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Abstract

Nowadays MapReduce and its open source implemen-
tation, Apache Hadoop, are the most widespread so-
lutions for handling massive dataset on clusters of
commodity hardware. At the expense of a somewhat
reduced performance in comparison to HPC technolo-
gies, the MapReduce framework provides fault toler-
ance and automatic parallelization without any ef-
forts by developers. Since in many cases Hadoop is
adopted to support business critical activities, it is
often important to predict with fair confidence the
execution time of submitted jobs, for instance when
SLAs are established with end-users. In this work,
we propose and validate a hybrid approach exploit-
ing both queuing networks and support vector regres-
sion, in order to achieve a good accuracy without too
many costly experiments on a real setup. The ex-
perimental results show how the proposed approach
attains a 21% improvement in accuracy over apply-
ing machine learning techniques without any support
from analytical models.

Keywords: Analytical performance modeling,
machine learning, cloud computing, MapReduce.

1 Introduction

The MapReduce framework is a programming model
and a scalable and fault-tolerant run-time environ-
ment [1] that became the most popular platform for

data analytics because of its simplicity, generality,
and maturity [2]. A data processing request under
the MapReduce framework, called a job, consists of
two types of tasks: map and reduce. A map task
reads one data chunk and processes it to produce in-
termediate results. Then, reduce tasks fetch these
intermediate results and carry out further computa-
tions to generate the final result [3]. Cloud platforms
make MapReduce an attractive framework for organi-
zations that need to process large datasets, but lack
the computing and human resources to install and
manage a cluster. Hadoop is an open source imple-
mentation of MapReduce used in production deploy-
ments and is used for applications like log file analy-
sis, database querying, web indexing, report genera-
tion, machine learning research, scientific simulation,
bioinformatics, and financial analysis [4], [5]. IDC es-
timates that Hadoop touched half of the world data
last year [6], supporting both traditional batch and
interactive data analysis applications [7].

One of the main challenges in MapReduce envi-
ronments is to predict the execution time of Hadoop
jobs. One approach to do such prediction is to de-
velop analytical models based on queueing networks
(QNs), Petri nets (PNs), stochastic activity networks,
and so on for predicting performance metrics. How-
ever, analytically modeling big data applications is
very challenging due to the great number of pa-
rameters that have to be investigated, especially in
large Hadoop 2.x environments, where resources are
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dynamically allocated between the map and reduce
stages. Furthermore, stakeholders of performance
prediction of a Hadoop process are its users in our
scenarios. Actually, a non-expert MapReduce user is
allowed to provision a cluster of any size on the tar-
get cloud within minutes to meet her data-processing
needs [4]. To ensure analytical model (AM) tractabil-
ity in such complex systems, AM-based performance
models typically rely on simplifying assumptions that
reduce their accuracy.

On the other hand, machine learning (ML) deals
with the study and construction of algorithms that
can learn from data and make predictions on it with-
out a-priori knowledge about the internals of the tar-
get system. In recent years, a growing number of
successful researches were done to explore the possi-
bility of using ML techniques to predict performance
of complex computer systems [8]–[10]. Therefore, ML
can also be exploited for predicting the execution
time of Hadoop jobs. To be able to predict accurately,
the ML model should be built during a training phase
with a sufficient number of experimental data from
different workloads, using different parameters and
different configurations. However, running several ex-
periments in cloud environment would be costly and
time consuming. On the other hand, though ML of-
ten provides good accuracy in regions for which it
is well trained, it shows poor decision in regions for
which none or very few samples are known.

Gray box modeling [11]–[13] is a new approach for
performance modeling and prediction that tries to
achieve the best of the AM and ML worlds by mix-
ing the two. Such models can be exploited to sup-
port design-time decision-making during the devel-
opment and deployment phases of big data applica-
tions. These models can then be also kept alive at
run-time to conduct the dynamic adjustment of the
system configuration [14].

Our focus in this paper is to provide a design-
time combined AM/ML model to estimate MapRe-
duce jobs execution time in Hadoop clusters. At first,
an AM based on QNs is proposed to initially model
the execution of MapReduce jobs. The results ob-
tained from simulation are then exploited as analyt-
ical data. This analytical data is used to train an
initial ML model. During an iterative and incremen-

tal process, new data from the operational system
is fed into the ML model to form a more accurate
performance predictor. In addition, some intuitions
are exploited in our approach to output more accu-
rate predictions while consuming less data from noisy
environment operational systems. Then, our hybrid
approach and the pure ML approach are compared
in terms of the prediction accuracy and the size of
consumed operational data. The results show that
our hybrid approach outperformed the pure ML one
in terms of accuracy by about 21% when up to half of
the real data points of the configuration set are not
used on the higher end of the configuration space,
and by about 25% when up to one fifth of the points
are left out on the lower end.

The remainder of this paper is organized as fol-
lows. In Section 2, the background and problem
statement is presented. Section 3 represents our ap-
proach for combined AM/ML performance prediction
of big data applications in a cloud environment. Sec-
tion 4 reports some experimental results to validate
and study the properties of our models. In Section 5
we compare our work with other researches available
in the literature. Finally, the conclusions and future
work are drawn in Section 6.

2 Problem Statement

There are cases where MapReduce users need to know
how long their job execution will take using different
number of available resources to decide on the con-
figuration of the infrastructure they want to rent. In
other words, they want to determine how a job ex-
ecution time changes when the number of available
resources changes. However, running experiments in
real cloud environments is generally expensive and
time consuming. So, exploiting a reasonably accurate
model for performance evaluation and prediction of
cloud applications is of great importance. The exper-
iments used in this study have been run on PICO1,
the big data infrastructure of CINECA, the Italian
supercomputing center.

1 http://www.cineca.it/en/news/pico-cineca-new-
platform-data-analytics-applications
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Bootstrapped hybrid performance modeling [15] is
a combined AM/ML modeling approach that brings
the strengths of AM methods to compensate the
weaknesses of ML techniques, and vice versa. Such an
approach exploits an early analytical model to gen-
erate an initial set of synthetic data points, which
are then fed into a machine learning model to en-
able it to predict the application performance. The
knowledge-base (KB) of synthetic data is then up-
dated over time to incorporate new samples collected
from the real operational system. The machine learn-
ing model is also updated and trained according to
the new KB. However, since the experimental envi-
ronment used for executing MapReduce jobs in this
work is shared among different users’ applications,
performance metrics are usually varying a lot. There-
fore, real data samples are likely to be noisy and
should be consumed conservatively.

On the one hand, hybrid approaches use analyti-
cal modeling, which relies on a-priori knowledge of
the internals of the target system and is known as
white box technique. On the other hand, they use
machine learning, which relies on inferring the in-
put/output relationships that map application and
system characteristics onto the target performance
indicators, and on encoding such relationships via
statistical models, requires no knowledge of the in-
ternal details of the system, and is known as black
box technique. While white box techniques are good
for their extrapolation capabilities, i.e., to predict val-
ues in regions of the parameters space not sufficiently
explored, black box ones are good for interpolation
capabilities, i.e., to predict values in areas of the fea-
tures space that have been sufficiently observed dur-
ing the training phase. So, utilizing bootstrapped hy-
brid approaches enables us to achieve the best of both
worlds. In particular, it provides: (i) a more robust
performance predictor that requires a small training
phase in order to instantiate a performance model
(borrowing from AM), (ii) good extrapolation capa-
bilities (borrowing from AM), (iii) the ability to pro-
gressively enhance the accuracy of the performance
predictor as new data samples from the operational
system are gathered (borrowing from ML), and (iv)
good interpolation capabilities (borrowing from ML).

The initial idea of incorporating the combination

of analytical modeling and machine learning in this
research starts from the work by Didona and Romano
[16], in which the authors proposed different strate-
gies based on merge and replacement for updating
the initial synthetic data KB.

In our work, both synthetic and real data come
from a limited-size configuration set. Thus, if the re-
place strategy is selected, in the first iteration of our
incremental and iterative process of model selection
and training, new real data points evict the synthetic
ones of the same configuration. Then, in each sub-
sequent iteration, new real data points evict the old
real ones. Therefore, the output model of each iter-
ation will be trained on the latest set of added data
points. Such a model is not acceptable in action, be-
cause our experiments show that the data from the
operational system is very noisy and so relying on one
data sample for each configuration will often generate
very inaccurate predictions.

Furthermore, when the merge strategy is chosen
and implemented, all the synthetic and real data
are kept in the KB and are used for model selec-
tion and training. Therefore, the results are more
accurate and dependable than the ones based on the
replace strategy, when the number of iterations be-
comes large enough. However, since both the size of
the configuration set and the number of iterations are
rather small in our scenarios, the prediction curve os-
cillates occasionally during successive iterations and
the error may become large even in the last iteration,
which can produce unacceptable prediction outputs.

Thus, though the bootstrapped hybrid approach is
a good candidate for performance prediction of cloud
applications, the work done by Didona and Romano
requires some extension to guarantee the generation
of sufficiently accurate results while being less depen-
dent to the data samples from the operational system
with respect to our configurations and usage scenar-
ios.
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3 Description of the Proposed
Approach

In this section, the QN model used for producing
analytical data samples for our hybrid approach is
introduced at first. Then, the ML techniques that
were examined in this study and the features that
were investigated for training and selecting models
are reviewed. Using the QN and an appropriate ML
technique as the main building blocks, the detailed
steps of our proposed hybrid algorithm is introduced
afterwards.

3.1 Analytical Model

The QN used for analytically modeling MapReduce
job execution in a cluster of computing servers is de-
picted in Figure 1. It is a closed QN model where the
number of concurrent users is assumed to be one and
she start off in the delay center, characterized by the
average think time Z. When the user submits her job,
it is forked into as many map task requests as stated
in the job profile, which then enter the finite capacity
region (FCR). FCRs model situations where several
service centers access resources belonging to a sin-
gle limited pool, competing to use them. Hence, the
FCR enforces an upper bound on the total number of
requests served at the same time within itself, allow-
ing tasks to enter according to a FIFO policy. The
FCR includes two multi-service queues that model
the map and reduce execution stages. The FCR and
multi-service queues capacities are equal to the total
number of cores available in the cluster. In this way,
we can model the dynamic assignment of YARN con-
tainers to map and reduce tasks whenever they are
ready.

Map tasks are executed by the first multi-service
queue and synchronized after completion by joining
back to a single job request; the reduce phase is mod-
eled analogously. Note that the map join is external
to the FCR in order to model that when map tasks
complete, they release containers, which can be as-
signed to tasks ready in the FCR FIFO queue. More-
over, the reduce fork is also external to the FCR to
model correctly applications characterized by a num-

Fork

Fork

Join

Join

Delay
Map

Reduce

FCR

Figure 1: QN model for MapReduce job execution

ber of reducers larger than the total cluster capacity.

3.2 Machine Learning Model

In this work, machine learning is used to regress
execution time of MapReduce jobs in a cloud clus-
ter. Different techniques are investigated including
linear regression, Gaussian Support Vector Regres-
sion (SVR), polynomial SVR with degree ranging be-
tween 2 and 6, and linear SVR. As feature set, we
started from a diverse collection of features including
the number of map and reduce tasks, average and
maximum values of map execution time, average and
maximum values of reduce execution time, average
and maximum values of shuffling time, dataset size,
and the number of available cores. The set of rele-
vant features are obtained by considering the analyt-
ical bounds for MapReduce clusters published in [17],
[18].

Our initial experiments showed that Gaussian SVR
and polynomial SVR do not predict accurately and
the errors they produce are usually large. On the
other hand, we found that the linear regression and
the linear SVR are the ones that most often achieved
the best results. However, the linear regression model
was unstable in frequent cases when we had linearly
dependent features, leading to meaningless results.
Thus, we finally chose linear SVR as the main tech-
nique and 1/nCore was the single feature for our
study, where nCore is the total number of cores of
the configuration.

Whenever training ML models and selecting the
best among them is needed, available data samples in
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the KB are partitioned into three disjoint sets, called
training set, cross validation (CV) set, and test set.
While the training set is used for training different
alternative models, the CV set is exploited for select-
ing the best amongst the alternatives. Furthermore,
the test set is used for evaluating the generalization
capability and accuracy of the selected model.

3.3 Main Algorithm

The pseudo-code of our proposed hybrid algorithm is
shown in Algorithm 3.1. A synthetic data set which is
used to form an initial KB is generated by simulating
the reference AM at line 2. The KB is then used
to select and train an initial ML model at line 3.
Since the real data samples are very noisy, we need
to avoid the dependency on this data as much as we
can. So, an iterative procedure is adopted for merging
real data from the operational system into the KB,
which is explained at lines 4–15 of Algorithm 3.1.
The operational data for all available configurations
is gathered and then merged into KB at lines 5–8.
Then the updated KB is shuffled and partitioned at
lines 10 and 11 as stated before. Using these sets,
line 12 is dedicated to the selection of an ML model
between alternatives and retraining it. Then some
error metrics are measured at line 13.

At lines 14 and 15, two conditions are checked.
Both conditions consider the mean absolute percent-
age errors (MAPEs) on the training set and on the
test set (shown as trError and tstError in Algo-
rithm 3.1) to check whether they are less than spe-
cific thresholds (itrThr and stopThr, respectively) or
not. The error on the training set determines if the
model fits well on its training set itself. So, if this er-
ror is small enough, the model will avoid underfitting
or high bias. On the other hand, the error on the test
set determines if the model has generalization capa-
bility. So, if this error is sufficiently small, the model
will avoid overfitting or high variance.

If the values of errors for the first condition is not
small enough, the algorithm jumps to line 9 to reshuf-
fle the KB and choose a different model. This con-
dition is critical at the final iteration, when training
the model output by the whole process, but since we
suppose that the number of iterations is not known

Algorithm 3.1 Hybrid algorithm
1: procedure Hybrid–Algorithm
2: create a KB using synthetic data generated

from AM
3: select and train an initial ML model
4: do
5: for all conf in AvailableConfigs do
6: gather new data from operational sys-

tem
7: end for
8: merge new data into KB
9: do

10: shuffle KB
11: partition KB into train, CV, and test

sets
12: select and train new ML model
13: measure trError and tstError
14: while ¬(trError < itrThr ∧ tstError <

itrThr)
15: while ¬(trError < stopThr ∧ tstError <

stopThr) ∧ (more new data is available)
16: end procedure

beforehand, we check this condition at the end of each
iteration to prohibit the emission of a weak model. In
other words, if a good value is chosen for the thresh-
old, this condition will prevent the oscillation prob-
lem we talked about in Section 2.

On the other hand, if the value of errors for the
second condition is not small enough, the algorithm
jumps to line 4 to start another iteration. Other-
wise, i.e., if both error values are smaller than the
stopThr or no new data from operational system is
available, the algorithm stops. If the errors are suf-
ficiently small, the current model seems to be good
enough for performance prediction and the iterative
process can be stopped to avoid consuming more op-
erational data for the matter of time and cost of real
experiments and the noisiness of real samples. On
the other hand, if no new data is available, the al-
gorithm should be stopped and output the last ML
model.
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4 Experimental Analysis

The goal of this section is to compare our hybrid ap-
proach with the pure ML approach. The pure ML
approach is supposed to obey the structure of Algo-
rithm 3.1, except for line 2, which relies on the AM.
Actually, we also examined a base version of pure ML
approach that does not include checking of the two
conditions, for which the mean relative error for one
missing point (i.e., 120) was around 24% while 20
data samples from the operational system were con-
sumed for each available point. This result is far away
from that of our hybrid approach. So, for the sake
of brevity, we ignore the details of the results of this
base version of pure ML in the remainder of this pa-
per.

All these experiments have been performed on
CINECA, the Italian supercomputing center. PICO,
the Big Data cluster available at CINECA, is com-
posed of 74 nodes, each of them boasting two Intel
Xeon 10-core 2670 v2@2.5GHz, with 128 GB of RAM.
Out of the 74 nodes, 66 are available for computation.
In our experiments on PICO, we have used several
configurations ranging from 20 to 120 cores and set
up the scheduler to provide one container per core.
The storage is constituted by 4 PB of high through-
put disks based on the GSS technology. The clus-
ter is shared among different users, hence resources
are managed by the Portable Batch System (PBS),
which allows for submitting jobs and checking their
progress, configuring at a fine-grained level the com-
putational requirements: for all submissions it is pos-
sible to request a number of nodes and to define how
many CPUs and how much memory are needed on
each of them.

Since the cluster is shared among different users,
the performance of single jobs depends on the overall
system load, even though PBS tries to split the re-
sources. Due to this, it is possible to have large varia-
tions in performance according to the overall usage of
the cluster. In particular, storage is not handled di-
rectly by PBS, thus leading to an even greater impact
on performance.

The dataset used for running the experiments has
been generated using the TPC-DS benchmark data
generator, creating at a scale factor of 250 GB sev-

Figure 2: R1 query

eral files directly used as external tables by Hive.
We chose the TPC-DS benchmark as it is the indus-
try standard for benchmarking data warehouses. We
performed experiments on a Hive query, called R1,
as shown in Figure 2. The profiling phase has been
conducted extracting average task durations from at
least twenty runs of each query. GNU Octave2 is
used for numerical computation, while LibSVM [19]
is chosen as machine learning library.

In the following subsection, the accuracy of our AM
is considered by comparing the results of simulating
the QN model shown in Figure 1 with the real exper-
iments in terms of response time. To fairly compare
our hybrid approach with the pure ML one, the re-
sults of finding the combination of the two thresholds
that minimizes the error of each approach is intro-
duced afterwards. Finally, the extrapolation capa-
bilities of the two approaches are investigated when
some points lack from either the right-most or left-
most side of the configuration set.

4.1 Simulation Results of the Analyt-
ical Model

At first, the analytical model shown in Figure 1 is
used to generate the set of synthetic data samples.
To do this, Java Modeling Tool [20] is exploited for
trace-based simulation of the queueing model, with
a 10% accuracy and 95% confidence interval. The
think time, Z, is set to 10 seconds. The configura-

2www.gnu.org/s/octave
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Figure 3: Comparison of simulation results and mean
values of real data

tion set for analytical data contains 10 points, which
are representatives of the total number of available
cores when executing MapReduce jobs. These points
include 20, 40, 48, 60, 72, 80, 90, 100, 108, and 120.
This set is the same as the one for real data samples
coming from the operational system.

In Figure 3, the response times acquired from sim-
ulation runs are compared with those obtained from
real experiments. The point is that the average rela-
tive error of the values observed from simulations is
around 65% with respect to the mean values of the
real samples, and in the worst case, the relative er-
ror reaches up to 96%. These results show that the
analysis provides only an inaccurate and conservative
estimate.

4.2 Finding the Optimal Thresholds
To have a fair comparison between the two ap-
proaches, we try to find the optimal combination of
the (itrThr, stopThr) couple once for our hybrid ap-
proach and once for the pure ML approach. By opti-
mal combination of the two thresholds, we mean the
values that minimize the MAPE on the missing con-
figurations, provided that the latter are known from
the operational system, but are not fed into the algo-
rithm.

To achieve this, the data for the point 120 is as-
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Figure 4: A snapshot of the final state of the hybrid
approach

sumed to lack, while the data for the other nine points
is supposed to be available from the real system. We
change the value of itrThr from 25 to 41 and the
value of stopThr from 10 to 30. For every com-
bination of the two thresholds, the algorithms are
run against 100 different values of the randomiza-
tion seed. Then the generated results are averaged to
compute the mean value of MAPE for every thresh-
olds combination. The results of running these ex-
periments showed that the optimum combination of
the two thresholds are (38, 24) and (30, 19) for the
hybrid and pure ML approaches, respectively.

Figure 4 shows the state of our hybrid approach
at the end of the sixth iteration for some value of
the seed, where both conditions of the Algorithm 3.1
are satisfied and, thus, the algorithm exits while pre-
dicting the response time of the missing point with a
4.4% error. The x-axis shows the number of cores for
different configurations and the y-axis represents the
response time of MapReduce jobs, in milliseconds.
All the points in the configuration set except 120
are assumed to be available. In this snapshot, the
KB contains one synthetic and six operational sam-
ples for each configuration—except for 120, for which
only one synthetic sample is available—and is en-
tirely partitioned into training, CV, and test sets,
which are discriminated using different symbols in
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Figure 5: Extrapolation on many cores

Figure 4. The prediction curve obtained from the fi-
nal ML model is also plotted. The total number of
real data samples used in this scenario is equal to
the number of available configuration points (i.e., 9)
multiplied by the number of iterations (i.e., 6).

4.3 Extrapolation Capability on
Many Cores

To examine the extrapolation capability of the two
approaches in the upper region of the configuration
set, we started running them using their optimal
thresholds when only point 120 is set aside. To avoid
bias, we used 100 values for the seed, different from
those used in the optimum finding process. Then we
compared the value of MAPE and the number of it-
erations for the two approaches. Moreover, moving
from the right side of the configuration axis to the
left, we gradually added other points to the set of
left out real data. The results of the comparison are
depicted in Figure 5.

As can be seen from Figure 5, our hybrid approach
outperforms pure ML in terms of MAPE in all the
scenarios, ranging from when the right-most point of
the configuration set (i.e., 120) is the only missing
point, to when the five right-most points of the con-
figuration set (i.e., 80, 90, 100, 108, and 120) are set
aside. When the only missing point is 120, the er-
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Figure 6: Extrapolation on few cores

ror of our hybrid approach is around 11% in contrast
to around 14% of the pure ML. On the other hand,
when the right-most half of real data points in the
configuration set are not used, the hybrid approach
finishes with 30% of error in contrast to about 38%
of pure ML. These values show an improvement of
more than 21% on average on the value of MAPE.

The total number of real samples consumed in the
algorithm are proportional to the number of itera-
tions that each approach executes. Specifically, the
used real samples are 9 times the number of itera-
tions. The number of iterations of the hybrid ap-
proach, despite being bigger than in the pure ML
one, changes between 8 and 15, which means it needs
a rather small amount of real data to output rela-
tively accurate predictions. The point is that all the
improvements were acquired in situations where the
average error of the AM with respect to the mean
values of real data samples is more than 73% for the
missing points, which means the AM was not so ac-
curate.

4.4 Extrapolation Capability on Few
Cores

Next, we examined the extrapolation capability of
the two approaches in the lower region of the con-
figuration set by running them using their optimum
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thresholds when only point 20 lacks. Similarly to the
previous extrapolation analysis, 100 different values
for the seed were used. Then we compared MAPE
and the number of iterations for the two approaches.
Moreover, moving from the left side of the configura-
tion axis towards the right, we gradually added other
points to the set of missing points. The results of the
comparison are shown in Figure 6.

As can be seen from Figure 6, our hybrid approach
outperforms the pure ML one with respect to MAPE
by around 25% when one (i.e., 20) or two (i.e., 20
and 40) points are missing. However, when three,
four, and five points are set aside, the MAPE of the
hybrid approach becomes greater than the one from
pure ML. The number of iterations of the hybrid
approach, even if bigger than in pure ML, changes
between 4.5 and 7, which means it needs absolutely
small amounts of operational data to output its pre-
dictions.

Furthermore, the errors in both approaches are
generally bigger than the ones in the previous extrap-
olation scenarios. Moreover, starting from 20, the
slope of the MAPE curves are negative at first and
then become positive. We can enumerate a few rea-
sons for the strange behavior of the MAPE curves in
left extrapolation scenarios in contrast with the right
extrapolation ones: first, the left side of the predic-
tion curve is more informative than the right side as
depicted in Figure 4. So, it is reasonable to be harder
to predict when some data points lack on the left side
of the configurations. Second, starting from 20 cores,
we have operational data for almost every tens of
CPUs. However, due to the existing limitations on
running experiments in real cloud, we could not ex-
ceptionally run any experiment for around 30 cores,
which resides on the left side of the configuration set.
Third, the optimization process for finding the op-
timal threshold combinations were run setting aside
the 120-core configuration, so it is logical that the re-
sults for right extrapolation be better than the ones
for left extrapolation.

5 Related Work

There are several works for performance modeling
and evaluation that adopt machine learning tech-
niques: Ipek et al. [10] adopt artificial neural net-
works to predict the impact of architectural changes
on performance metrics while studying memory sys-
tem, microprocessor, and multithreaded chip multi-
processor. To predict performance of Hadoop clus-
ters, Yigitbasi et al. [8] compare several ML methods,
ranging from ordinary linear regression to advanced
techniques like artificial neural networks, model trees,
and SVR with diverse MapReduce applications and
cluster configurations. The authors in [9] propose a
system, AROMA, based on SVR for automatic re-
source allocation and configuration in cloud-based
clusters. AROMA mines historical execution data
in order to profile past submissions and to match in-
coming jobs to the available performance signatures
for prediction. In this way, the proposed system
can avoid deadline violations stated in Service Level
Agreements incurring minimum cost, with an average
accuracy on completion time prediction around 12%.

Although combining AM and ML in synergy can
lead to get the best of both worlds, hybrid AM/ML
techniques for performance modeling and evaluation
have received little attention by the literature.

Tesauro et al. [21] propose an autonomic resource
allocation in a multi-application prototype data cen-
ter with the goal of maximizing the total expected
business value summed over the applications. They
show how to combine the strengths of both reinforce-
ment learning (RL) and queuing models in a hybrid
approach, in which RL trains offline on data collected
while a queuing model policy controls the system.
Thereska and Ganger [22] present a hybrid perfor-
mance modeling framework, which uses the redun-
dancy of high-level system specifications described
through models and low-level system implementa-
tion to localize system-model inconsistencies and give
hints to the system and model designer regarding the
root-cause of the problem. Queuing-based mathe-
matical models are coupled with decision tree (DT)
regressors that estimate by keeping track of historical
information about their predictions. Herodotou et al.
[4] propose Elastisizer, a system to which users can
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express cluster sizing problems as queries in a declar-
ative fashion. In this system, the overall process of
estimating execution time and cost of MapReduce
jobs is broken down into four smaller steps and, for
each step, a suitable white box or black box modeling
approach is chosen. Chen et al. [23] present Ensem-
ble, a framework for performance inquiring in mod-
ern database environments such as data centers and
clouds. Ensemble uses model templates, provided by
a user/analyst or retrieved from a repository of mod-
els previously derived for other applications. Model
templates, which can be either white box or black
box, express the beliefs of analysts about analyti-
cal performance models for Ensemble to fit or vali-
date with experimental data. Combining white-box
models for deriving the count and sizes of commu-
nication and storage operations and black-box mod-
els for the performance of the individual operations,
Isaila et al. [12] present a hybrid model for I/O auto-
tuning to evaluate execution time as the performance
metric. For the learning algorithm, the authors test
a wide range of solutions such as neural networks,
support vector machines, linear regression, random
forest, and Cubist [24], thus showing that no single
algorithm performs the best.

There are also a considerable number of works that
target in-memory transactional data stores: Rughetti
et al. [25] use a mixed AM/ML approach to dynam-
ically tune the level of concurrency of applications
based on software transactional memory to optimize
system throughput. The AM and ML techniques
used in their research are parametric analytical mod-
eling and neural networks, respectively. Didona et
al. [26] introduce Transactional Auto Scaler (TAS), a
system for automating the scaling of fully-replicated
in-memory transactional data grids in cloud data
platforms. In TAS, analytical and ML models are
incorporated to predict throughput, commit proba-
bility, and average response time. White-box mod-
els, based on queuing theory, are used to capture
the dynamics of concurrency control/replication al-
gorithms to forecast the effects of data contention,
as well as to predict the effects of contention due to
CPU utilization. On the other hand, black-box tech-
niques, based on DT regression, are used to predict
performance at the network level. In a similar work,

Didona and Romano [27] present PROMPT, a per-
formance model for partially-replicated in-memory
transactional cloud stores, in which the effects of
replication degree and data locality on data con-
tention require more complicated models in contrast
to [26]. The authors validate PROMPT’s accuracy
through experiments based on Infinispan [28] and
the YCSB benchmark [29], using both private and
public cloud infrastructures. In [27], queuing the-
ory and DT regression are used as white-box and
black-box techniques, respectively. Sanzo et al. [13]
propose a framework for modeling cloud transac-
tional in-memory data stores. Since the actual data-
transport/networking infrastructure on top of which
the data grid is deployed might be unknown, it is not
feasible to model it via white-box techniques such as
simulation. So, the proposed framework integrates
simulation and DT regression techniques, the lat-
ter being used to capture the dynamics of the data-
exchange layer across the cache servers. Didona et al.
[30] consider the issue of automatically identifying the
optimal degree of parallelism of an application using
distributed software transactional memory by intro-
ducing a hybrid approach. They exploit TAS [26] as
the analytical-based performance model, while DT
regression is utilized as the machine learning tech-
nique.

There are some works in the literature that con-
sider the application of Hybrid approaches on Total-
Order Broadcast (TOB) protocols: Romano and
Leonetti [31] use hybrid techniques to automate the
tuning of the batching level of a Sequencer-based To-
tal Order Broadcast (STOB) protocol. Their model
relies on a combination of queuing theory and RL
techniques. Didona et al. [11] propose three algo-
rithms that allow for the synergistic use of AM and
ML models. The algorithms are based on the com-
mon idea of building an ensemble of different method-
ologies. In order to evaluate the proposed algorithms,
the response time prediction of a STOB service and
the throughput prediction of an application deployed
over Infinispan are considered as case studies and the
results compared with the results obtained from the
Cubist tool.

The closest research to our work is done by Di-
dona and Romano [16], who investigate a technique
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whose main idea consists in relying on an AM to
generate a KB of synthetic data over which a com-
plementary ML is initially trained. The initial KB
is then updated over time to incorporate real sam-
ples from the operational system. For updating the
KB, the authors propose different algorithms based
on merge and replacement. As case-studies, the au-
thors consider Infinispan and TOB. While for both
case-studies DT regression is used as ML technique,
PROMPT and queueing theory are used as AM tech-
niques for Infinispan and TOB, respectively. The ef-
fect of the proposed parametrized algorithms on the
mean average percentage error of the gray box model
is evaluated by means of ten-fold cross validation.

6 Conclusions

In this paper, we used the power of AM and ML in
synergy to model and predict the execution time of
MapReduce jobs in Hadoop environments in a more
accurate, less expensive, and less time consuming
manner. Our preliminary results have shown how
our hybrid approach is effective in predicting the ex-
ecution time by reducing the MAPE of pure ML by
more than 21% when extrapolation over many cores is
examined, thus making it suitable for capacity plan-
ning decisions at design-time. For extrapolation on
few cores, our approach outperforms the pure ML one
by 25%, reducing the MAPE when one or two points
are left out. We think that adding more configura-
tions to the lower end of the configuration set will
increase the accuracy of the hybrid approach, hence
this will be our next plan.

In future, we also plan to investigate the interpo-
lation capability of our hybrid approach in contrast
to pure ML. For interpolation, we will assume that
some points in the middle of the configuration set
lack, while the other points are available. Future
work will also include adding weight parameters to
both synthetic and real data. Weighting can be used
as a means to suggest the ML to give more relevance
and trust to real than to synthetic samples. Another
plan will be to use more accurate analytical models
for generating the synthetic data, like fluid PNs: in-
creasing the initial data samples accuracy, we expect

a better prediction power of the final hybrid models.
Extending the current models and algorithm to in-

vestigate multi-user scenarios and also to consider
Tez and Spark applications, where a Tez directed
acyclic graph node or Spark stage is associated to a
corresponding multi-server queue, is another research
line that we are going to study in the future.
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