input peripherals (such as webcams
and microphones), to send and receive real-time media and
data in a peer-to-peer fashion between the browsers. The
design of the API leaves the web developer free to imple-
ment functionality for finding and connecting participants
in a communication session. It relies on existing protocols
identified by the IETF community as the most appropriate
to address the network-related aspects (control protocols,
connection establishment and management, connection-less
transport, selection of the most suitable encoders and de-
coders, etc.). The architectural model of real-time com-
munication, the so called Browser RTC Trapezoid, allows
the media path to flow directly between browsers without
any intervening servers, while the related signaling path
crosses servers that can modify, translate or manage sig-
nals as needed. The WebRTC API defines the mechanisms
allowing client-side web applications (typically written in a
mix of HTML and JavaScript) to interact with web browsers
in both a proactive (e.g., to query browser capabilities) and
a reactive (e.g., to receive browser-generated notifications)



way. The mentioned application-browser API actually pro-
vides a wide set of functions, like connection management
(in a peer-to-peer fashion), encoding/decoding capabilities
negotiation, selection and control, media control, firewall
and NAT traversal. As part of the API, the RTCDataChan-

nel interface represents a bidirectional data channel for the
streaming of generic data between two peers. Each data
channel has an associated underlying data transport that
is used to transport data to the other peer. The transport
protocol between the peers is SCTP (Stream Control Trans-
mission Protocol). An RTCDataChannel can be configured
to operate in different reliability modes. A reliable chan-
nel ensures that data is delivered to the other peer through
retransmissions. An unreliable channel is configured to ei-
ther limit the number of retransmissions or set a time during
which retransmissions are allowed.

Fig. 4 provides the big picture associated with a complete
WebRTC call flow involving a channel Initiator, a channel
Joiner, and a signaling server relaying messages between
them at channel setup time.

The sequence diagram evolves through the following macro-
steps:

1. The Initiator connects to the server and lets it create
the signaling channel;

2. The Initiator (after getting user’s consent) gets access
to the user’s media;

3. The Joiner connects to the server and joins the chan-
nel;

4. When the Joiner also gets access to the local user’s
media, a message is sent to the Initiator (through the
server), triggering the negotiation procedure:

• The Initiator creates a PeerConnection, adds the
local stream to it, creates an SDP offer, and sends
it to the Joiner via the signaling server;

• Upon receipt of the SDP offer, the Joiner mirrors
the behavior of the Initiator by creating a Peer-

Connection object, adding the local stream to it,
and building an SDP answer to be sent back (via
the server) to the remote party.

5. During negotiation, the two parties leverage the signal-
ing server to exchange network reachability informa-
tion (in the form of ICE protocol candidate addresses);

6. When the Initiator receives the Joiner’s answer to its
own offer, the negotiation procedure is over: the two
parties switch to peer-to-peer communication by ex-
ploiting their respective PeerConnection objects, which
have also been equipped with a data channel that can
be used to exchange text messages directly

It is on top of the above mentioned data channel that we let
two CLUE-enabled peers exchange CLUE protocol informa-
tion, as it will be illustrated in the next section.

Figure 4: Basic WebRTC call flow



6. RUNNING THE CLUE PROTOCOL ON
TOP OF THE DATA CHANNEL

As we briefly illustrated in Sec. 3 when discussing signaling
in CLUE, the basic use case behind the CLUE protocol en-
visages the presence of two endpoints, each acting as both
a Media Provider (MP) and a Media Consumer (MC) and
exchanging with the remote party spatial information about
the available media streams through the two main protocol
messages, namely ADVERTISEMENT and CONFIGURE.

Before being able to do so, it is mandatory for the two par-
ties to exchange properly formatted Offer/Answer messages
aimed at establishing both a basic multimedia session and,
more importantly, the so-called CLUE channel to be used for
all subsequent CLUE-related information exchanges. Such
a channel is indeed fundamental since it in the first place
represents a means for an endpoint to indicate to the other
party its capability to ‘communicate’ through the CLUE
protocol.

Across the CLUE channel, each endpoint acting as a Media
Provider sends to the remote party a detailed description (in
terms of features and capabilities) of the streams it is capa-
ble to produce. This is achieved through the creation of an
ADVERTISEMENT message. Upon reception of such a message,
the remote party, this time playing the Media Consumer
role, can properly build a CONFIGURE message containing in-
formation about the streams (as well as related features) the
recipient is willing to get from the producer. This message
exchange must be followed by a further Offer/Answer phase
aimed at properly updating the features of the real-time
communication channel between the two parties.

From this perspective, CLUE is a meta-protocol sitting on
top of existing (even though possibly enhanced) session setup
protocols like SDP and as such it calls for some form of
loosely coupled synchronization between CLUE-level and
session-level information (e.g., to associate CLUE stream
identifiers with SDP media identifiers).

From the above discussion, it looks clear how the integra-
tion between CLUE and WebRTC can actually take place in
a quite straightforward way. Indeed, the tools made avail-
able for real-time communication between browsers func-
tionally mirror those required for CLUE-enabled informa-
tion exchanging. The WebRTC MediaStream API makes
available suitable tools for the effective management of mul-
timedia streams. Real-time peer-to-peer communication is
enabled by the PeerConnection API. The DataChannel API
provides the required message exchanging functionality on
top of the CLUE channel.

7. A PROOF-OF-CONCEPT PROTOTYPE
In this section we briefly describe how we implemented a
simple prototype for the experimental study of the behavior
of the CLUE protocol in a number of telepresence scenarios
deployed in the context of WebRTC. We will first touch upon
the overall design of the prototype architecture and hence
dig into some relevant implementation details. Finally, we
will discuss some of the scenarios we were able to reproduce.

In order to effectively emulate a telepresence scenario by

using two WebRTC-enabled endpoints, it is clearly neces-
sary to make available multiple streams per each involved
partner: in such a case it is in fact useful to properly ‘ad-
vertise’ the availability of a set of alternative rendering op-
tions (e.g., in terms of spatial information) among which the
receiver can choose its preferred ‘configuration’. We have
hence decided to use three different cameras and three dif-
ferent ‘screens’ per side. We have then analyzed the behavior
of the CLUE protocol, given the mentioned setup represent-
ing a fictitious scenario involving two simple telepresence
rooms. Each endpoint has hence been realized as a We-
bRTC application capable to gain access to three different
multimedia flows (associated with the three available cam-
eras) and advertise their availability to the remote party.
The application starts with the exchanging of a first video
flow allowing for the initialization of a basic WebRTC ses-
sion. Once the basic session has been set up, the CLUE
protocol comes into play: (i) ADVERTISEMENT messages are
sent across the instantiated data channel by both sides to in-
form the recipient about the available sender’s transmission
options; (ii) CONFIGURE messages flow along the opposite di-
rection in order to allow the recipients to properly set the
desired reception options. The CLUE protocol is hence used
to properly negotiate the addition of two more (customized)
streams to the basic WebRTC session negotiated at session
setup time.

7.1 Prototype architecture
As Fig. 5 shows, the prototype has been implemented as a
typical WebRTC application, involving two browsers which
both execute some JavaScript code embedded inside an HTML5
web page downloaded from a server. The server also acts as
the needed signaling ‘mediator’ to be leveraged at session
setup time by both endpoints (see Sec. 5). In the picture,
the channel named PEER CONNECTION is the one used
for the transport of multimedia flows; the companion DATA
CHANNEL link is instead used for the exchanging of CLUE
protocol messages.

The endpoint application used by both parties is the Google
Chrome Canary browser. The signaling server is realized
with Node.js, an extremely powerful software platform based
on a single-threaded event loop management process (mak-
ing use of nonblocking I/O) and allowing users to easily build
scalable server-side applications with JavaScript. We also
used Adapter.js, a handy JavaScript shim library that helps
the programmer by properly abstracting browser prefixes, as
well as other browser differences and changes in the way ven-
dors are currently interpreting the specs. Finally, we have
developed a further JavaScript library, named CLUE.js, to
deal with the construction of CLUE messages starting from
JSON (JavaScript Object Notation) templates stored at the
Web Server and which can be flexibly manipulated through
specific methods for the transformation in either XML or
string format.

7.2 A simple telepresence scenario
As already anticipated, the structure of the sample telepres-
ence application is based on the acquisition and configura-
tion of three different video sources to be exchanged between
the two CLUE-enabled parties in a customizable fashion.
The web interface associated with such a scenario envisages
the presence of two different three-views panels, as shown



Figure 5: CLUE over WebRTC prototype structure

Figure 6: Prototype in action: main window structure

in Fig. 6. The upper panel refers to the local view of the
acquired streams (i.e., the streams that can be advertised
to the remote party). The lower panel is instead associated
with the rendering of the streams received from the remote
endpoint (i.e., those that the remote endpoint has adver-
tised and which have been properly configured by the local
endpoint through the transmission of a CONFIGURE message).

The first step of the proof-of-concept scenario we imple-
mented envisages the acquisition, on the Media Producer
side, of the three available video flows (one per each camera
attached to the producer’s laptop). Such a phase is imme-
diately followed by the setup of the data-channel-enabled
WebRTC session between the two parties. As soon as the
session is set up, the Media Producer starts waiting for the
parameters needed for the construction of an ADVERTISEMENT

message. This is shown in Fig. 7

CLUE message parameters are initialized through the con-
figuration panels available in the Local Video and Remote
Video sections of the prototype main window. Such pan-
els are disabled at application startup. As soon as local
streams become available (i.e., right after the getUserMe-

dia() calls have successfully completed), the ADVERTISEMENT
configuration panels get activated, hence allowing the Me-
dia Producer to properly set the properties of the advertised
streams. Similarly, when a remote stream is attached to the
corresponding HTML5 <video> tag in the web GUI, the
panel associated with the characterization of a CONFIGURE

message is activated.

On the producer’s side, once the set of resolutions to be ad-
vertised has been chosen per each available stream, a proper

Figure 7: Sender side ready to send ADVERTISE message

Figure 8: Receiver side before CONFIGURE message

ADVERTISEMENT message is built through the CLUE.js library
and sent to the consumer across the data channel. The same
happens on the consumer’s side when it comes to the con-
struction of the desired CONFIGURE message.

Coming back to the prototype, as Fig. 7 shows, on the
provider’s side multiple streams can be acquired and an AD-

VERTISEMENT can then be manually configured.

On the consumer’s side, we initially get just the stream asso-
ciated with the basic multimedia session configured at setup
time, i.e., before the CLUE protocol comes to the fore. This
is shown in Fig. 8.

Once the CLUE protocol has been activated and after the
producer has sent its ADVERTISEMENT to the remote party,
the desired CONFIGURE message can be constructed by the
consumer and sent back to the other peer. Thanks to the
CONFIGURE message, the producer becomes aware of the streams
(each with specific resolution features) that must be added
to the communication. In the screenshot in Fig. 9, we report
an example where the consumer requests a 640x480 stream
to be attached to the middle panel and two 320x180 streams
to be associated with left and right panels, respectively.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented the current achievements of our
ongoing work in the field of telepresence, with a special fo-

Figure 9: Receiver side after CONFIGURE message



cus on protocol standardization activities, as well as on the
implementation of proof-of-concept prototypes to be used
for testing and validation purposes. All of the results we
presented are work in progress and hence subject to sub-
stantial changes as long as the standardization activities get
further developed. For what concerns our future activities,
we plan to keep on refining the specification of the CLUE
protocol and data model based on the feedbacks coming from
the IETF community. We also intend to improve the pro-
totype and keep it aligned with the specs. The up-to-date
prototype will be also leveraged to actively contribute to the
realization of a call flows document to be used by implemen-
tors as a useful practical reference associated with the inner
workings of the CLUE protocol and framework. Finally,
based on the consideration that our work actually integrates
two different yet related contexts, namely telepresence and
web real-time communication, we also plan to further foster
the seminal cross-fertilization activities between the RtcWeb
and the CLUE working groups within the IETF.

Acknowledgments
This work was partially funded by the Italian Ministry of Ed-
ucation, University and Research (MIUR) within the frame-
work of projects PON01 01007 “PLATform for INnOative
services in future internet” (PLATINO) and PON04a2 C
(“SMART HEALTH’).

9. REFERENCES
[1] CLUE, ControLling mUltiple streams for tElepresence

(IETF). http://tools.ietf.org/wg/clue/charters.

[2] Real-Time Communication in WEB-browsers (IETF).
http://tools.ietf.org/wg/rtcweb/charters.

[3] Web Real-Time Communications Working Group
Charter (W3C).
http://www.w3.org/2011/04/webrtc-charter.html.

[4] A. Amirante, T. Castaldi, L. Miniero, R. Presta, and
S. P. Romano. Standard multimedia conferencing in
the wild: the Meetecho architecture. Multimedia Tools
and Applications, Springer, September 2011.

[5] M. Barnes, L. Miniero, R. Presta, S. P. Romano, and
H. Schulzrinne. CCMP: a novel standard protocol for
conference management in the XCON framework. In
IPTComm’10, pages 91–100, 2010.

[6] B. Deml. Human Factors Issues on the Design of
Telepresence Systems. Presence, 16(5):471–487, Oct
2007.

[7] M. Duckworth, A. Pepperell, and S. Wenger.
“Framework for Telepresence Multi-Streams” – Work
In progress (Internet Draft).
draft-ietf-clue-framework-16, June 2014.

[8] J. Edwards. Telepresence: Virtual Reality in the Real
World [Special Reports]. Signal Processing Magazine,
IEEE, 28(6):9–142, Nov 2011.

[9] J. Hautakorpi and G. Camarillo. The Session
Description Protocol (SDP) Content Attribute. RFC
4796, February 2007.

[10] C. Holmberg. “CLUE Protocol Data Channel” – Work
In progress (Internet Draft).
draft-ietf-clue-datachannel-00, March 2014.

[11] W. A. Ijsselsteijn. History of Telepresence, pages 5–21.
John Wiley & Sons, Ltd, 2006.

[12] P. Kyzivat, C. Groves, and R. Hansen. “CLUE
Signaling” – Work In progress (Internet Draft).
draft-ietf-clue-signaling-02, July 2014.

[13] S. Loreto and S. P. Romano. Real-Time
Communications in the Web: Issues, Achievements,
and Ongoing Standardization Efforts. Internet
Computing, IEEE, 16(5):68–73, Sept 2012.

[14] R. Presta and S. P. Romano. “An XML Schema for
the CLUE data model” – Work In progress (Internet
Draft). draft-ietf-clue-data-model-schema-06, July
2014.

[15] R. Presta and S. P. Romano. “CLUE protocol” – Work
In progress (Internet Draft).
draft-ietf-clue-protocol-00, June 2014.

[16] A. Romanow, S. Botzko, and M. Barnes. Requirements
for Telepresence Multistreams. RFC 7262, June 2014.

[17] A. Romanow, S. Botzko, M. Duckworth, and R. Even.
Use Cases for Telepresence Multistreams. RFC 7205,
April 2014.


