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Abstract
Nowadays, many enterprises commit to the extraction of actionable

knowledge from huge datasets as part of their core business activities.
Applications belong to very different domains such as fraud detection or
one-to-one marketing, and encompass business analytics and support to
decision making in both private and public sectors. In these scenarios,
a central place is held by the MapReduce framework and in particular
its open source implementation, Apache Hadoop. In such environments,
new challenges arise in the area of jobs performance prediction, with the
needs to provide Service Level Agreement guarantees to the end-user and
to avoid waste of computational resources. In this paper we provide per-
formance analysis models to estimate MapReduce job execution times in
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Hadoop clusters governed by the YARN Capacity Scheduler. We propose
models of increasing complexity and accuracy, ranging from queueing net-
works to stochastic well formed nets, able to estimate job performance un-
der a number of scenarios of interest, including also unreliable resources.
The accuracy of our models is evaluated by considering the TPC-DS in-
dustry benchmark running experiments on Amazon EC2 and the CINECA
Italian supercomputing center. The results have shown that the average
accuracy we can achieve is in the range 9–14%.

Keywords: MapReduce, Performance Models.

1 Introduction
The implementation of Big Data applications is steadily growing today [17].
According to recent analyses, the Big Data market reached $16.9 billion in 2015
with a compound annual growth rate of 39.4%, about seven times the one of
the overall ICT market [2].

From the technological perspective, MapReduce is capable of analyzing very
efficiently large amounts of unstructured data, i.e., it is a viable solution to
support both the variety and volume requirements of Big Data analyses [22].
MapReduce has been adopted in multiple application domains, e.g., machine
learning, graph processing, and data mining [34], and its open source implemen-
tation, Hadoop 2.x, recently introduced a wide set of performance enhancements
(e.g., SSD support, caching, and I/O barriers mitigation). IDC estimates that
Hadoop touched half of the world data last year [20] supporting both traditional
batch and interactive data analysis applications [32].

In this context, one of the main challenges [25, 33] is that the execution time
of a MapReduce job is generally unknown in advance. Because of this, predicting
the execution time of Hadoop jobs is usually done empirically through experi-
mentation, requiring a costly setup [15]. An alternative is to develop models for
predicting performance. Models may be used to support design-time decisions
during the initial development and deployment of Big Data applications. For
example, design-time models can help to determine the appropriate size of a
cluster or to predict the budget required to run Hadoop in public Clouds (a
trending scenario, since by 2020 nearly 40% of Big Data analyses will be sup-
ported by public Clouds [2]). Models can also be kept alive at run-time and
lead the dynamic adjustment of the system configuration [6, 30], for instance to
cope with workload fluctuations or to reduce energy costs.

Unfortunately, modeling the performance of such systems is very challenging.
Indeed, production Hadoop environments are nowadays very large massively
parallel systems where map and reduce tasks coordinate exhibiting precedence
constraints and strict synchronization barriers. Morever, with Hadoop 2.x, re-
sources are dynamically allocated between the map and reduce stages. Addition-
ally, in our context, the stakeholders interested in the performance evaluation
of Hadoop processes are its users rather than its developers. Therefore, the
complexity and novelty of these systems together with the lack of full knowl-
edge of their development details make unclear the concepts that should be
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included in a performance model in order to be both accurate and manageable
by performance evaluation tools.

Our focus in this paper is to provide design-time performance analysis mod-
els to estimate MapReduce jobs execution time in Hadoop clusters governed
by the YARN Capacity Scheduler. This work combines real experimentation
and model-based evaluation exploring different properties of the MapReduce
process. This exploration is used to unveil the characteristics of the YARN Ca-
pacity Scheduler that have the highest influence in its performance and therefore
should be represented in the models used for a model-based performance eval-
uation. We propose queueing network (QN) models and stochastic well formed
nets (SWNs) of incremental complexity and accuracy able to estimate MapRe-
duce job execution times for multiple users and under unreliable resources. In
particular, we analyze a Cloud-based scenario where the cluster, to save exe-
cution costs, includes also spot virtual machines (VMs) [14]. The utilization
of spot VMs offers large discounts in VM prices, with the drawback of a non-
guaranteed availability level. We combine the performance and availability dy-
namics of Cloud resources in a single performability model that allows us to
evaluate how failures caused by a sudden increase in the price of spot resources
by the Cloud provider, which entails a deallocation of VMs, degrade the system
performance.

We evaluate the accuracy of our models on real systems by performing exper-
iments based on the TPC-DS industry benchmark for business intelligence data
warehouse applications. Amazon EC2 and the CINECA Italian supercomputing
center have been considered as target deployments.

QN and SWN model simulation results and experiments performed on real
systems have shown that the accuracy we can achieve is within 30% of the actual
measurements in the worst case. With respect to previous literature works, to
the best of our knowledge ours is one of the first contribution able to study
the performance of Hadoop-2.x-based clusters, where the dynamic allocation of
resources between map and reduce stages makes the performance analysis much
more challenging.

This paper is organized as follows. Section 2 presents our novel proposals
for Hadoop modeling, via both QNs and SWNs. Next, Section 3 reports some
experimental results to validate and study the properties of our models. In
Section 4 we compare our work with other proposals available in the literature
and finally draw the conclusions in Section 5.

2 Modeling Hadoop 2.x Applications Performance
In this paper we provide performance models of incremental complexity and
accuracy, ranging from QNs to SWNs, able to estimate Hadoop 2.x jobs perfor-
mance under a number of scenarios of interest.

Modeling the performance of Hadoop 2.x clusters is challenging since, differ-
ently from the previous release where resources, i.e., CPU slots, were statically
split for mappers and reducers, in the latest Hadoop containers are assigned
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dynamically among ready tasks, leading to a better cluster utilization. Model-
ing the dynamic assignment of the available resources is the main contribution
of this paper. In particular, we focus on clusters governed by the Capacity
Scheduler, which allows for partitioning the cluster among multiple customers
through queues, each queue being regulated by a FIFO policy. In the follow-
ing we assume that queues are partitioned and hence we can focus on single
class systems (actually, the Capacity scheduler provides for queues to borrow
resources when some others are empty, however this scenario is left as part of
our future work).

The parallel execution of multiple tasks within higher level jobs is usually
modeled in the QN literature with the concept of fork/join: jobs are spawned
at a fork node in multiple tasks, which are then submitted to queueing stations
modeling the available servers. After all the tasks have been served, they syn-
chronize at a join node. Unfortunately, there is no known closed-form solution
for fork-join networks with more than two queues, unless a special structure
exists [24]. Hence, the performance metrics of such networks must be com-
puted by considering the Markov Chain underlying the QN, which represents
the possible states of the system [24]. However, such approaches are not fit for
Hadoop systems, since the state space grows exponentially with the number of
tasks [13, 27], in the order of thousands in realistic MapReduce jobs. For this
reason, a number of approximation methods have been proposed. In particular,
[29] proposed a good approximation technique that, however, is based on service
time exponential distribution, which is not the case for Hadoop deployments.
Our initial experiments showed that mapper and reducer times follow general
distributions, which can be approximated by phase type or in some cases Er-
lang. Under exponential time hypothesis, the relative error observed in our
simulations was around 50–60%. Some other approaches, e.g., [24], are based
on an approximate mean value analysis technique and use an iterative hierar-
chical approach. Along the same lines, [34] combines a precedence graph and
a QN to capture the intra-job synchronization constraints, thus being able to
estimate the synchronization delays introduced by the communication among
mappers and reducers. Unfortunately, even if the approach is rather accurate
(around 15% accuracy on real systems), the authors assume that CPU slots are
statically assigned to mappers and reducers, hence the proposed method cannot
be adopted to estimate performance under the Hadoop 2.x dynamic resource
assignment policy.

For this reason, we developed simulation models based on the concept of
finite capacity region (FCR) available in modern QN simulators [10]. Unfor-
tunately, QN models capture the behavior of Hadoop 2.x with some approxi-
mations. In Section 2.2 we rely on SWNs and provide a model capturing the
behavior of real Hadoop 2.x systems. Moreover, we investigate an advanced
Cloud-based scenario where some resources are provided by unreliable spot in-
stances and we evaluate the performance of jobs in case of failure.
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Fig. 1: Queueing network model

2.1 Queueing Network Model
This section discusses a proposal of QN model for MapReduce applications
running upon YARN Capacity Scheduler.

The performance model is depicted in Fig. 1. It is a closed QN model where
the number of concurrent users is given by H and they start off in the delay
center, characterized by the average think time Z. When a user submits her job,
this is forked into as many map task requests as stated in the job profile, which
then enter the FCR. FCRs model situations where several service centers access
resources belonging to a single limited pool, competing to use them. Hence, the
FCR enforces an upper bound on the total number of requests served at the
same time within itself, allowing tasks to enter according to a FIFO policy, but
also supporting prioritization of different classes. The FCR includes two multi-
service queues that model the map and reduce execution stages. The FCR and
multi-service queues capacities are equal to the total number of cores available
in the cluster. In this way, we can model the dynamic assignment of YARN
containers to map and reduce tasks whenever they are ready. Map tasks are
executed by the first multi-service queue and synchronize after completion by
joining back to a single job request; the reduce phase is modeled analogously.
Note that the map join is external to the FCR in order to model that when
map tasks complete they release container cores, which can be assigned to tasks
ready in the FCR FIFO queue. Moreover, the reduce fork is also external to
the FCR to model correctly applications characterized by a number of reducers
larger than the total cluster capacity.

YARN Capacity Scheduler implements a FIFO scheduling policy within the
same queue and containers are allocated to the next job only after all reduce
tasks have obtained their resources. The class switches present in the QN are
meant to enforce that reduce tasks waiting for resources obtain them with prior-
ity. Despite this, the model in Fig. 1 is still an approximation: notwithstanding
the higher priority associated to reducers, subsequent users’ mappers can still
occupy part of the servers available in the FCR when the preceding job has an
overall number of map tasks that is not multiple of the cluster capacity. In such
a case, the last map wave leaves room for serving further requests, hence the
following user can overtake part of the capacity and the reduce stage of the first
user will not start processing at full capacity until those mappers complete.
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As a final consideration, note that the discussed model is rather general
and can be easily extended to consider also Tez or Spark applications, where a
Tez directed acyclic graph node or Spark stage is associated to a corresponding
multi-server queue.

2.2 Stochastic Well Formed Net Models
The stochastic well formed net (SWN) in Fig. 2 is able to capture completely the
behavior of the Capacity Scheduler policy. Jobs execution is modeled by a closed
workload, where the nU1 users compete to access the cluster and cycle between
demanding to execute the MapReduce scenario (subnet in the dotted rectangle),
and spending an external delay period between the end of one response and the
next request (mean firing time of the think transition). The basic color class
User consists of a single subclass User1 and the job identities are captured by
assigning a token of different color to each job u1, . . . , unU1.

To enforce the FIFO scheduling each job is assigned an ID i. The initial
marking M3 of the place IDs1 is set to the first index of the color class ID, and
once transition think sends a job to the ready state it increases this index by
one. The transition generateMaps will start the job that has the index equal to
the one it is getting from place IDs2. In other words, the job that has its turn
will start the Map phase. Whenever a job gets resources for all of its reduce
tasks (place wait4ResRed drains), the job with the next index will be started
thanks to the transition startNext, which updates the IDs2 place with the next
index.

When a job x is ready to be processed and it has its turn—i.e., the place
jobReady is marked with a token 〈x, i〉 and the IDs2 place is marked with the
same index i—nM map tasks are generated (firing of generateMaps transition).
Such tasks, associated to job x, are represented by nM pairs 〈x, t〉, where the
color t belongs to the subclass Map of the basic color class Task. Each task 〈x, t〉
needs to acquire a resource r to be executed (firing of getResMap transition)
and map tasks can be concurrently executed according to resource availability.
The set of resources is defined by the basic color class Resource, which con-
sists of a unique partition Core including nC resources. The timed transition
map models the duration of the map task execution and its firing time is an
Erlang-distributed random variable. The map stage is finished when all the map
tasks 〈x, t〉 associated to job x have been executed: the firing of the joinMaps
transition models the beginning of the next processing step, where nR reduce
tasks are generated. The reducing step is similar to the mapping step, the only
difference is that the reduce tasks, associated to job x, are represented by nR
pairs 〈x, t〉 where the color t belongs to the subclass Reduce of the basic color
class Task. Finally, observe that the map tasks 〈y, t〉, associated to a job y, are
generated when all the reduce tasks 〈x, t〉, associated to the previous job x, are
not waiting for resource availability. This condition is modeled by the inhibitor
arc inscription from place wait4ResRed to transition startNext.

The models considered so far can capture the behavior of MapReduce sys-
tems running on an enterprise infrastructure or public Clouds based on standard
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resources. Cloud providers (see, e.g., Amazon EC2) offer another type of re-
source loaning, spot, in which customers bid for the instance price. The VM
instances are billed the spot price, which is set by the infrastructure provider and
fluctuates periodically depending on current energy costs, which vary through-
out the day, and also on the overall supply and demand of virtual resources. Spot
instances are usually available at a competitive price. However, if the provider
raises the spot price above user’s bid while she is using spot instances, these can
be arbitrarily terminated without notice. Hence, on one side spot resources are
an opportunity for lowering the execution cost of MapReduce applications, but
on the other side they introduce availability threats.

The model introduced in Fig. 3 allows for exploring different configurations
and to evaluate MapReduce jobs performance degradation in case of spot in-
stances termination. In particular, we assume that once spot VMs fail, a moni-
toring component replaces them with the same number of on-demand resources.
Since we are interested in the performance degradation of the job currently in
execution, we can drop the FIFO mechanism from the model of Fig. 2, i.e.,
the places IDs1, IDs2, and reduceRunning; the transition startNext; and the
color class ID. The model in Fig. 3 introduces also a new color class CoreState,
which consists of two singleton subclasses cfree and cbusy, to record the state
of a node. To enable this, the color domain of the place Cores is set to the
Cartesian product Resource×CoreState. This change enables the place Cores
to track the occupied cores as well as the free cores. Transitions getResMap
and getResReduce are modified to change the core status from “free” to “busy”
whenever they own a core, and vice versa for transitions map and reduce. The
color class Resource is enriched with two new subclasses CoreSpot (CS) and
CoreDemand2 (CD2), which model spot instances and the on-demand nodes
triggered to replace spot resources. The color definition Core is renamed to
CoreDemand1 (CD1) to model the on-demand nodes that are initially started
together with spot resources. The places FailedCores and AltCores are added
to identify the failed nodes and the alternative nodes waiting for recovery. The
timed transition failure takes all the spot instances from the available nodes
with a rate proportional to the failure probability. When spot instances fail due
to a low bid, it takes at most a YARN heartbeat for the monitoring component
to figure out the loss. After this short delay, the replacing process starts with
acquiring on-demand nodes. As soon as the new on-demand VMs are ready with
running NodeManagers, they have to be registered with the ResourceManager
in order to be used by the running job. We summed up all these delays and
introduced the timed transition recoverNodes, characterized by an appropriate
rate. Moreover, we included three instantaneous transitions (recoverFailedMaps,
recoverFailedReduces, and dropFree) to move a failed map or reduce task to the
waiting list and to drop the failed spot nodes that were not occupied by any
task. Since our goal is to evaluate the average performance of the job when a
failure happens (note that a failure can occur anytime between the start and end
of the job execution and in the latter case the job might complete before new
on-demand VMs become available), we have to create the same environment
for every successive run of the job. Then, three transitions freeAlt1, freeAlt2,
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and freeSpots are added to free the places AltCores and Cores from any residual
CD2 and CS at the end of the job execution and one outgoing arc is connected
to the transition generateMaps to put back the spot cores in the place storing
available nodes. As a result, spot failures can happen again while the simulator
is running the next iteration. In this way we ensure that every job submission
is subject to failure and obtain relevant statistical results.

3 Experimental Analysis and Validation
The models presented in the previous sections have been validated by perform-
ing an experimental campaign on Amazon EC2 and CINECA, the Italian su-
percomputing center. The target version was Hadoop 2.6.0. The Amazon clus-
ter included 30 m4.xlarge instances with a total of 120 vCPUs configured to
support 240 containers overall. On PICO1, the Big Data cluster available at
CINECA, we used several configurations ranging from 40 to 120 cores and set
up the scheduler to provide one container per core.

The dataset used for testing has been generated using the TPC-DS bench-
mark2 data generator, creating at a scale factor ranging from 250 GB to 1 TB
several files directly used as external tables by Hive. We chose the TPC-DS
benchmark as it is the industry standard for benchmarking data warehouses.
We used the GreatSPN [7] and JMT [10] tools with 10% accuracy and 95%
confidence interval for the performance analysis of the SWN and QN models,
respectively. Next, we performed experiments on five Hive queries, dubbed R1–
5 and shown in Fig. 4. The profiling phase has been conducted on a dedicated
cluster, extracting average task durations from at least twenty runs of each
query. The numbers of map and reduce tasks varied, respectively, in the ranges
(4, 1560) and (1, 1009). Parsing Hadoop logs it is also possible to obtain lists of
task execution times, which are needed for the replayer in JMT service centers.
These logs are also used to choose a proper distribution with right parameters
for the map transition in the SWN models. As discussed earlier in Section 2,
the execution time of map tasks fits better with more general distributions, like
Erlang (in particular we used Erlang-2 for R1, Erlang-4 for R2 and R3 and
Erlang-5 for R4 and R5). The shape and rate parameters are set according to
each query profile. The other timed transitions appearing in the SWN models
are considered to be exponentially distributed.

3.1 QN and SWN Models Validation
To start off with, we show results for the validation of the QN and SWN models
discussed in Section 2. We feed the models with parameters evaluated via
the experimental setup and compare the measured response times with the
simulated ones. Specifically, we consider as a quality index the accuracy on

1http://www.hpc.cineca.it/hardware/pico
2http://www.tpc.org/tpcds/
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s e l e c t avg ( ws_quantity ) ,
avg ( ws_ext_sales_price ) ,
avg ( ws_ext_wholesale_cost ) ,
sum( ws_ext_wholesale_cost )

from web_sales
where ( web_sales . ws_sa les_pr ice

between 100 .00 and 150 .00 ) or (
web_sales . ws_net_prof it

between 100 and 200)
group by ws_web_page_sk
l i m i t 100 ;

(a) R1

s e l e c t avg ( ss_quant i ty ) , avg (
s s_net_pro f i t )

from s t o r e _ s a l e s
where ss_quant i ty > 10 and

s s_net_pro f i t > 0
group by ss_store_sk
having avg ( ss_quant i ty ) > 20
l i m i t 100 ;

(b) R3

s e l e c t inv_item_sk , inv_warehouse_sk
from inventory where

inv_quantity_on_hand > 10
group by inv_item_sk , inv_warehouse_sk
having sum( inv_quantity_on_hand ) >20
l i m i t 100 ;

(c) R2

s e l e c t cs_item_sk , avg ( cs_quant ity )
as aq

from c a t a l o g _ s a l e s
where cs_quantity > 2
group by cs_item_sk ;

(d) R4

s e l e c t inv_warehouse_sk , sum(
inv_quantity_on_hand )

from inventory
group by inv_warehouse_sk
having sum( inv_quantity_on_hand ) > 5
l i m i t 100 ;

(e) R5
Fig. 4: Interactive queries

response time prediction, defined as ϑ = (τ − T )/T , where τ is the simulated
response time, whilst T is the average measured one.

Among these experiments, we considered both single user scenarios, repeat-
edly running the same query on a dedicated cluster with Z = 10 s, and multiple
user scenarios.

Table 1 shows the results of the QN and SWN models validation. For all the
experiments we report the number of concurrent users, the overall cores available
in the cluster, the dataset scale factor, and the total number of map and reduce
tasks, plus the above mentioned metric. In the worst case, the relative error
can reach up to 32.97%, which is in line with the expected accuracy in the
performance prediction field [23]. Moreover, the SWN model achieves a higher
accuracy, with the average relative error decreasing from the 14.13% of QNs
down to 9.08%.

3.2 Spot Failure Analysis
To evaluate the SWN model of Fig. 3 we considered query R1 running on the
1 TB dataset with 15 VMs, 4 cores each. Without failures, the execution time of
R1 is 556680 ms, where around 57% of the time is spent in the map stage. The
baseline simulation time is τ0 = 533438 ms, yielding a −4.18% relative error.
We define the performance degradation asη (t) = (τ (t) − τ0)/τ0, where τ (t) is
the simulated response time obtained via the SWN model in Fig. 3 when the
recovery time is t. To measure the recovery time of our system on Amazon EC2,
we switched off one of the VMs, started a new VM after 30 s and evaluated the
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Table 1: QN and SWN models accuracy
Query Users Cores Scale [GB] nM nR T [ms] τQN [ms] ϑQN [%] τSWN [ms] ϑSWN [%]

R1 1 240 250 500 1 55410 50753.34 −8.40 50629.58 −8.63
R2 1 240 250 65 5 36881 27495.31 −25.45 37976.82 2.97
R3 1 240 250 750 1 76806 77260.03 0.60 83317.27 8.48
R4 1 240 250 524 384 92197 78573.96 −14.72 89426.51 −3.01
R1 1 60 500 287 300 378127 411940.93 8.94 330149.74 −12.69
R3 1 100 500 757 793 401827 524759.36 30.59 507758.68 26.36
R3 1 120 750 1148 1009 661214 759230.77 14.82 698276.75 5.61
R4 1 60 750 868 910 808490 844700.85 4.48 806366.51 −0.26
R3 1 80 1000 1560 1009 1019973 1053829.78 −1.00 1020294.84 0.03
R5 1 80 1000 64 68 39206 36598.32 −6.65 38796.47 −1.04
R1 3 20 250 144 151 1002160 1038951.05 3.67 909217.89 −9.27
R1 5 20 250 144 151 1736949 1215490.20 −30.02 1428894.40 −17.74
R2 3 20 250 4 4 95403 112050.45 17.45 99219.94 4.00
R2 5 20 250 4 4 145646 97619.46 −32.97 88683.10 3.09
R1 5 40 250 144 151 636694 660241.29 3.70 613577.53 −3.63
R2 3 40 250 4 4 86023 105785.41 22.97 119712.30 −17.81
R2 5 40 250 4 4 90674 103173.38 13.78 117582.82 29.68
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Fig. 5: Performance degradation and cost reduction

time instant when the first task is assigned for execution to the new instance.
In ten experiments, the mean recovery time was equal to 331715 ms, where the
time to start the new instance was around 180 s.

In the first analysis we consider a conservative scenario where the failure is
injected into the system in an early stage of query execution and we fixed the
mean time to failure to 50 s. We considered a cluster with 7 spot VMs out
of 15 and we varied the recovery time between 120 and 480 s. In this way we
estimate system performance degradation in a range where the VMs startup is
either faster (e.g., in container-based systems where the startup time is negligible
and the recovery time is due only to YARN NodeManagers startup) or slower
than on Amazon EC2. The simulation reported in Fig. 5a shows, as expected,
that the more the recovery process stalls, the more performance degrades, and
it can reach up to 25% if the recovery process takes 8 minutes.

Note that, in some cases we obtained negative values for η (t) because sim-
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ulation data is subject to inaccuracies. This is why we rely on linear regression
to estimate the performance degradation trend. In this and the next analysis
we obtained a p-value equal to 0.001 for the full model F -test, meaning that the
regression line is a good fit except for white noise.

In the second experiment, the mean recovery time is fixed to 331715 ms, the
average we measured in our experiments, and the number of spot instances is
increased from 1 to 7 out of the total of 15 VMs. The result is shown in Fig. 5b,
which reports the curve for the cost reduction due to using spot instances as
well as the performance degradation. Cost reduction is computed as Cr =
C (s; p) /C (0; 0), where C(s; p) is the cluster cost when s spot instances are
used, with a failure probability p. C (0; 0) is the case where no spot instance is
used. C (s; p) can be computed as:

C (s; p) = δ (R− s) + psδ + (1 − p) sσ (1)

where R is defined to be the total number of VMs, while δ and σ are hourly
prices for on-demand and spot instances, respectively. δ and σ are set to $0.285
and $0.0313, respectively. The latter is the average spot price from the Amazon
website in the last two weeks at the time of writing.

It should be noted that, according to the experiments, the job execution
time is less than an hour: according to the Amazon pricing policy [1], in case
spot instances are abruptly terminated users are not charged for partial hour
usage. The first term on the right hand side of Equation 1 is the cost of the
initial on-demand instances, while the second term is the price the user should
pay to acquire the same number of on-demand instances as the lost spot ones in
case of failure. Finally, with probability (1− p) spot instances do not fail and
the third term indicates the cost in this scenario. We evaluate the probability of
spot termination as p = P (X < T ), where X is the random variable for time to
failure and T is the execution time. Assuming X is exponentially distributed,
p can be easily obtained in closed form. Fig. 5b shows that, using the proposed
SWN model, one can efficiently use spot instances to decrease cluster costs,
down to 52.5% for 8 spot instances with just a 25% performance degradation.

4 Related Work
Deploying a task in a computer cluster requires a non-negligible learning curve of
the underlying technology and a good knowledge of the process requirements. It
is essential to consider that clusters are shared by multiple users or institutions,
are vulnerable to hardware failures and have a monetary cost. The minimization
of the starvation between user jobs, the impact of the execution errors and the
optimization of operational costs are important issues.

Modeling and simulating the configuration of a high-performance distributed
computer framework allows for predicting the behavior of the tasks before ex-
ecution. They enable the detection of potential problems such as bottlenecks,
the tolerance to hardware malfunctioning as well as a finer estimation of the

12



resources usage, the running time and throughput (i.e., time and resources are
two of the main parameters for guaranteeing a fair scheduling among user jobs
and inferring the billing). Initial works for studying generic Cloud systems have
been already proposed. For example, Bruneo et al. [11] introduce a Stochastic
Reward Petri net model representing an Infrastructure as a Service Cloud where
the load conditions can change dynamically, although it has not been validated
with real data, yet. More concretely, analytical models such as [4, 16, 21, 26, 35]
use mathematical equations for representing a MapReduce system and quanti-
fying the throughput of a particular resource (i.e., network, hardware disk, or
CPU). In this paper, we propose two general purpose modeling abstractions
for describing the MapReduce environment such as SWNs and QNs. Regres-
sion techniques for estimating the response time of future jobs based on past
experiences are exploratory approaches not considered in this paper.

Several works describe the adoption of Petri nets (PNs) for MapReduce mod-
eling. For instance, Castiglione et al. [12] describe a Big Data architecture based
on Hadoop by means of stochastic PNs and apply Mean Field Analysis to obtain
average metrics and estimate its performance. Another approach, presented by
Barbierato et al. [8], exploits Generalized Stochastic Petri Nets alongside other
formalisms such as process algebras or Markov chains to develop multi-formal-
ism models and capture HQL queries. Adopting the presented tool, the authors
investigate how performance depends on some configuration parameters. In
literature colored PNs have also been adopted to assess the feasibility of a dis-
tributed file system project [3]. The authors design a deployment of HDFS
exploiting spare resources in a cluster of workstations available for teaching in
their university, so as to provide a sufficiently available distributed file system.
PNs are used to assess system availability in a number of configurations of
interest. More recently, Ruiz et al. [31] formalize the MapReduce paradigm us-
ing Prioritized Timed Colored Petri Nets to obtain complete and unambiguous
models of the system behavior. They evaluate the correctness of the system and
carry out a trade-off analysis of the number of resources versus processing time
and resource cost with CPNTools [18]. Further works with PNs and MapReduce
are oriented to measuring performance under failures [19] or studying the fault
tolerance mechanism [28].

On the other side, QNs have also been introduced for modeling Cloud sys-
tems. Bardhan and Menascé [9] apply QN models for predicting the comple-
tion time of the map phase of MapReduce jobs within simple configurations of
Hadoop. Alipour et al. [5] develop a Cloud provider independent model with
QNs that represents entities involved in the Hadoop MapReduce phases, and
customize it for a specific Cloud deployment. Finally, in Yu and Li [36], an
analytical queueing mode has been developed to investigate the utilizations and
mean waiting times of mappers and reducers, respectively.

Previous works are able to model Hadoop 1.0 clusters with static resource
allocation at different levels of detail. Our SWN or QN models are able to
capture the dynamic assignment of YARN resource containers and allow for
estimating performance in new Hadoop 2.x clusters.
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5 Conclusions
In this paper we proposed SWN and QN models for the performance prediction
of MapReduce applications running on clusters governed by the Capacity Sched-
uler. Our preliminary results have shown how our simulation models are effective
in capturing the dynamic resource assignment implemented in Hadoop 2.x and
can achieve 9% accuracy, thus making them suitable for capacity planning deci-
sions at design-time. In our future work we plan to extend our models to cope
with multiple classes in shared clusters governed also by the Fair Scheduler and
with job preemptions. Finally, we will embed the models into a design space
exploration tool for Cloud resources cost minimization.
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