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Nematic liquid crystals exhibit both crystallike and fluidlike features. In particular, the propagation of an
acoustic wave shows an interesting occurrence of some of the solidlike features at the hydrodynamic level,
namely, the frequency-dependent anisotropy of sound velocity and acoustic attenuation. The non-Newtonian
behavior of nematics also emerges from the frequency-dependent viscosity coefficients. To account for these
phenomena, we put forward a viscoelastic model of nematic liquid crystals, and we extend our previous theory
to fully include the combined effects of compressibility, anisotropic elasticity, and dynamic relaxation, at any
shear rate. The low-frequency limit agrees with the compressible Ericksen-Leslie theory, while at intermediate
frequencies the model correctly captures the relaxation mechanisms underlying finite shear and bulk elastic
moduli. We show that there are only four relaxation times allowed by the uniaxial symmetry.

DOI: 10.1103/PhysRevE.94.062705

I. INTRODUCTION

For nematics made of small molecules, viscoelastic effects
and nonlinear effects are usually believed not to be important.
Hence, the flow of nematics can be described by the Ericksen-
Leslie theory [1], where the dissipative part of the stress tensor
depends linearly on the strain rate. In this approximation,
nematic liquid crystals (NLCs) are non-Newtonian fluids
only because of their anisotropic dissipation, while they
show no static elastic anisotropy or shear stiffness and their
viscous coefficients do not depend on the frequency. The
dissipation function is thus quadratic in the velocity gradient,
as in ordinary fluids. Elasticity appears only when director
distortions are taken into account and the free energy is then
supplemented with Frank’s elastic energy.

However, this description is correct only at low frequen-
cies, i.e., for low strain rates. Actual soft matter is usually
viscoelastic: it has both viscosity and bulk elasticity, and the
relation between stress and strain (or strain rate) is nonlinear.
Viscoelastic features emerge also in nematic liquid crystals at
ultrasonic frequencies. For instance, the anisotropy of sound
speed and attenuation and their frequency dependence is
often described in terms of an elastic material response and
relaxation dynamics [2–6]. Structural relaxation processes are
also explicitly mentioned in order to justify the frequency
dependence of the viscosity coefficients [7–12]. Recent papers
even report the measurement of a viscoelastic response in low
molecular weight liquid crystals, in either the nematic or the
isotropic phase, when they are subjected to low-frequency
mechanical sinusoidal deformations [13,14].

While these ideas seem to be in good agreement with
experiments they do not fit well with the existing hydrody-
namic theories [15]. A comprehensive description of these
phenomena along these lines of thought has only recently
appeared [16–18]. The theory put forth in [16–18] has the merit
to enable a smooth transition from a liquidlike to a solidlike
response. It is characterized by an anisotropic neo-Hookean
contribution to the strain energy and an evolution of the
relaxed (shear-stress-free) configuration. In two earlier papers
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[16,17], we have constructed a simplified theory for (slightly)
compressible NLCs and applied it, with fair success, to explain
quantitatively the anisotropy of sound velocity [2] and sound
attenuation [19] in N -(4-methoxybenzylidene)-4-butylaniline
(MBBA) over the range 2–14 MHz. In a subsequent paper
[18], we have refined our theory to include the anisotropy of
the dissipation tensor. The low-frequency and incompressible
limit of our theory reproduces the classical Ericksen-Leslie
theory but delivers, in addition, a new Parodi-like relation
among the viscosity coefficients.

Although it has long been recognized that sound propaga-
tion is affected by the orientational order [2,19], the study
of acoustic phenomena in NLCs is still an active field of
research [20–24]. To some extent, this is due to the potential
theoretical implications, as there is not broad agreement about
the theoretical explanation of the interaction of sound and
nematic order. Some time ago, a theory of sound propagation
was proposed by Selinger and coworkers to explain their
experimental results [25–28]. They postulated that the sound-
speed anisotropy is due to a direct coupling between the
nematic director and the density gradient. Later, this idea was
refined by Virga [29], who has developed a thorough theory
of anisotropic Korteweg (or second-gradient) fluids. However,
here we do not share the point of view reported in [25,29] and
we have expressed our concerns in Ref. [16]. Furthermore, the
second-gradient theory does not seem to predict the correct
frequency dependence of the sound speed [21].

In this paper, we reconsider and extend the model put
forth in [16–18], to include the combined effects of (i)
compressibility, (ii) an anisotropic neo-Hookean contribution
to the strain energy, and (iii) an anisotropic gradient flow
dynamics for the relaxed configuration. In so doing, we
are now able to analyze a number of peculiar phenomena
observed in the propagation of sound in NLCs that were
only partially investigated in our previous works. Specifically,
the acoustic approximation allows us to show that there are
only four independent relaxation times. We calculate how the
sound speed and the acoustic attenuation depend on these
characteristic times and on the angle between the director
and the direction of propagation. We also derive how the
viscosity coefficients are affected by the relaxation dynamics.
The weak-flow approximation yields the explicit dependence
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of the viscosity coefficients (including the bulk viscosities) on
the parameters of the model.

II. DYNAMICS

We now review the main features of the theory presented in
[18]. We revise it and extend it to take explicitly into account
compressibility and the full spectrum of possible shear rates.
Furthermore, we analyze more carefully the relaxation modes
allowed by symmetry.

The first key idea is to decouple the contribution of elasticity
and dissipation by writing a multiplicative decomposition of
the deformation gradient F (with respect to an arbitrarily
chosen reference configuration, B0):

F=FeG. (1)

The effective deformation tensor, Fe, will measure the elastic
response of the NLC, from an evolving equilibrium con-
figuration, Brel (Fig. 1). The relaxing deformation tensor,
G, determines how this configuration locally departs from
the reference configuration. Since the elastic response is
determined by Fe, only the effective deformation appears
explicitly in the strain energy. By contrast, energy dissipation
(entropy production) is only associated with the evolution
of G.

In order to account for anisotropic elasticity, we intro-
duce the compressible anisotropic neo-Hookean strain energy
density per unit mass,

σ (ρ,Be,n) = σ0(ρ) + 1
2μ(ρ)(tr(�−1Be − I)

− log det(�−1Be)), (2)

where ρ is the density, ρμ(ρ) is the shear modulus, Be = FeF�
e

is the effective left Cauchy-Green deformation tensor, and I is
the identity tensor. The isotropic contribution σ0(ρ) penalizes
density (and volume) variations and it is assumed to dominate
the elastic energy. This term depends on ρ and is thus not
affected by stress relaxation. By contrast, the second term in
(2) depends on the evolution of Brel. It couples the elastic

FIG. 1. Decomposition of the deformation gradient into its
relaxing and effective parts.

properties of the material with the nematic director and it is
minimum if and only if Be coincides with the energetic shape
tensor[16]

�(ρ,n) = a(ρ)2(n ⊗ n) + a(ρ)−1(I − n ⊗ n), (3)

where n is the nematic director and a(ρ) > 0 is a density-
dependent aspect ratio. The shape tensor � is symmetric, pos-
itive definite, and with unit determinant. If nematic distortions
have to be included in the model, Eq. (2) must be supplemented
with the classical Oseen-Frank free-energy density [1]. For
simplicity, we assume that the director field, n, is uniform and
fixed by some external action.

A standard procedure [16–18] then yields the Cauchy stress
tensor

T = −p(ρ,Be,n) I + ρμ(ρ)(�−1Be − I), (4)

where the pressurelike function is

p = ρ2

[
∂σ0

∂ρ
+ 1

2
μ′(ρ)(tr(�−1Be − I) − log det(�−1Be))

−μ(ρ)
3a′(ρ)

2a(ρ)

(
n ⊗ n − 1

3
I
)

· �−1Be

]
. (5)

As expected, when Be =�, the shear stress vanishes and T is
spherical.

The dynamics of the liquid crystal is governed by the
balances of mass, momentum, and angular momentum at each
point in the system. Given our assumption on the director field,
the macroscopic motion of the NLC is completely described
by the balance of mass and the balance of momentum. In
the absence of body forces and body couples these two
equations are

ρ̇ + ρ div v = 0, ρv̇ = div T. (6)

Here, an overdot indicates the material time derivative and v
is the velocity field.

However, a full description of the dynamics requires an
evolution equation for the relaxing deformation [30,31]. Any
relaxation dynamics necessarily obeys a dissipation inequality,
ensuring a nonnegative entropy production. It is convenient to
introduce the codeformational derivative

B�
e = Ḃe − (∇v) Be − Be(∇v)�, (7)

where ∇v= ḞF−1 is the spatial velocity gradient. The quantity
B�

e can be interpreted as the time rate of change of Be relative to
a convected coordinate system that moves and deforms with the
flowing liquid crystal. In this respect, B�

e vanishes whenever
the deformation is purely elastic and there is no evolution of the
natural configuration (the system does not dissipate). In this
notation, the dissipation inequality for an isothermal process
simply reads

− ∂σ

∂Be
· B�

e � 0. (8)

When Eq. (2) is substituted into (8) this inequality takes
the form (

�−1 − B−1
e

) · B�
e � 0. (9)

It is customary, when dealing with irreversible processes near
equilibrium, to interpret the rate of entropy production as

062705-2



VISCOELASTIC NEMATODYNAMICS PHYSICAL REVIEW E 94, 062705 (2016)

the product of “fluxes” and “forces” and to assume a linear
coupling between them. If we further assume the Onsager
reciprocal relations, we obtain that the evolution of the natural
configuration is governed by the gradient-flow equation

D
(
B�

e

) + �−1 − B−1
e = 0, (10)

where D is a symmetric positive definite fourth-rank tensor,
called the dissipation tensor.

III. IDENTIFICATION OF THE RELAXATION TIMES

It is natural to assume that the dissipation tensor shares
the uniaxial symmetry of the shape tensor. The structure of
the most general fourth-rank tensor compatible with a given
material symmetry is a classical problem in linear elasticity.
It is found that the most general matrix representation of a
symmetric fourth-rank tensor that is transversely isotropic
about n has five independent parameters [32]. We interpret D :
Sym → Sym as an automorphism of the space of symmetric
second-rank tensors, Sym. It is then natural to choose the
following basis of Sym :

E1 = 1√
2

(e2 ⊗ n + n ⊗ e2), (11a)

E2 = 1√
2

(e1 ⊗ n + n ⊗ e1) (11b)

E3 = 1√
2

(e1 ⊗ e2 + e2 ⊗ e1), (11c)

E4 = 1√
2

(e1 ⊗ e1 − e2 ⊗ e2) (11d)

E5 =
√

3

2

(
n ⊗ n − 1

3
I
)

, E6 = 1√
3

I, (11e)

which is constructed from the orthonormal standard basis
(e1,e2,n) of R3, where the z axis is chosen along the director:
e3 ≡ n. The basis {Ei} is orthonormal with respect to the dot
product between second-rank tensors, defined as

L · M = tr(M�L) (12)

for any L, M in Sym.
It is apparent, when we study the propagation of an acoustic

wave, that the relaxation times are not directly related to D but
rather to the eigenvalues of the fourth-rank tensor T, defined
as

T = (� ⊗ �)D, (13)

where the tensor (or Kronecker) product between two second-
rank tensors is a fourth-rank tensor such that

(L ⊗ M) X = LXMT for all L,M,X, (14)

and then we extend its definition by linearity. The tensor T
should be compatible with the uniaxial symmetry about n,
but in general it is not symmetric with respect to the scalar
product (12). However, T is symmetric with respect to the
scalar product 〈·,·〉 defined as

〈L,M〉 = L · (�−1 ⊗ �−1)M = L · �−1M�−1 (15)

for any L, M in Sym [33]. In fact, it is easy to check that
〈L,TM〉 = 〈TL,M〉. Therefore, we can apply the spectral
theorem to diagonalizeT. The eigenvectors ofT are orthogonal
with respect to 〈·,·〉. To further illustrate this point, let us
introduce a 〈·,·〉-orthonormal basis, derived from {Ei}, which
explicitly employs the shape tensor �:

L1 =
√

a(ρ)E1, L2 =
√

a(ρ)E2, (16a)

L3 = a(ρ)−1E3, L4 = a(ρ)−1E4, (16b)

L5 =
√

2

3

(
a(ρ)2n ⊗ n − 1

2a(ρ)
(I − n ⊗ n)

)
, (16c)

L6 = 1√
3
�. (16d)

The most general relaxation tensor T that shares the
symmetry of the shape tensor � may be parameterized
by five scalar coefficients: τ1, τ2, τ3, τ4, and �. Its matrix
representation, in the basis {Li}, is conveniently written as

[T]L =

⎛⎜⎜⎜⎜⎜⎝
τ1 0 0 0 0 0
0 τ1 0 0 0 0
0 0 τ2 0 0 0
0 0 0 τ2 0 0
0 0 0 0 τs + τd cos(2�) τd sin(2�)
0 0 0 0 τd sin(2�) τs − τd cos(2�)

⎞⎟⎟⎟⎟⎟⎠,

where for compactness we have introduced the notation

τs = 1
2 (τ3 + τ4), τd = 1

2 (τ3 − τ4). (17)

The relaxation times τ1, τ2, τ3, and τ4 are the eigenvalues ofT,
while � is the angle between the eigenspace associated with
τ3 and L5. If � = 0, [T]L is diagonal. However, in general, �

is an additional parameter of the model.
The spectral decomposition of T is

T =
6∑

p,q=1

[Tpq]L Lp �̂ Lq, (18)

where the outer product �̂ is such that the identity

(L �̂ M) X = L 〈M,X〉 (19)

holds for any L, M, and X in Sym. The matrix entries in T with respect to {Ei} are derived from Eqs. (18) and (19) and Eqs. (11)
and (16):

[Tij ]E = Ei · TEj =
∑
p,q

(Ei · Lp)[Tpq]L〈Lq,Ej 〉. (20)
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After some algebraic simplifications, which we omit for brevity, we finally obtain the expression of T that is convenient to use
during the calculations:

[T]E =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

τ1 0 0 0 0 0
0 τ1 0 0 0 0
0 0 τ2 0 0 0
0 0 0 τ2 0 0

0 0 0 0 τs + τd((4a6+a3+4) cos(2�)−√
2(a3−1)2 sin(2�))

9a3
τd((2a6+8a3−1) sin(2�)+2

√
2(−2a6+a3+1) cos(2�))

9a3

0 0 0 0 τd((−a6+8a3+2) sin(2�)+2
√

2(a6+a3−2) cos(2�))
9a3 τs + τd(

√
2(a3−1)2 sin(2�)−(4a6+a3+4) cos(2�))

9a3

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Equation (13) can then be inverted to yield the dissipation
tensor

D = (�−1 ⊗ �−1)T. (21)

The mathematical structure described above shows that D is
positive definite if and only if T is positive definite, i.e., if all
the relaxation times are strictly greater than 0,

τ1 > 0, τ2 > 0, τ3 > 0, τ4 > 0, (22)

a condition that it is very natural to take for granted.

IV. WEAK-FLOW APPROXIMATION

When the relaxation mechanisms are much faster then
the macroscopic dynamics, the material effectively behaves
as an ordinary fluid and the model is expected to reduce to
the compressible Ericksen-Leslie theory. An analysis of this
approximation in the incompressible case has been presented
in [18]. Here, we revise it to include the compressibility.

The characteristic time of deformation is related to the
velocity gradient, so that we posit τdef = 1/‖∇v‖. This must be
compared with the overall relaxation time, which we can define
as τrel = ‖T‖. We want to study the asymptotic approximation
of the model in the limit τrel � τdef, i.e.,

τrel‖∇v‖ = ε � 1,

where ε is a small parameter. This is a “weak-flow approxima-
tion,” where the material reorganization is much faster than the
deformation. Therefore, the effective tensor Be differs from its
equilibrium value by only a small amount:

Be = � + B1, with ‖B1‖ = O(ε). (23)

By inserting (23) into the evolution equation (10), to first order
we find

�−1B1 = −D(��)�, (24)

which yields the following approximation for the stress tensor:

T = −pI − ρμ(ρ)D(��)�, (25)

with

p = ρ2 ∂σ0

∂ρ
+ ρ2μ(ρ)

3a′(ρ)

2a(ρ)
dev(n ⊗ n) · (D(��)�). (26)

The codeformational derivative of the shape tensor is

�� = ρa′(ρ)

a(ρ)2
(tr D)(I − (1 + 2a(ρ)3)(n ⊗ n))

+ (a(ρ)2 − a(ρ)−1)(n̊ ⊗ n + n ⊗ n̊

− Dn ⊗ n − n ⊗ Dn) − 2a(ρ)−1 D, (27)

where n̊ = ṅ − Wn is the corotational derivative of the
nematic director, D = sym(∇v) is the stretching, and W =
skw(∇v) is the spin. We are now in a position to compare our
result, (25), with the most general linear viscous stress com-
patible with the nematic structure, as given in the compressible
Ericksen-Leslie theory, namely,

TEL = −pisoI + α1(n · Dn)(n ⊗ n) + α2(n̊ ⊗ n)

+α3(n ⊗ n̊) + α4D + α5(Dn ⊗ n) + α6(n ⊗ Dn)

+α7((tr D)(n ⊗ n) + (n · Dn)I) + α8(tr D)I, (28)

where piso(ρ) = ρ2σ ′
0(ρ) is the isotropic pressure function.

After some algebra, the Leslie coefficients are identified as

α1 = ρμ

(
τ2 − (a3 + 1)2

a3
τ1 + 3τ3(cos �)2 + 3τ4(sin �)2

)
,

(29a)

α2 = −ρμ(a3 − 1)τ1, (29b)

α3 = −ρμ(1 − a−3)τ1, (29c)

α4 = 2ρμτ2, (29d)

α5 = ρμ((1 + a3)τ1 − 2τ2), (29e)

α6 = ρμ((1 + a−3)τ1 − 2τ2), (29f)

α7 = ρμ(τ2 + τ3 cos �((3κ − 1) cos(�) +
√

2 sin �)

+ τ4 sin �((3κ − 1) sin(�) −
√

2 cos �)), (29g)

α8 = ρμ

(
−τ2 + 1

6
τ3((9κ2 − 6κ − 1) cos(2�)

+ 9κ2 + 2
√

2(3κ − 1) sin(2�) − 6κ + 3)

− 1

6
τ4((9κ2 − 6κ − 1) cos(2�)

− 9κ2 + 2
√

2(3κ − 1) sin(2�) + 6κ − 3)

)
, (29h)

where we have defined κ(ρ) = ρa′(ρ)/a(ρ). These viscosity
coefficients satisfy identically the well-known Parodi relation
[34],

α2 + α3 = α6 − α5, (30)

and the nonlinear identities [18],

α2

α3
= α4 + α5

α4 + α6
= a3. (31)
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V. ACOUSTIC APPROXIMATION

In Sec. IV we have studied the approximation of our model
for weak flows and large deformations. We now analyze
the “dual” approximation, where the deformations are small
and the NLC is only weakly compressible, but the shear
rates are virtually high. In Refs. [16,17] we have studied
a similar problem, under the simplifying assumption of a
single relaxation time and nearly isotropic shape tensor, i.e.,
a(ρ) ≈ 1. Here, we reconsider the nematoacoustic problem
we tackled in [16] but in the more general framework of
Sec. II, with the four relaxation times allowed by symmetry
and arbitrary high anisotropies of the shape tensor.

A plane-wave solution is represented by a displacement
field of the form

u(x,t) = εa Re{eiφ(x,t)}, (32a)

φ(x,t) = k̂ · x − ωt, k̂ = k + i�, (32b)

where φ(x,t) is a complex phase, k̂ is a complex wave vector,
ω is the angular frequency, ε � 1 is a dimensionless small
parameter that scales the amplitude of the wave, and the vector
a determines the amplitude and the polarization of the wave
(e.g., longitudinal or transversal if a is parallel or orthogonal to
k). The real part of k̂ is the ordinary wave vector k = ke, with
e a unit vector along the propagation direction. The imaginary
part of k̂ determines the attenuation of the wave. For later
convenience in calculations, we retain the complex notation
with the implicit understanding that only the real part of the
equations has a physical meaning.

To order O(ε), ansatz (32) implies

v = −iωεaeiφ, v̇ = −ω2εaeiφ (33a)

F = I + εF1 = I + iεeiφ(a ⊗ k̂), (33b)

ρ = ρ0 + ερ1 = ρ0(1 − iεeiφ(a · k̂)), (33c)

a(ρ) = a0 + ε
a1

ρ0
ρ1, a′(ρ0) = a1/ρ0. (33d)

The density-dependent shape tensor and dissipation tensor
are perturbed analogously. We omit their explicit expressions,
which can be easily calculated from Eqs. (33), but we write
formally � = �0 + ε�1 and D = D0 + εD1.

Our perturbative approach based on small density variations
is particularly suited to analysis of the quasi-incompressible
response of liquids. In this approximation, tiny density
variations should imply fairly large pressure changes. Specif-
ically, the isotropic pressure function piso(ρ) = ρ2σ ′

0(ρ) is
expanded as

piso(ρ0 + ερ1) = p0 + εp1ρ1,

with p0 = piso(ρ0) and p′
iso(ρ0) = p1. We recall that v0 = √

p1

is the (isotropic) sound speed in ordinary liquids, and ρ0p1

is usually referred to as the bulk modulus. It measures the
material response to compression. The pressure variations
are �p ≈ p1�ρ and quasi-incompressibility implies that
�p/p0 � �ρ/ρ0, i.e., ρ0p1 � p0. On the other hand, for
the asymptotic procedure to be successful, it is required that
p0 � εp1ρ1. Hence, we assume that

ρ0p1 � p0 � εp1ρ1. (34)

The evolution equation, (10), controls the relaxation mecha-
nisms of the fluids. Its asymptotic analysis is best studied by
means of the inverse relaxing strain H = (G�G)−1, so that the
effective strain can be written as Be = FHF�. To order O(ε),
we find

H = �0 + ε(H1 + �1), (35)

B�
e = F

.

HFT = ε(
.

H1 +
.

�1), (36)

where H1 is an unknown tensor to be determined by solving
Eq. (10). To first order, and after the transient has died out, this
equation yields

(I − iω(�0 ⊗ �0)D0)H1

= −F1�0 − �0FT
1 + iω(�0 ⊗ �0)D0(�1), (37)

where I is the fourth-rank identity tensor. This equation
clearly shows that the relaxation dynamics is governed by
the inversion of the tensor I − iω(�0 ⊗ �0)D0. Hence, the
normal modes of relaxation are related to the eigenmodes of
(�0 ⊗ �0)D0. The fourth-rank time relaxation tensor is then
found to be T = (� ⊗ �)D, in agreement with Eq. (13).

From Eqs. (3)–(5), and Eqs. (35)–(37) we readily obtain the
stress tensor T. The calculations are straightforward but very
lengthy, so they are not reported here. They are best automated
with a computer algebra software such as MATHEMATICA.
However, it is interesting to observe that by comparing the
stress tensor T with TEL as given in Eq. (28), we derive the
frequency dependence of the Leslie viscosities predicted by
our model. The low-frequency limit (ω = 0) coincides with the
previous result, (29), which was obtained by quite a different
procedure. We find

α1 = ρ0μ0

(
−

(
a3

0 + 1
)2

a3
0

τ1

1 + (ωτ1)2
+ τ2

1 + (ωτ2)2

+C13
τ3

1 + (ωτ3)2
+ C14

τ4

1 + (ωτ4)2

)
, (38a)

α2 = −ρ0μ0
(
a3

0 − 1
) τ1

1 + (ωτ1)2
, (38b)

α3 = −ρ0μ0
(
1 − a−3

0

) τ1

1 + (ωτ1)2
, (38c)

α4 = ρ0μ0
2τ2

1 + (ωτ2)2
, (38d)

α5 = ρ0μ0

((
a3

0 + 1
)
τ1

1 + (ωτ1)2
− 2τ2

1 + (ωτ2)2

)
, (38e)

α6 = ρ0μ0

((
1 + a−3

0

)
τ1

1 + (ωτ1)2
− 2τ2

1 + (ωτ2)2

)
, (38f)

α7 = ρ0μ0

(
τ2

1 + (ωτ2)2
+C73

τ3

1 + (ωτ3)2
+ C74

τ4

1 + (ωτ4)2

)
,

(38g)

α8 = ρ0μ0

(
− τ2

1+(ωτ2)2
+ C83

τ3

1 + (ωτ3)2
+ C84

τ4

1 + (ωτ4)2

)
,

(38h)
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where

C13 = 3(cos �)2, C14 = 3(sin �)2, (39a)

C73 = cos �((3κ0 − 1) cos � +
√

2 sin �), (39b)

C74 = sin �((3κ0 − 1) sin � −
√

2 cos �), (39c)

C83 = (
2
√

2(3κ0 − 1) sin(2�) + (
9κ2

0 − 6κ0 − 1
)

cos(2�)

+ 9κ2
0 − 6κ0 + 3

)/
6, (39d)

C84 = (−2
√

2(3κ0 − 1) sin(2�) − (
9κ2

0 − 6κ0 − 1
)

cos(2�)

+ 9κ2
0 − 6κ0 + 3

)/
6, (39e)

and μ0 = μ(ρ0), κ0 = a1/a0. The identities, (30) and (31),
still hold true at any frequency.

Solution of the Christoffel equation

In order to investigate the propagation of sound we have to
solve the balance of momentum equation (6b). In the acoustic
approximation, to first order this reads

−ρ0ω
2aeiφ = iT k̂. (40)

The unknowns of this complex equation are the amplitude
vector a, which determines the polarization of the sound wave,
the sound phase velocity vs = ω/k, and the attenuation vector
�. However, the solution of Eq. (40) is obscured by the fact
that the amplitude vector a is implicitly contained in the stress
tensor. To make the mathematical structure of Eq. (40) more
transparent, we observe that T depends linearly on a so that
we can define two second-rank tensors, Ar and Ai , such that

−e−iφ

ρ0
iT k̂ = (Ar + iAi)a. (41)

Equation (40) can now be recast in the form of a complex
eigenvalue problem, whose real and imaginary parts are{

Ara = ω2 a,

Aia = 0.
(42)

Equation (42) is known as the Christoffel equation in the theory
of acoustic propagation in solids [35]. Its real part, Eq. (42a),
determines the direction of polarization of the wave and the
sound speed. The imaginary part, Eq. (42b), identifies the
attenuation.

The Christoffel equation is still too complicated to be
solved directly. One simplifying assumption, very natural in
our context, is that the stored energy density, (2), is only
weakly anisotropic and it is dominated by its first term [16].
In mathematical terms, we posit that the shear modulus ρ0μ0

is much smaller than the bulk modulus ρ0p1, so that their ratio
is low:

η = μ0/p1 � 1. (43)

1. Sound speed

According to Eq. (42a), the amplitude vector a must be an
eigenvector of Ar . Since the matrix Ar depends on the wave
number k, we can determine the sound speed vs = ω/k by
imposing that ω2 is an eigenvalue of Ar . Hence, the equation

for the sound speed is

det(Ar − ω2I) = 0, (44)

which can be solved without prior knowledge of the polariza-
tion a. Given the weak anisotropy assumption, (43), we look for
a solution of Eq. (44) in the form of an asymptotic expansion,
vs = v0 + ηv1 + o(η), where v0 = √

p1. After some algebra,
we find

vs = v0 + ηv0

[
A

(0)
0 +

4∑
i=1

A
(0)
i

1 + (ωτi)2

+
(

A
(2)
0 +

4∑
i=1

A
(2)
i

1 + (ωτi)2

)
cos(2θ )

+
(

A
(4)
0 +

4∑
i=1

A
(4)
i

1 + (ωτi)2

)
cos(4θ )

]
, (45)

with

A
(0)
0 = (

a3
0 + a−3

0 + 8κ0(3κ0 + 1) + 14
)/

16, (46a)

A
(0)
1 = −(

a3
0 + 1

)2/(
16a3

0

)
, (46b)

A
(0)
2 = −3/16, (46c)

A
(0)
3 = (−8

√
2(6κ0 + 1) sin(2�)

+ (5 − 24κ0(3κ0 + 1)) cos(2�)

− 3(8κ0(3κ0 + 1) + 9))/96, (46d)

A
(0)
4 = (8

√
2(6κ0 + 1) sin(2�)

− (5 − 24κ0(3κ0 + 1)) cos(2�)

− 3(8κ0(3κ0 + 1) + 9))/96, (46e)

A
(2)
0 = 3κ0/2, A

(2)
1 = 0, A

(2)
2 = 1/4, (46f)

A
(2)
3 = − cos �((6κ0 + 1) cos � + 2

√
2 sin �)/4, (46g)

A
(2)
4 = − sin �((6κ0 + 1) sin � − 2

√
2 cos �)/4, (46h)

A
(4)
0 = −(

a3
0 − 1

)2/(
16a3

0

)
, (46i)

A
(4)
1 = (

a3
0 + 1

)2/(
16a3

0

)
, (46j)

A
(4)
2 = −1/16, (46k)

A
(4)
3 = −3(cos �)2/16, A

(4)
4 = −3(sin �)2/16. (46l)

The amplitude vector a is the eigenvector of Ar relative
to the eigenvalue ω2. It is noteworthy that the matrix Ar

depends on the wave number k = ω/vs, with vs as given in
Eq. (45). To leading order, we obtain, as expected, purely
longitudinal waves, i.e., a = A0e. The small O(η) correction
to the polarization is orthogonal to e and can be calculated
explicitly, but its long awkward expression is not particularly
illuminating and is not reported here for brevity.

2. Sound attenuation

Finally, the attenuation vector is found by solving Eq. (42b),
where � enters implicitly into the definition of Ai . Since the
wave is longitudinal to leading order, the attenuation vector �
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is such that Aie = 0. This equation yields

�

ηk0
=

4∑
i=1

ωτi

1 + (ωτi)2

(
B

(0)
i +B

(2)
i cos(2θ )+B

(4)
i cos(4θ )

)
e

+
4∑

i=1

ωτi

1 + (ωτi)2

(
C

(2)
i sin(2θ ) + C

(4)
i sin(4θ )

)
t,

(47)

where k0 = ω/v0, and t is the unit vector orthogonal to e, which
belongs to the plane span{e,n}, such that n = cos θ e + sin θ t.
The coefficients are

B
(h)
i = −A

(h)
i , h = 0,2,4, i = 1,2,3,4; (48)

C
(2)
1 = −(

a6
0 − 1

)/(
4a3

0

)
, (49a)

C
(2)
i = −A

(2)
i , i = 2,3,4, (49b)

C
(4)
i = −2A

(4)
i , i = 1,2,3,4. (49c)

VI. DISCUSSION

We have developed a viscoelastic theory of nematic liquid
crystals that accounts for both elastic and relaxation effects,
based only on material symmetry requirements, compatibil-
ity with thermodynamics, and Onsager reciprocal relations.
The uniaxial symmetry implies that there are only four
possible relaxation times. Using a weak-flow approximation,
we are able to predict how the eight viscosities of the com-
pressible Ericksen-Leslie model depend on these relaxation
times. The acoustic approximation of our theory provides a
number of further interesting results. First, we have obtained
the frequency dependence of the eight viscosity coefficients,
the sound speed, and the attenuation. We have seen that
each of these quantities is a superposition of relaxing terms,
each of which is associated with a single relaxation time. In
particular, according to Eqs. (38), we have modeled NLCs as
shear-thinning fluids: at low shear rates, the shear stress is
proportional to ∇v, and the viscosity approaches a constant
value. At higher shear rates the viscosity decreases with
increasing shear rate. This behavior is observed in most (but
not all) polymeric liquids [36]. Second, we have found how
the sound speed and the acoustic attenuation depend on the
frequency of the sound wave and on the angle between the
director and the wave vector.

Finally, it is noteworthy that our theory should be able to
cover with continuity a broad spectrum of possible behav-
iors, from isotropic viscous fluids to nematic elastomers. In
particular, it should equally well be applicable to polymeric
anisotropic fluids, i.e., macromolecular liquid crystalline
polymers.

A. Relaxation times for MBBA

In principle, our results are in good qualitative agreement
with experiments. In order to make this comparison quantita-
tively precise, it is desirable to fit the experimental measures
and thus find the parameters of our model. However, at present,
this seems to be an intractable task and only a rough estimate of
the parameters can be aimed at. There are three main reasons
for this.

The first reason is theoretical: our theory does not account
for partial order and temperature effects. By contrast, relax-
ation times, viscosity coefficients, and acoustic properties are
known to depend on the temperature and degree of order. We
plan to extend our theory in a future paper to include the effects
of partial order. For the present purposes, we try to select the
experimental data sharing the same degree of order and we
obtain a crude reconstruction of the nominal values of nematic
viscosities at perfect order S = 1 from values measured for
partially ordered NLCs by replacing each n ⊗ n term in the
Cauchy stress tensor with the corresponding second-moment
S(n ⊗ n).

The second reason is that the experimental data at our
disposal are scattered in the literature among various sources
from the early 1970s. Therefore, the experimental settings that
we have to cope with may differ with respect to temperature,
sample purity, material degradation, and accuracy of the
experimental techniques.

The final reason is that ultrasonic measurements are usually
performed on a limited range of frequencies, typically below
100 MHz. However, to be able to determine the relaxation
times associated with the fast relaxation modes (<10−9 s), we
need to study the propagation of sound in the gigahertz range.
Modern techniques based on Brillouin scattering seem to en-
able the analysis of sound propagation up to tens of gigahertz.
However, we were not able to find such measurements for
MBBA in the right temperature range.

Consistently with what is done in Refs. [16,18,29,37], we
use what seems to be a reasonably coherent set of data for
MBBA: (i) the shear viscosities as suggested in Ref. [38]
(except for α3; see [18]), at T = 25◦C, corresponding to a
degree of order S = 0.66, according to [18]; (ii) the anisotropic
profile of the sound speed at 2, 6, 10, and 14 MHz and T =
25◦C as given in Fig. 3 in Ref. [2]; and (iii) the attenuation
anisotropy as given in Fig. 2 in Ref. [19].

There are eight unknown parameters specific to our model:
the shear modulus ρ0μ0 (or, equivalently, η), the aspect
ratio a0, its compressibility κ0 = a1/a0, four relaxation times,
τ1, τ2, τ3, and τ4, and the angle �. In order to simplify the
fitting procedure, we have to reduce the dimension of the
parameter space. To this end, we evaluate the aspect ratio a0

by means of Eq. (31), using the experimental measure [38] of
α4 and the extrapolated values of α5 and α6 from S = 0.66 to
S = 1. The values of α4 and α5 are also used to determine the
products of the shear modulus, ρ0μ0, with τ1 and τ2. A further
equation linking τ3, τ4, and � is obtained from the S2-rescaled
value of α1.

We are now able to determine the remaining parameters,
namely, ρ0μ0, κ0, τ4, and �, by fitting the functional depen-
dence of the velocity on the angle θ at four frequencies [2]. The
best estimated model parameters are reported in Table I. It is
clear in Fig. 2 that the fit describes the velocity data quite well.
The velocity anisotropy is defined as �v/v = (vs(θ = 0) −
vs(θ = π/2))/vs(θ = π/2).

Despite the unrefined data at hand and the necessary simpli-
fying assumptions in the fitting procedure, the values in Table I
have some predictive power. For example, α2 (which was not
part of the optimization procedure) is found to be −0.096 Pa s,
against an experimental value of −0.11 Pa s. The values of
the bulk viscosities, α7 and α8, are predicted to be 0.056
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TABLE I. Values of the model parameters identified by the
experimental MBBA viscosity coefficients [38] and a best fit of the
velocity anisotropy [2]. See the text for details. The temperature of
the samples is in all cases 25◦C, corresponding to a degree of order
S ≈ 0.66. Standard values for the density (ρ0 = 103 kg/m3) and the
isotropic sound speed (v0 = 1540 m/s) are used.

a0 η κ0 τ1 (ns) τ2 (ns) τ3 (ns) τ4 (ns) �

1.85 1.22×10−3 0.628 9.42 14.2 17.1 32.9 0.0

and 0.035 Pa s, respectively. Furthermore, we compare the
theoretical attenuation anisotropy (in decibels per unit flight
time) with the measured data in Ref. [19], which were not
included in the fit. The remarkable agreement of theory and
experiment in this case is clearly displayed in Fig. 3. The
velocity and attenuation anisotropies show a similar functional
dependence on the frequency. However, by contrast with [16],
they are not exactly equivalent. The universal character of
the frequency dependence of the relaxation processes that was
observed in [16] is a consequence of the single-relaxation-time
approximation.

Interestingly, the four relaxation times are roughly of the
same order of magnitude, in the range of tens of nanoseconds.
These values are consistent with the relaxation time (≈20 ns)
estimated on different grounds by Mullen et al. [2] and with
Refs. [7–12] where only one or two relaxation times are
used to fit the frequency profile of the viscosity coefficients.
Furthermore, it provides an a posteriori justification of the
validity of the one-time approximation employed in [16].

B. The effects of temperature

The extension of our theory to include the effects of partial
order and temperature comprises a deep review of the whole
model and its assumptions. Therefore, it is better postponed
to a future paper. However, some of the key ingredients of
such an extension can already be identified. The temperature
dependence is obviously caused by a superposition of two
effects: first, the influence of the degree of order below the
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FIG. 2. Frequency dependence of the velocity anisotropy. The
solid line represents our fit to the four relaxation times and the model
parameters listed in Table I. Experimental points are taken from [2].
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FIG. 3. Frequency dependence of the attenuation anisotropy. The
solid line represents our theoretical estimate obtained with the model
parameters listed in Table I. Experimental points are taken from [19].

transition nematic-isotropic temperature TNI. This implies the
introduction in the theory of the de Gennes ordering tensor Q.
One way to get around this is simply to relate the orientational
order to the positional order of the molecules. Specifically,
we may assume that the degree of order S is related to
the shape aspect ratio by the identity a = ebS/3, where b is
a phenomenological parameter that describes the coupling
strength between orientational order and shape tensor. In
the isotropic phase, when S = 0, this relation yields a = 1,
i.e., � = I, which consistently corresponds to an isotropic
distribution for both the orientation and the intermolecular
distance of the molecules.

Second, another important effect is that also the relaxation
times depend on the temperature. A standard assumption in
this respect is to assume a nearly exponential temperature

vi
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T [K]
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−γ2

η1

η2

300 305 310
0

50

100

TNI

FIG. 4. Temperature dependence of the Miesowicz coefficients
for 5CB. Solid lines represent the theoretical estimates of η1 and η2;
the dashed lines show γ1 and −γ2. Experimental values are extracted
from [40]. The isotropic viscosity α4 is taken from [41]. The isotropic-
nematic transition temperature is TNI = 35.5◦C.
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dependence, which is known from isotropic liquids
(Arrhenius-type law) [36,38,39]. Therefore, we posit

τ1 = τ01 exp

(
A

T − T0

)
, (50)

where A, T0, and τ01 are empirical model parameters.
It is instructive to compare these assumptions with the

recent experimental data, reported in Ref. [40], on the classical
5CB liquid crystal compound. With the aid of Eqs. (29), the
Miesowicz viscosities are found to be

γ1 = α3 − α2 = 2μρτ1(cosh(bS) − 1), (51a)

γ2 = α2 + α3 = −2μρτ1 sinh(bS), (51b)

η1 = (α4 + α5 − α2)/2 = μρτ1e
bS, (51c)

η2 = (α4 + α6 + α3)/2 = μρτ1e
−bS. (51d)

Furthermore, the functional dependence of the degree of
order on the temperature is assumed to be S = (1 − T/TNI)β ,
where TNI = 35.5◦C is the isotropic-nematic transition tem-
perature for 5CB and β is a fitting parameter. The good
agreement of Eqs. (51) with the experimental data taken from
[40] is shown in Fig. 4. The fitting was obtained with μρτ01 ≈
19.83 mPa · s, A ≈ 0.1926 K, b ≈ 5.031, β ≈ 0.3276, and
T0 ≈ 321 K. Equations (51) imply that, at the transition to the
isotropic phase (T = TNI), all the anisotropic features vanish
and the Miesowicz viscosities η1 and η2 converge to a common
value, ηiso. Likewise, γ1 and γ2 are predicted to vanish at
T = TNI.
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[2] M. E. Mullen, B. Lüthi, and M. J. Stephen, Phys. Rev. Lett. 28,
799 (1972).

[3] K. Miyano and J. B. Ketterson, Phys. Rev. A 12, 615 (1975).
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