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Abstract. A comparison between the hybrid method (PHANN – Phys-
ical Hybrid Artificial Neural Network) and the 5 parameter Physical
model, which have been determined by the particle filter algorithm, is
presented here. These methods have been employed to perform the day-
ahead forecast of the output power of a photovoltaic plant. The aim of
this work is to assess the forecast accuracy of the two methods.
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1 Introduction

Photovoltaic (PV) systems and, more in general, Renewable Energy Sources
(RES) are highly unpredictable due to the uncertainty of the weather forecast.
The energy prediction has been often applied to the electric loads and is a typ-
ical application of time series analysis methods. In recent years several power
forecasting models related to PV plants have been developed. Many methods
have been employed to perform the day-ahead forecast of the hourly output
power curve (given from 24 up to 48 h in advance) as reported in [1]. The exist-
ing methods can be mainly classified into three categories: physical, statistical
and hybrid. A physical algorithm can be defined as a deterministic model which
mathematically identifies the relationship between the input and the output of
the system. An Artificial Neural Network, instead, stochastically describes the
relationships between the input parameters and the output of the system with
a weighted average sum of the input. A hybrid method is considered as any
combination of the previous groups of forecasting models. Some of these models
have been employed to forecast solar radiation [2,3], while other works present
models specifically dedicated to the forecasting of the hourly power output from
PV plants [4,5]. Nowadays the most applied techniques to model the stochastic
nature of solar irradiance at the ground level, and thus the power output of
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PV installations, are the statistical methods. In particular, regression methods
are often employed to describe complex non-linear atmospheric phenomena for
few-hours ahead forecast and specific soft-computing techniques based on arti-
ficial neural network (ANN) are used for few-hours power output forecast [6].
Some other authors using physical methods report the comparison of the results
obtained with different models based on two or more forecasting techniques [7].
Only a few papers describe the forecasting models used to predict the daily irra-
diance or directly the energy production of the PV plant for all the daylight
hours of the following day [7–9].

ANN needs to be trained with historical data, and sometimes these data are
not available. Therefore, it is necessary to adopt a different forecasting algorithm
combining weather forecast with the PV plant physical parameters [10] estimated
by knowing the specific model of the PV system.

In this paper a comparison between two forecasting models, namely a physical
and a hybrid one is provided. The first is the well known five parameters model
of the PV module, which are estimated with the particle filter algorithm, and
the second is the recently developed PHANN (Physic Hybrid Artificial Neural
Network), presented in [11].

2 Physical Model of the PV Cell

One of the most complete physical model to describe the PV module power is
based on five parameters. The equivalent circuit in Fig. 1 includes RSH,c called
“cell shunt resistance”, which is connected in parallel to the photo-current gen-
erator IPV and second resistance (RS,c), called “cell series resistance”, which is
connected in series to the cell terminals. Therefore the five-parameter model,
can be defined by:

– IPV , the light-generated current,
– ID, the reverse saturation current of the PN junction,
– n, the diode ideality factor.

I = IPV − I0 ·
(

e

V + Rs,c · I

n · Vt − 1

)
− V + Rs, c · I

RSH,c
(1)

The IV characteristic curve of the PV cell mainly depends on solar irradiance
and PN junction temperature. The latter depends on several parameters such as:
the actual irradiance GTOT on the cell, the ambient temperature Tamb, the wind
speed and the wind direction. The cell temperature can also be evaluated starting
from the measurement of the ambient parameters by means of two different
models: the nominal operating cell temperature (NOCT) [12], which is the cell
operating temperature under certain conditions (Tamb = 20◦C, GNOCT = 800
W/m2, wind speed = 1 m/s without thermal convection on the back of the PV
module), and the SANDIA model [13].

The complete dissertation of this model, linking solar radiation, ambient
temperature and PV power output of the module is described in [10,14].
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Fig. 1. Circuit of the five-parameter equivalent model.

3 Physical Hybrid Artificial Neural Network

In this work the recently developed [11] Physic Hybrid Artificial Neural Network
(PHANN) is adopted to enhance the forecast by combining both the physical
Clear Sky Solar Radiation Algorithm (CSRM) by Hottel [15] and the stochastic
ANN method. The physical algorithm has been used to identify the maximum
solar radiation exploitable in a given PV plant, the sunrise and the sunset hours,
in order to exclude all the night time steps with null PV power output.

4 Particle Filter

In this section, an innovative algorithm for state and parameter estimation will
be applied for the evaluation of characteristic quantities associated to a PV
module. Then the results obtained with the following technique will be compared
to those derived from the PHANN method reported in this paper.

Particle filters are a set of algorithms based on Monte Carlo technique for the
estimation of the dynamic evolution of a system [16]. Let’s consider a dynamical
system in the continuous time, described by:

ẋ = f1(x, u, θ, w) (2)
y = g1(x, u, θ, v) (3)

where x ∈ R
n is the vector of state variables, u ∈ R

q is the vector of control
quantities, y ∈ R

m is the set of output measured variables and θ ∈ R
p is the space

of unknown parameters; w and v represent the random variables used to express
the uncertainty associated to the model and to the measurement procedure.

In order to implement the technique, it is necessary to first discretize the
model of both the system evolution and of the measurement procedure.

xk = f2(xk−1, uk−1, θk−1, wk−1) (4)
yk = g2(xk, uk, θk, vk) (5)

In this context, the model has been applied mainly for parameter estimation;
thus it is convenient to add a fictitious dynamic of the unknown parameters in
order to take into account the incremental estimation process:
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θk = H(θk−1, εk−1) (6)
yk = G(θk, ηk) (7)

In (6) and (7) the fictitious model associated to the parameter evolution and
the actual measurement process description are shown, respectively. In general,
both H and G are non-linear functions subjected to white noise.

4.1 Particle Filter Implementation

The particle filter algorithm based on Sequential Monte Carlo simulation [16] has
been implemented for the parameter estimation. This technique is based on the
Bayesian approach and it aims at identifying, among a group of N independently
simulated dynamical evolutions of the system called particles, the ones that
are most likely to match the actual condition of the equipment, according to
the comparison with measured data. At each time step, the filter evaluates the
probability distribution a posteriori of each unknown state or parameter, starting
from a given state supposed a prior. Each particle is then weighted according to
its likelihood function.

One of the problems associated with the Bayesian approach is that it needs
to deal with probabilistic functional analysis, as all the terms involved are proba-
bility distribution functions. In general it is not so easy to analytically derive the
product of these functions, especially in non-linear systems having non-Gaussian
distributions. Therefore a Monte Carlo scheme may be adopted to numerically
retrieve the result. A certain number N of independent dynamics of the systems
(particles) are simulated and each of them is weighted by the likelihood function,
in order to assess its coherence with the measurements performed on the system.

First of all it is necessary to guess a state a priori for the Bayesian scheme.
In order to keep track of the previous values of the parameter and improve the
convergence rate of the estimation process, this state is evaluated starting from
the estimation at the previous step, according to the fictitious dynamical process
introduced in (6). In the following, a linear model is adopted.

θ̃k,i = θk−1,i + εk−1,i i = 1..N (8)

Once the prior state is determined, the weight of each particle is evaluated con-
sidering a Gaussian distribution for the likelihood as in (9) and the normalized
weights are obtained (10).

Lk,i(yk|θk,i) =
1√

(2π)m|Rk|e
−0.5(yk−G(θ̃k,i))

T R−1
k (yk−G(θ̃k,i)) (9)

wk,i =
Lk,i∑N
i=1 Lk,i

(10)

Once the weights of all the particles in all the independent N cases are known,
it is possible to calculate the mean and standard deviation as compact indexes
of the discrete probability distribution function, according to (11) and (12):
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θk =
N∑

i=1

wk,iθ̃k,i (11)

σ2
θk

=
N∑

i=1

wk,i(θ̃k,i − θk)2 (12)

The whole process is then carried out iteratively for all the time steps.

5 Case Study and Data Analysis

In the considered application, the particle filter has been implemented for esti-
mation of characteristic input of the five parameter model, described in Sect. 2.
Indeed these quantities are peculiar for each PV module, are time-varying and
they strongly depend on the actual operating conditions of the system. Thus a
model-based algorithm able to track them in real time starting from the model
equations and the measurements during operation may allow an effective esti-
mation of such parameters.

The particle filter has been used, in particular to track the values of the
series resistance Rs and the photo-generated current IPV . The diode ideality
factor n and the reverse leakage current I0 have been taken from literature.
The fictitious dynamical model explained in (8) by considering the ClearSky
algorithm [15] which has been calculated in two successive samples of time k − 1
and k, has been implemented as follows:

IPV (k) = IPV (k − 1) · ClearSky(k)
ClearSky(k − 1)

· ε (13)

Rs(k) = Rs(k − 1) + K · Rs(k − 1) · ε (14)

where ε is a number randomly drawn by a Gaussian distribution. The filter is
disabled when the ClearSky algorithm predicts a null power production and the
current is randomly initialized after the filter is reactivated.

As regards the measurement, the following equations can be derived from
the equivalent model of the photovoltaic cell.

Iout = (IPV (k) − ID) · Rp(k)
Rs(k, i) + Rp(k, i)

− VDC

Rs(k, i) + Rp(k, i)
(15)

Pout = (IPV (k) − ID) · (VDC + Rs(k)) − Rs(k) · I2out − (VDC + Rs(k) · Iout)
Rp

(16)

In Fig. 2(a) a comparison between the particle estimator and the analytic
solution of the model has been carried out. The last values have been derived
considering the exact solution of the model, obtained assuming the values of
the equivalent circuit parameters measured on the plant. These data have been
assumed as reference values and are used in order to test the algorithm effec-
tiveness. The error associated to the estimation process is reported in Fig. 2(b)
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with respect to the photo-generated current; here it is possible to see that the
maximum difference is located in the first and last hours of each day, where the
approximation introduced by the filter is higher; however it is possible to see an
asymptotic decrease of the error thanks to the filter convergence.

Fig. 2. Estimated photo-generated current and its error

5.1 Numerical Results and Discussion

The parameters of the physical model have been estimated by means of the
particle filter, as already explained in the previous section. These parameters
have been employed to forecast the PV power output and to make a comparison
with the actual ones provided by a PV module. These experimental data are
collected at the SolarTechLab, Politecnico di Milano (Italy), whose geographical
coordinates are: latitude 45.502941N, longitude 9.156577E. One 245 Wp rated
power crystalline silicon PV module facing South, 30 deg tilted is considered. The
weather forecasts for this site are provided 24 h in advance by a meteorological
service (at 11PM of the day before the forecast one). A full list of the parameters
employed for the training of the PHANN is reporter here below:

– Day of the year and hour of the day
– Global Horizontal Clear Sky Solar Radiation
– Wind Direction and speed
– Pressure
– Humidity Relative
– Rain
– Ambient temperature
– Global Horizontal Solar Radiation
– PV module DC Power Output

According to preliminary setup, PHANN is composed by two layers with 100
neurons in the first hidden layer and 50 neurons in the second. The activation
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Fig. 3. Daily Normalised Mean Absolute Error calculated by different methods

function in the neurons is the sigmoidal function. These settings have been cho-
sen after preliminary results which are exposed in a previous work [11]. PHANN
is trained with the hourly parameters of the 11 days before of the forecast ones.
The results shown in Fig. 3 are referred to 9 days between February and March
2014. This period is considered meaningful in terms of continuous succession of
sunny and cloudy days and all the data are consistent without interruptions in
the recordings. In this Figure these results are compared with those obtained
considering different physical models, namely the combinations of thermal mod-
els (SANDIA and NOCT) of the considered PV cell power output with 3 and 5
parameter models described in Sect. 2.

Figure 3 shows the daily Normalised Mean Absolute Error NMAE. By observ-
ing this figure, the day-ahead forecast performed by the PHANN method is
outperforming in several days the physical forecasting methods.

6 Conclusions

In this paper the comparison between the day-ahead forecast performed by the
PHANN (Physical Hybrid Artificial Neural Network) and the 5 parameter Phys-
ical model (determined by the particle filter algorithm) has been assessed. The
reported results show that the PHANN method generally provides better results
and a more accurate forecast, with lower daily errors.
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