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PROGRAMMING AND VISCOSITY SOLUTIONS*
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Abstract. We consider a robust switching control problem. The controller only observes the
evolution of the state process, and thus uses feedback (closed-loop) switching strategies, a non-
standard class of switching controls introduced in this paper. The adverse player (nature) chooses
open-loop controls that represent the so-called Knightian uncertainty, i.e., misspecifications of the
model. The (half) game switcher versus nature is then formulated as a two-step (robust) optimization
problem. We develop the stochastic Perron’s method in this framework, and prove that it produces
a viscosity subsolution and supersolution to a system of HJB variational inequalities, which envelop
the value function. Together with a comparison principle, this characterizes the value function of the
game as the unique viscosity solution to the HJB equation, and shows as a by-product the dynamic
programming principle for the robust feedback switching control problem.
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1. Introduction. Optimal switching is a class of stochastic control problems
that has attracted a lot of interest and generated important developments in applied
and financial mathematics. Switching control consists in a sequence of interventions
that occur at random discrete times due to switching costs, and naturally arises in
investment problems with fixed transaction costs or in real options. The literature on
this topic is quite large and we refer, e.g., to [33], [26], [15], [27], [3], [9], for a treatment
by dynamic programming and PDE methods, to [19], [20], [13] for the connection with
reflected backward stochastic differential equation methods, and to [12], [10], [17] for
various applications to finance and real options in energy markets.

The standard approach to the study of a switching control problem is to give
an evolution for the controlled state process, with assigned drift and diffusion coeffi-
cients. These, however, are obtained in practice through estimation procedures and
are unlikely to coincide with the real coefficients. For this reason, in the present work
we study a switching control problem robust to a misspecification of the model for
the controlled state process. This is formalized as follows: given s > 0, z € R%, and a
regime i € I, :== {1,...,m}, let us consider the controlled system of SDEs, for ¢ > s,

Xe=a+ [To(Xp, Iyun)dr + [Lo(Xp, Iryuy ) AW,
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The piecewise constant process I denotes the regime value at any time ¢, whose evo-
lution is determined by the controller through the switching control a = (7, tn )nen,
while the process u, decided by nature, brings the uncertainty within the model. In
the switching control problem with model uncertainty, the objective of the controller
is the maximization of the following functional, over a finite time horizon T < oo:

T
J(S, z, Z, a, U) — El:/ f(X:‘,z,i;oz,u’ Irs,z,i;oz,u7 ur)dr + g(X;,z,z;oz,u’ I;,z,z;oz,u)
s

S,T, 80U TS,TL,E0LU  TS,T,5500,1U
- E C(Xﬂ/l / 7‘[7.::) o 7ITn ’ )1{S§Tn<T} )
neN

playing against nature, described by wu. This leads to the “robust” optimization
problem

(1.2) sup (inf J(s,x,i;a,u)).
o u

What definition and information pattern for the switching control o and for u should
we adopt? As a first attempt, if we interpret (1.2) as a game between the controller and
nature, it would be reasonable to formulate it in terms of nonanticipating strategies
against controls, as in the seminal paper by Elliott and Kalton [14]. In this case, «
is a nonanticipating switching strategy, while u is an open-loop control. Then, the
switcher knows the current and past choices made by the opponent (see section 4.2
below for more details on this formulation). In the context of robust optimization, the
controller does not know in general the choice made by nature. He knows at most the
current state of the system and its past history, that is, the evolution of X and also of
I (by keeping track of his previous actions). For this reason, inspired by [1], [30] (see
also [24] which considers robust controls over feedback strategies in a deterministic
setting), we take « as a feedback (also called closed-loop) switching strategy rather than
a nonanticipating strategy (namely, we present a feedback formulation of a switching
control problem, which is quite uncommon in the literature). On the other hand, u can
be an open-loop control (nature is aware of the all information at disposal). This leads
to the formulation of robust feedback switching control problem where both players
use controls, one in feedback form (the switcher) and the other in open-loop form
(the nature), hence different from the Elliott—Kalton formulation where one player
observes continuously the control (action) of the other player.

We develop the stochastic Perron’s method in this framework of robust feedback
switching strategy. This method was initially introduced to analyze linear problems in
[4], Dynkin games in [6], and regular control problems in [5]. Later on, it was adapted
to analyze exit time problems in [29], control problems with state constraints in [28],
singular control problems in [8], stochastic differential games in [31], and stochastic
control with model uncertainty in [30]. The stochastic Perron’s method is similar to a
verification theorem and avoids having to go through the dynamic programming prin-
ciple first (which is not known a priori in this context) to show that the value function
is a solution to the HJB equation. Actually, the dynamic programming principle is
obtained as a by-product of the stochastic Perron’s method and comparison princi-
ple. Unlike the classical verification theorem, the stochastic Perron’s method does
not require the a priori smoothness of the value function. The method is to construct
viscosity (semi)solutions to the HJB equation, which envelop the value function, and
rely on the comparison principle of the HJB equation to conclude that the value func-
tion is the unique viscosity solution. In order to carry out the construction, one needs
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to define two suitable classes of functions, denoted by V= and VT, whose elements
are known in the literature on the stochastic Perron’s method as stochastic subsolu-
tions (V™) and stochastic supersolutions (V). The crucial property of V= and V'
is closedness under minimization/maximization. Moreover, their members stay be-
low/above the value function. The technical part of the proof is in showing that the
supremum/infimum of the above classes give a viscosity supersolution/subsolution to
the HJB equation. One of the advantages of the stochastic Perron’s method is that
it allows us to demonstrate that the information available to nature (whether it uses
open-loop or feedback strategies) does not affect the value of the game. We do this by
constructing the class V' for an auxiliary problem, whose elements lie by definition
above our original value function. Our results here can be thought of as a gener-
alization of the recent work [30], in which the controller uses elementary feedback
strategies. In our setting changing the value of control has a switching cost. This
changes the nature of the problem as the past action of the controller needs to be
stored as a state variable. The presence of this additional state variable brings about
several subtle technical issues, which we resolve in this paper. For example, concate-
nating the feedback switching strategies needs to be done with care (not to incur an
additional cost at the time of concatenation), which forces us to make appropriate
changes in defining the class V™.

We should mention that when one can bootstrap the regularity of the viscosity
solutions and show that they are classical solutions, one can still use the classical
Perron method of Ishii [22]. This program is carried out by [23] for a stochastic control
problem and by [7] for a robust stochastic control problem. In general, however, the
PDE may not admit a smooth solution and one has to use the generalization of the
Perron method, which we called the stochastic Perron’s method, described above. If
one attempts to use only the Perron method in [22] to construct viscosity solutions
one faces a major obstacle: without additional knowledge on the properties of the
value function, it does not compare with the output of the classical Perron method.
In fact, this is exactly what happens in [9]. In fact, [9, section 2] shows that the
system of variational inequalities has a unique viscosity solution using the classical
Perron method. But when they introduce a control problem (not a game) in section 3,
they still go through first proving the dynamic programming principle, to show that
the value function is a viscosity solution and is therefore the unique viscosity solution
they constructed in section 2.

We should emphasize that although the system of variational inequalities in [9,
section 2] is quite close to the one in our paper, these authors make the connection
in their section 3 with a control problem for the particular case when there is one
single player using switching and regular controls. Our main result is on one hand the
formulation and solution of the robust feedback switching control problem, in which
the controller only observes the evolution of the state process, and thus uses feedback
(closed-loop) switching strategies, a nonstandard class of switching controls intro-
duced for the first time in this paper, and on the other hand proving directly that it
is the unique viscosity solution to the corresponding system of dynamic programming
variational inequalities.

The rest of this paper is organized as follows. In section 2, we provide a rigorous
formulation of the robust feedback switching control problem. We develop in section 3
the stochastic Perron’s method, and characterize the infimum (resp., supremum) of
VT (resp., V™) as the viscosity subsolution (resp., supersolution) of the HJB equation.
In section 4, by using a comparison principle under a no-free-loop condition on the
switching costs, we conclude that the value function is the unique viscosity solution to
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the HJB equation, and obtain as a by-product the dynamic programming principle.
We finally compare the two formulations: robust feedback/Elliott—Kalton, in a specific
example, which then gives a counterexample to uniqueness for the HJB equation. In
order to keep the paper size reasonable, whenever a result has a standard proof or a
similar proof can be found in the literature, we do not report all details, but we focus
on the main steps providing a sketch of the proof.

2. Modeling a robust switching control problem.

2.1. Feedback switching system under model uncertainty. In this section,
we consider the situation where the switcher knows just the current and past history
of the state. To model this information pattern, we adopt the notion of feedback
strategies following the definition introduced in the book [1, Chapter VIII, section 3.1]
or in [30]. It is important to notice that this notion of feedback strategies differs from
the notion of nonanticipating strategies & la Elliott—Kalton where the switcher-player
knows the current and past choices of the control made by his/her opponent (here the
nature); see also the discussion in Chapter VIII of [1] and, in particular, Lemma 3.5
which gives the connection between these two notions.

Let U be a compact metric space and (2, F,P) be a fixed probability space on
which a d-dimensional Brownian motion W = (W});>0 is defined. For any s > 0, we
consider the filtration FW-s = (FV "*)i>s, which is the augmented natural filtration
generated by the Brownian increments starting at s, i.e.,

FVs = o(W, — Wy, s <r < t)VN(P,F), t> s,

where N(P,F) := {N € F: P(N) = 0}. For each s > 0, we denote by F* = (F})i>s

another filtration satisfying the usual conditions, which is larger than F">* and keeps
(W — Ws)t>s a Brownian motion starting at s.

We fix a finite time horizon 0 < T < oo. For any s € [0,7], we denote by y(-)

m)

)

Y
or y a generic element of the space C([s, T];R?) x Z([s, T]; L), where .Z([s, T);1
denotes the set of caglad paths valued in I,,, (notice that the elements of .Z([s, T']; L,
are indeed piecewise constant paths, since I,,, is a discrete set). We also write y =
(yX,y") with yX € O([s,T];R?Y) and y! € Z([s,T];1,,). We define the filtration
B® = (B])s<t<T, where B; is the o-algebra generated by the canonical coordinate
maps C([s, T]; R?) x Z([5,T);I;n) — R? x L,,, y(-) = y(r), r € [s,t], namely,

Bi :==o(y() = y(r), s <r <)

A map 7: O([s, T];R?) x Z([s,T); 1,n) — [s,T] satisfying {T <t} € B; Vt € [s,T], is
called a stopping rule. T* denotes the family of all stopping rules starting at s. For
any s € [0,T] and 7 € T*, we define, as usual,

Bi:={BeBj:Vtel[s,T], BNn{y: 7(y) <t} € B, },
B::={BeB;:Vte[s,T], BN{y: 7(y) < t} € B},

where By, := Np=¢By, t € [s,T), and BS., = Bj. We also denote y(T") := y(T) for
any y € O([s, T];RY) x Z([s,T];Ln).

DEFINITION 2.1 (feedback switching strategies). Fiz s € [0,T]. We say that the
double sequence o« = (Tp, Ln)nen is a feedback switching control starting at s if
o 7, €T% for anyn € N, and

s<T < ST < ST

Moreover, (T, )nen satisfies the following property: ¥ (yn)nen € C([s, T]; R?) x
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Z([s,T); L) with yn(t) = ynt+1(t), t € [s,Tn(yn)], for every n € N, then
Tn(yn) =T for n large enough.

e 1, C([s,T);RY) x ZL([s,T); 1) — L, is BE -measurable, for any n € N.
As denotes the family of all feedback switching controls starting at s.

Remark 2.1. This canonical definition of the feedback switching strategy means
that the stopping rules 7,, are based on the observation of the state, while the actions ¢,
decided at time 7, are based only on the knowledge of the state up to the decision time.
We may alternatively call feedback switching strategy as closed-loop switching control
as opposed to the notion of open-loop switching controls, where the decision times
T, are stopping times with respect to the larger filtration F*, and the actions ¢, are
based on a larger information given by the filtration F®. Consider a sequence of paths
(Yn)nen as in Definition 2.1. Then, the sequence (7, (Yn))nen is nondecreasing. Indeed,
from Lemma 2.1 below we have 7,(yn) = Tn(yn+1). Since 7n(Yn+1) < Tnt+1(Ynt1)
from the nondecreasing property of the sequence (7, )nen, the thesis follows. See also
Remark 2.3 below, where the property “7,(y,) = T for n large enough” is analyzed
in detail. This structure condition on the sequence (y,,) is required for ensuring well-
posedness, i.e., in order to guarantee that the optimal control does not have infinitely
many switches and that the SDE (2.1) of X is well-defined. This is discussed in detail
below; see, in particular, Remark 2.3. ad

DEFINITION 2.2 (open-loop controls). Fiz s € [0,T]. An open-loop control u
starting at s, for the nature, is an F*-progressively measurable process u: [s,T] x Q —
U. We denote by Us the collection of all possible open-loop controls, given the initial
deterministic time s.

For any (s,x,i) € [0,T] x R x L,,, & = (Tn, tn)nen € As, u € Us, we can now
write (1.1) on [0, 7] as follows:
(2.1)
X =a+ [L0(Xp, Iyun)dr + [L o(Xp, Iy uy)dW,, s<t<T,
It = ilfscrarox. 0 )y T Domen tn(Xos L) lgr (X1 y<t<rman (X0 )} S <t <T,
Ip = Ip-
with I,- := I5. Notice that the presence of I.- in place of I. in the arguments of
T, Lo 1S due to the fact that the choice of (7,,,t,) by the controller is based only on
the information coming from the previous switching actions (7;, t;)o<i<n—1. Moreover,
the last equation It = Ip- in (2.1) means that there is no regime switching at the final
time 7. We impose the following assumptions on the coefficients b: R? x I, x U — R¢
and o: R? x I,,, x U — R%*? (in the following, we use the notation ||A||? = tr(AAT)
for the Hilbert—Schmidt norm of any matrix A).
(H1)
(i) b, 0 are jointly continuous on R% x I,,, x U.
(ii) b, 0 are uniformly Lipschitz continuous in z, i.e.,
|b(z, 3, u) — b2, i, u)| + ||o(z,4,u) — o(2’,i,u)]| < Li|z — 2]
Vz,2' € R, i €l,,, u e U, for some positive constant L;.

Remark 2.2. From assumption (H1) it follows that b and o satisfy a linear growth
condition in z, i.e.,

Ve eR? i el,, ue U, for some positive constant M;. 0
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Remark 2.3. Fix s € [0,T] and o = (Tn,tn)nen € As. Let us consider the
following properties of the nondecreasing sequence (7, )nen:
(i) Uniformly finite. There exists N € N such that Yy € C([s,T];RY) x
L[5, T];1in),
Tn(y) =T forn > N.

(ii) Finite along every adaptive sequence. For every sequence (yn)nen € C([s, T];
R%)x Z([s, T); 1) satistying for every n € N, y,,(t) = yny1(t) Vt € [s, 70 (yn)],
we have

Tn(yn) =T for n large enough.

(iii) Finite along every path. Yy € C([s, T);R?) x Z([s,T]; Im),
Ta(y) =T for n large enough.

Condition (i) is the strongest, while (iii) is the weakest. In Definition 2.1 we imposed
the intermediate property (ii), since it allows us to have a well-posedness result for
(2.1), which is no longer guaranteed if we require only (iii). To see this latter point,
we construct a counterexample. Take s = 0, T = 1, and m = 2 so that Iy = {1,2}.
Consider the sequence (b,,)nen C [0, 1] given by

n
1
bh=) 555 YneN
=0
In particular, we have bp = 1, by =2 + 4, bo =1+ 1+ L ... and in general
2n+1 -1
b'n,: 2n+2 anO

Notice that (b,)nen is a strictly increasing sequence satisfying b, 1% as n — oo.
Now, for every y € C([0,1];R?) x £([0,1];12) we write y = (y*,y!) with y* €

C([0,1]);R?) and y' € £(]0,1];12). Then, we define the sequence (7,,)nen as follows:
Tn(Y) =bnlgyep,y + lyensy Yy € C(0,1;RY) x £([0,1);I2), n € N,
where

By = {y € C([0,1];RY) x 2([0,1];I2): y"(t) = 4 (0), 0 < t < b},
By={y€Bu1:y'(t) =3y (bn1), b1 <t < by} Vn>1.

Observe that, since y!(t) € I then 3 — y!(¢) € Iz; moreover, when y’(¢) = 1 then 3 —
y! (t) = 2, whileif y/(t) = 2 then 3—y’(t) = 1. We also notice that B, € B} , therefore
T, € T°. Furthermore, (7, )nen is a nondecreasing sequence which verifies property
(iii) above: this is due to the fact that every path y € C([0,1];R%) x £([0,1];12) has
only a finite number of jumps, since I, is a discrete set; in other words, any y belongs
to B when n is large enough (e.g., when n is strictly greater than the number of
jumps of y). However, (7, )nen does not satisfy property (ii), as we shall prove below.
We also define

wmy)=3—9yl(b,)  VyeC(0,1;RY) x .2(]0,1];Iy), n € N.

In other words, when y!(b,,) = 1 then ¢,,(y) = 2, while when y!(b,,) = 2 then ¢,,(y) = 1.
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Let oo = (Ty, tn)nen, then a satisfies Definition 2.1, but for property (ii) (see below),
even if property (iii) is satisfied. Now, we solve (2.1) with z € R?, o = (7p, tn )nen,
u € Up,o, and ¢ = 1 € Ip. Define the (deterministic) process I: [0,1] — I3 as follows,
for any t € [0, 1),

17 O§t§b07
2, by <t < by,
It: 17 bl<t§b27
2, by < t < b3,

On the other hand, we do not specify I on [%, 1], we only require that the limit

I;- := limyy; I; exists and we suppose that Iy = I;-. Notice that I,- does not
2

exist, therefore I ¢ £([0,1];Iz). However, the process I solves (2.1) (vice versa,
every process satisfying (2.1) coincides with I on the interval [0, %), in particular,
there does not exist a solution process with paths in .Z([0,1];I5)). Moreover, under
assumption (H1) we can also solve (2.1) for X. Since we did not specify the behavior
of I on the entire interval [0, 1], we cannot have uniqueness of the solution for (2.1).
Nevertheless, we notice that the sequence (7, ),en does not satisfy property (ii) above.
Indeed, let yy,(-) := Lap,, n € N. Then, y, € Z([0,1];12), but 7,,(y) < 3 for any n.
This shows that if we only require property (iii), then the well-posedness of (2.1) is
no longer guaranteed. a

We now study the well-posedness of (2.1), for which we need the following two
lemmas.

LEMMA 2.1. Let s € [0,T], 7 € T%, and y1,y2 € C([s, T|;R?) x Z([s,T]; L,). If
y1(t) = y2(t), s <t < 7(y'), then
(i) 7(y1) = 7(y2),
(ii) ¢(y1) = t(y2) for any BS-measurable map v: C([s, T);RY) x L([s,T);Im) —
L.

Proof. Let t* := 7(y1). We begin noting that if B € Bj. and y; € B, then y; € B,
as well. Since 7 is a stopping rule, the event B := {y: 7(y) = t*} belongs to Bf.. As
y1 € B, we then see that yo € B, i.e., 7(y2) = 7(y1), which gives (i). Notice that
assertion (i) can be also deduced by [11, (100.1) at p. 149, Chapter IV].

Concerning (ii), let ¢: C([s, T];R?) x Z([s,T];1,,) — I, be B3-measurable. By
definition of ¢, the event B := {y: t(y) = t(y1)} belongs to BS. Therefore, B :=
Bn{r(y) <t*} € B:.. Since y; € B, from the observation at the beginning of the
proof it follows that y, € B, which implies yo € B, i.e., t(y2) = t(y1). d

LEMMA 2.2. Let s € [0,T], 7€ T°, and Y = (Yy)s<i<r be an F*-adapted process
valued in R x1,,,. Suppose that every path of Y belongs to C([s, T]; RY) x £ ([, T]; Ln).
Then, 1y : Q — [s,T] defined as 1y (w) := 7(Y.(w)), w € Q, is an F3-stopping time.
Moreover, if v: C([s, T];R?) x Z([s,T];1,n) — L is BS-measurable then iy (w) :=
1(Y(w)), w €, is F7 -measurable.

Proof. For any ¢ € [s,T], we notice that the map Y. is measurable from (€, F})
into (C([s, T);RY) x Z([s,T); L), Bf). Then, {w: 1y (w) <t} = {w: 7(Y.(w)) < t} =
{w: Y(w) € 77([s,])}. Since 771([s,t]) € B, we have {w: Y.(w) € 77([s,t])} € F},
which implies that 7y is an F®-stopping time.
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Let now ¢: C([s, T); RY) x £ ([s,T); L,n) — L, be Bs-measurable. We have to prove
that {w: 1y (w) =i} € F7, for any i € Ly, i.e., {w: ty(w) = i} N{w: 1y (w) <t} € F7?
for any i € I, and t € [s,T]. Then, fix i € I,,, and ¢ € [s,T]. We have

{wiyw) =i} N{w: 1y (w) <t} = {w: Y(w) €7 (@)} N{w: YVi(w) € 77([s,1])}
={w: Y.(w) e {y: uly) =i} n{y: 7(y) < t}}.

Since ¢ is Bi-measurable, then {y: ¢(y) = i} N{y: 7(y) < ¢} € B;. Therefore, from
the observation at the beginning of the proof, we get the thesis. ad

PROPOSITION 2.1. Let assumption (H1) hold. For any (s,z,i) € [0,T] x R? x 1,,,,
a € As, u € Uy, there exists a unique (up to indistinguishability) F*-adapted process
(Xsmbou [spiou) = (XHTEOU [ETEGUY 5 to (2.1), such that every path of
(xS mmen psThawy polongs to C([s, T);RY) x L([s,T);Im). Moreover, for any q >
1 there exists a positive constant Cy 1, depending only on q,T,M; (independent of
8, 2,1, a,u), such that

(2.2) E | sup |Xf’w’i;a’”|q < Cyr(1+|z|).
s<t<T

S,T,l00,U Is,z,i;a,u)
. P -

Remark 2.4. In Proposition 2.1 we require that every path of (X
belongs to C([s,T};R%) x Z([s,T);L,,) in order to guarantee that the maps
Tp (X700 (W), I775 (W) and 0, (X275 (w), 177" (w)) are well-defined for
every w € 2, n e N. a

Proof. Fix (s,z,i) € [0,T] x R? x L,,, & = (T, tn)nen € As, u € Us.

Step 1. Existence. We begin noting that, since the control « is of feedback type,
we have to construct the solution (X ®#®u [5@4au) and o simultaneously. To do
it we proceed as follows: for any N € N, we solve (2.1) controlled by u and the
first N switching actions (7., tn)o<n<n—1. This is done by induction on N. Then,
noting that (XN, IV) = (XN=1 I¥=1) on the stochastic interval [s, 7x_1), by pasting
together the various solutions we are able to construct a solution (X ®#®u_ [sz.Ga.u)
to the original (2.1) with the entire switching control a. We now report the rigorous
arguments.

For any N € N, let o™ = (7, 1N),.en € A, be given by

{(TnaLn)a OSTLSN_].,

N N
(7t (T,tn), m>N.

n ’r’n

Let N = 0 and consider (2.1) controlled by a® and u. Notice that I is uncontrolled,
in particular, I; =4, s <t < T. Then, it is well known that under assumption (H1)
there exists a unique (up to indistinguishability) F*-adapted solution (X7, I?)s<i<7
to this equation with IY = i for any ¢t € [s,T], such that every (not only P-a.e.,
simply choosing an opportune indistinguishable version) path of (X°, I ) belongs to
C([s, T7; Rd) x Z([s,T];Lm).

Now, let us prove the inductive step. Let N € N\{0} and suppose that there exists
an F*-adapted solution (XY=, IV=1) to (2.1) controlled by oV =1 and u, such that
every path of (XN=1 V=1 belongs to C([s, T];R%) x Z([s,T];L,,). Our aim is to
solve (2.1) controlled by o™ and u. To this end, we define the process IV = (I}N)s<i<7
as follows:

LY = I crary gty vt (XL IE D0 oov vy crery,
N =N
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From Lemma 2.2 we see that IV is an Fs-adapted process, with every path in
Z([s,T);L,,). Then, under assumption (H1) there exists a unique (up to indistin-
guishability) F*-adapted solution (X}¥,I}N)s<i<r to (2.1), such that every path of
(XN, IN) belongs to C([s, T]; R?) x Z([s, T]; I,n). Since (XV, IV) and (XVN—1 1N-1)
solve the same equation on [s, 7x_1 (XN=1 IV71), then (XN, IN) = (XN~ 1N 7h),
t € [s,7n_1 (XN INTY). In particular, (XN, IN) = (XN IV for any ¢ €
[s, 7v—1 (XN IN"1)]. From Lemma 2.1, it follows that

(T (XN=L IV 0 (XN U INTY)) = (1 (XN IY), 0 (XN IY)),

0<n<N-—1.
As a consequence, (X, IV) solves (2.1) controlled by oV and u.
Finally, let us define (with the convention 7_; := s)
(2.3) Xt = ZXtNl{TN_1(X_N71,Iﬁ71)§t<TN(X]V,I_’\i)}7
neN
(2.4) et = ZNIt]V1{TN,1(X.N_lJ_Ai_l)St<TN(X_NJ_Ai)}
ne

for any s <t < T and (X050, IH5501) = (X000 [555%M) | For simplicity of
notation, we denote (X, I) := (X®®#Hxu [5250u) Recalling that 7y (XN =1, 1Y)
= tn_1 (XN IN) < 7y (XN, IY), we see that the sequence (7n (XN, IV))n>_1 is
nondecreasing, so that, for any t € [s,T], there is at most one term different from
zero in the series appearing in (2.3) and (2.4). Moreover, from Definition 2.1, and,
more precisely, from property (ii) of Remark 2.3, we have that, for every w € Q,
5 (XN (w), IN(w)) = T for N large enough. In particular, X and I are well-defined
over the entire interval [s,T] and they are F*-adapted. Furthermore, we notice that
(X4, L) = (XN, IN), t € [s,75v(XN,IN)). Then, using again property (ii) of Re-
mark 2.3, it follows that every path of (X., I.-) belongs to C([s, T]; R%) x Z([s, T]; In)-
In addition, since (X, I;-) = (XN, IN), t € [s,7n(XN,IY)], from Lemma 2.1 we
have

(rn (XN I, o (XN IY)) = (rn (X, L-) v (X, 1-)) YN eN.

In particular, (X¢, I;) = (X}¥, IN), t € [s,75(X.,I.-)). This implies that (X, I) solves
(2.1) on [s,7n(X.,I1.-)) for any N € N. Recalling property (ii) of Remark 2.3, we
see that (X, I) solves (2.1) on [s,T). Since, by definition, (Xrp,It) = (Xp-,Ip-), it
follows that (X, I) solves (2.1) on [s, T].

Step 11. Uniqueness. Let (X1, I') and (X2, I?) be two solutions of (2.1). Set 1, :=
To(X1, IL) A7o(X2 I2). Notice that (X!, I') and (X2, I?) solve the same equation
on [0,7,). Therefore (X!, I') and (X2, I?) are equal (up to indistinguishability) on
[0,74). Consider w € Q such that 7y(w) = 7o(X (w), I (w)). Since (X} (w), [} (w)) =
(X7 (w), IZ (w)), t € [s,79(w)] =[5, 70(X (w), IL (w))], from Lemma 2.1 it follows that
10(XHw), IL () = 10(X2(w), I% (w)). When 74(w) = 70(X3(w), I% (w)), a similar
argument shows that we still have 70(X!(w), I* (w)) = 70(X?(w), I% (w)). From the
arbitrariness of w, we conclude that 7, = 7o(X!, I1) = 79(X?2, 12). Using again
Lemma 2.1, we also deduce 1o(X!, IL) = 1o(X2,I%2). By induction on n, we can
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prove that

(T (X2 I5), 00 (X5 TR)) = (70(X2,12), 00(X2, 12))
VneN,
(thﬂItl) = (Xt27[t2)
Vte s, (X T)), neN.

From Definition 2.1 and, more precisely, from property (ii) of Remark 2.3, we have
that, for any w € Q, 7,(X}(w), It (w)) = T for n large enough. As a consequence,
(X1, I') and (X2, I?) are equal (up to indistinguishability) on [s, T'). Since (X4, I1) =
(Xp—,17_) and (X2,12) = (X7_,13_), we conclude that (X', 1) and (X?,I?) are
equal (up to indistinguishability) on [s, T

Step IIL. Estimate (2.2). Under (H1), estimate (2.2) is well known; see, e.g., [27,
Theorem 1.3.15]. O

Remark 2.5. Notice that F* is the filtration generated by the noise and B? is the
filtration generated by the state variable X. Since we have strong existence the latter
is a subset of the former but not vice versa since the volatility is allowed to degenerate.
« is the control of the switcher (the maximizer of our problem) and it is of feedback
type. That is the switcher is only allowed to make a decision by observing the state
variable. He is not allowed to observe the noise or the actions of the nature, which
uses open-loop control, i.e., its control is adapted to F?. ad

2.2. The value function. The value function associated with the robust switch-
ing control problem is defined as follows:

(2.5)  V(s,x,i) := sup léluf J(s,z,0; a,u) VY (s,x,i) € [0,T] x RY x T,
ac A, UEUs

with

T
J(s, 2,05 0,u) = IE[/ f(XBohonu ps.mion g Yy 4 g(Xpmuet prmnet)
S

$,T,50,U  TS,T,H0LU  T8,T,000,U
(26) - Z C(XTTL 7‘[7.; 7I7'n )1{S§Tn<T} )
neN

where 7" stands for 77 (X 2% 50" [HTHOE)

Remark 2.6. This definition of game value function with the outside player
(switcher) using feedback strategies (i.e., closed-loop controls) and the inside player
(nature) using open-loop controls is the same as the one used in [1, Definition 3.6,
Chapter VIII], and called there the B-feedback value. It is also pointed out that the
B-feedback value is smaller than the upper value of a game where the outside player
uses nonanticipating strategies a la Elliott—Kalton; see also our section 4.2. d

We impose the following conditions on the functions g: R* x I,, — R, f: R% x
I, xU = R, and c: R? x I,,, x I,,, — R.
(H2)
(i) g, f,c are jointly continuous on their domains.
(ii) ¢ is nonnegative.
(iii) g, f, c satisfy a polynomial growth condition in z, i.e.,

lg(@, )| + [f (2,4, u)| + [z, 7, 5)| < Ma(1+ |2[”)

Vo e R4 i, j€l,, uc U, for some positive constants My and p > 1.
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(iv) g satisfies

g(x,i) > I?;ZZX [g(ﬂf,j) - C($,i,j)}

for any x € R? and i € I,.
Remark 2.7. Notice that V satisfies the polynomial growth condition:
(2.7) |V (s,z,i)| < C(+|z|P)  V(s,z,i) €[0,T] x R x I,,

for some positive constant C, depending only on T, My, M5, and with the same p as
in assumption (H2)(iii). Indeed, since ¢ is nonnegative, we find

T
(2.8) V(s,x,i) < sup inf E[/ f(Xf’””’i*O““,If’””’i;"““,ur)dr—l—g(X;’m’“a’u)].
a€A, uEUs s

On the other hand, let o = (75, 15 )nen € As be given by (775,1%) = (T,i) Vn € N for
some fixed i € I,,,. Then

V(s,x,4) > inf J(s,x,i;a% u)
uEU;

T oo
(2.9) = inf ]E[ / FOpmasetw [’ g ) dp 4 g(X5mie ’“)].
uels s

From (2.8) and (2.9), we obtain
[V(s,@,i)| < sup sup ]E[/ | f (X8, IRE5SY, ) dr + |9(X§’w’l’a7u)|}-
aEA; u€Us s

Now, from estimate (2.2) and the polynomial growth condition of f and ¢ in (H2)(iii),
we see that estimate (2.7) holds. As a consequence, in (2.5) we could take the supre-
mum only over & = (Ty, tn)nen € As satisfying (7" stands for 77 (X > 1®" [55101))

. S,XT,500,U  TS,T,E0LU TS, T,E0LU
inf E| — E C(XTTL i aITn )1{s<'rn<T} > —00. O
u€EU, Tn -

neN

Our aim is to prove that V is the unique viscosity solution to the dynamic pro-
gramming equation associated to the robust switching control problem, which turns
out to be a system of variational inequalities of HJB type of the following form:

(2.10)
. oV N , . .
min< — E(s,a},z) —infuey [L5V (s, ,4) + f(w,i,u)],
V(s,z,1) — max;x; [V(s,x,j) — c(x,i,j)]} =0, (s,2,9)€[0,T) xR %1,
V(T,x,i) = g(z,3), (2,i) € R x L,
where

. 1
LYV (s,x,1) = b(x,i,u).D,V (s, x,4) + §tr [oo™(x,i,u) DIV (s,2,i)].

We need the definition of (discontinuous) viscosity solution to (2.10), that we now
provide. To this end, given a locally bounded function v: [0,T) x R? x I,,, — R, we
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define its lower semicontinuous (Isc for short) envelope v, : [0,7] x R? x I,,, — R, and
upper semicontinuous (usc for short) envelope v*: [0,7] x R? x I,, — R, by

vy (8, 2,1) = liminf w(s’,2',i) and v*(s,2,4) =  limsup (s, 2’,1),
(s",2")—=(s,2) (s"2") = (s,2)
(s',2")€[0,T) xR (s',z")€[0,T) xR?

V(s,r,i) € [0,T) x R? x L,.

DEFINITION 2.3 (viscosity solution to (2.10)).
(i) An Isc (resp., usc) function v on [0,T] x R% x 1,,, is called a viscosity superso-
lution (resp., subsolution) to (2.10) if

o(T, z,i) > (resp., <) g(z,1)

for any (z,7) € R? x I, and

mln{ - E(s,x) - irellff (L% p(s, ) + f(z,, )],

v(s,x,1) — Igzx [v(s, 2, ) — c(x,i,j)}} > (resp., <) 0

for any (s,z,i) € [0,T) x R? x I,, and any ¢ € CH2([0,T] x RY) such that

U(S, Z, z) - (p(sva) = (s’@/)ren[%)r,lT]de [U(SI, x/’ z) - @(Slﬂ xl)}

{resp. vlsmi)—plsa) = max [o(sa'0) - ol a")] ).

(ii) A locally bounded function v on [0,T) x R? x I, is called a viscosity solution
to (2.10) if v. is a viscosity supersolution and v* is a viscosity subsolution to (2.10).

3. Stochastic Perron’s method. Our aim is to prove that V is a viscosity
solution to the dynamic programming equation (2.10) and satisfies the dynamic pro-
gramming principle. To derive these results, we exploit the stochastic Perron’s method,
which allows us to obtain the viscosity properties of V' without relying on the dynamic
programming principle, but by means of the comparison theorem for viscosity solu-
tions to (2.10) (the dynamic programming principle will be obtained as a by-product
of this procedure).

3.1. An auxiliary robust switching problem. We begin with the formula-
tion of an auxiliary robust switching control problem where nature adopts closed-loop
controls (also called feedback strategies) in place of open-loop controls. Using the
comparison principle for (2.10), we shall see that the corresponding value function,
denoted by V, coincides with V. In other words, the information available to nature
does not affect the value of the game. This is not the only motivation for the intro-
duction of this auxiliary robust control problem. Indeed, in the implementation of
the stochastic Perron’s method we encountered the following difficulty: given two dif-
ferent controls u; and us, for nature, we have to concatenate them at some stopping
rule 7 = 7(X., I.-). If u' and u? are open-loop controls, the control u' ®, u? resulting
from the concatenation of u! and u? at the stopping rule 7, given by

(ul r uz)(t,w, y) =u' (tvw)l{sgtgr(y)} + uz(ta w)l{'r(y)<t§T}a
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is no longer of open-loop type, since it also depends on y. On the other hand, if
u! and u? are closed-loop controls, then u! ®, u? is still a closed-loop control. For
this technical reason, to study the original control problem with corresponding value
function V', we also need to consider another robust switching control problem, in
which nature adopts closed-loop controls. In particular, inspired by [31] and [30],
it turns out that it is more convenient, and it is enough, to consider only piecewise
constant closed-loop controls, i.e., the elementary feedback strategies that we now
define.

DEFINITION 3.1 (elementary feedback strategies). Fiz s € [0,T]. We say that u
is an elementary feedback strategy starting at s if
e T, €T% foranyk=1,...,n, and

s=Tp < ST < ST =T

o & O([s, T); R < Z([5,T); In) — U is BS. -measurable for anyk =1,...,n.
The control u: [s,T] x C([s, T]; R?) x Z([s,T); 1,n) — U is given by

u(t,y) = &) L= + D W) L ir_y () <t<ri(w))-
k=1

UE denotes the family of all elementary feedback strategies (also called elementary
closed-loop controls) starting at s.

Remark 3.1. We notice that Definition 3.1 is inspired by Definition 2.2 in [31]

(see also Definition 2.1 in [30]), the only difference being that & is B*, -measurable
Th—1

instead of B;,  -measurable. This implies that the map &, = & (y) depends on y
through the values {y(t), s < t < m_1(y)} U {y(m—1(y)")}, so that & can also
depend on y(7x—1(y)"). Recalling that in our setting y denotes a generic path of
(Xt, I~ )s<t<T, this means that &, depends on (X¢, It)s<¢<r, ,(x.,7_) rather than on
(Xt, It~ )s<t<ry(x.,1 _)- Therefore, nature reacts to the switcher using all the informa-
tion at disposal at time 7,1 = 7,_1(X.,I.-), including I, _, (in particular, if 751
coincides with a switching action, nature is aware of the action that the switcher
has just performed). We point out that elementary feedback strategies are different
from strategies in the sense of Elliott—Kalton where strategies are used by the out-
side player (i.e., the switcher here) and not by the inside player (the nature here).
Actually, the set of elementary feedback strategies (closed-loop controls) is obviously
a subset of open-loop controls since they correspond to controls which are piecewise
constant on one hand, and with actions decided based only on the knowledge of the
state, hence with less information than the one generated by F®. In other words, we
have UE C U,: for any feedback control u € UE we can construct an open-loop control
(ve)s<i<r = (u(t, X)) s<i<r € Us which shows the inclusion above. O

We have the following well-posedness result for (2.1) when w« is an elementary
feedback strategy (so that u, stands for u(r, X.,I.-)), where the only difference with
Proposition 2.1 is that now the solution is adapted to the smaller filtration F"»*, since
F* plays no role when u € UF.

PROPOSITION 3.1. Let assumption (H1) hold. For any (s,z,i) € [0,T] x R? x 1,,,,
a € As, u € UE, there erists a unique (up to indistinguishability) F"s_adapted
process (X S®hou [smiou) — (X HEEGU ETEGNY 0 oto (2.1), such that every
path of (X555 [5059% belongs to C([s, T); RY) x L ([s, T); In). Moreover, for any
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q > 1 there exists a positive constant Cq 1, depending only on ¢q,T, My (independent
of s, 2,14, a,u), such that

(3.1) E[ sup |X5W’“|q} < Cor(1 4 [2]9).

s<t<T

Proof. The proof can be done along the lines of the proof of Proposition 2.1.
We simply note that in Proposition 2.1 we used the following result: if u € U; and
I = (I})s<i<~ is known up to a certain F*-stopping time 7, then there exists a unique
(up to indistinguishability) F*-adapted solution X = (X;)s<:<- to the equation

t t
(3.2) Xi==x —|—/ b(X,, I, up)dr —l—/ o(Xp, Iy up)dW,, s<t<rT,

such that every path of X belongs to C([s, T];RY). The validity of this result is well
known under (H1). On the other hand, it is not immediately clear when u € UF
is an elementary feedback strategy. However, the result is still valid and follows
from [31, Proposition 2.4]; see also [30, Theorem 2.2]. Moreover, when u € UE it
turns out that the process X is adapted to the smaller filtration FW>. Finally, under
assumption (H1), estimate (3.1) is well known; see, e.g., [27, Theorem 1.3.15]. O

We can finally introduce the value function for the robust switching control prob-
lem where nature adopts the elementary feedback strategies:

Vs, x,1)

T
= SUE leIgE]E|:/ f(Xt, It, u;)dt + g(XT, IT) - Z C(XTA,I(,,.;)* 5 IT$)1{3§7L<T}
acAUv s s neN

for every (s, z,i) € [0,7] x R? x I,,, with the shorthand X = X$®6ou [ = [s@heu
1), = (X, I-), and u; = u(¢,X.,I-). This auxiliary formulation of the robust
switching problem where both players use feedback strategies (or closed-loop controls)

is the same as the one used in [31]. Notice that v’ € U and we have

V(s,z,i) := sup inf J(s,x,i;c,u’) V (s, x,i) € [0,T] x RY x T,,.
€A, uEUE

In particular, V(s,z,i) < V(s,z,i) for any (s,2,i) € [0,T] x R¢ x I,,. Moreover,
proceeding as in Remark 2.7, we can show that V' satisfies a polynomial growth
condition in z: |V (s,z,4)| < C(1+]z|?) < oo for some positive constant C, depending

only on T, M7, Ms, and with the same p as in assumption (H2)(iii).

3.2. Concatenation of feedback strategies. In the present section, we need
to introduce the concept of feedback control starting at a certain stopping rule 7 and
to define the notion of concatenation at 7 of two feedback controls, which will be
crucial in the development of the stochastic Perron’s method.

DEFINITION 3.2 (feedback switching strategies starting strictly later than 7). Fiz
s in [0,T] and 7 € T*. We say that the double sequence o = (Ty, Ln)nen is a feedback
switching strategy starting strictly later than 7 if o € A, with 7 < 179 and T < T
on the set {T < T}. A, .+ denotes the family of all feedback switching strategies for
the controller, given the initial deterministic time s and starting strictly later than 7.
When 1 = s, we simply write Ag+ instead of Ag s+
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Following [31, Definition 2.7], and recalling Remark 3.1, we now define the ele-
mentary feedback strategies starting at some stopping rule 7.

DEFINITION 3.3 (elementary feedback strategies starting at 7). Fiz s € [0,T]
and T € T*. We say that u is an elementary feedback strategy starting at T if
e 7, €T% foranyk=1,...,n, and

T=7p< ST < ST =14

o & C([s, T; R % ZL([3,T); 1) — U is BS, -measurable, for anyk =1,...,n.
Tk—1
The elementary feedback strategy

w: {(t,y) € [s,T] x (C([s,T);RY) x ZL([s,T);Ln)): T(y) <t < T} — U
is given by

ult,y) = &) L=r )y + Y &) Lim ) <t<mm)-
k=1

lefT denotes the family of all elementary feedback strategies given the initial deter-
ministic time s and starting at T.

Notice that, when 7 = s in Definition 3.3, the set UZ is just UZ.

Remark 3.2. Definition 3.2 is inspired by [31, Definition 2.7] with, in addition,
the condition “7 < 79 on the set {7 < T'},” which justifies the presence of the adverb
strictly in the name. Indeed, our aim is to define the set A, ;+ in such a way that
when we concatenate two feedback switching strategies o € As and & € A, .+ at a
stopping rule 7 € T* (see Proposition 3.2 below) then o ®, & coincides with « at
time 7 (this property plays an important role in what follows, e.g., in the proof of
Theorem 3.1). On the other hand, when we concatenate two elementary feedback
strategies u € UF and @ € Z/{S?T, then u ®; @ coincides with u at time 7, simply

adopting the same definition for Z/{S}?T as in [31] combined with Remark 3.1. O

As in [31, Lemma 2.8 and Proposition 2.9], we have the two following results,
whose simple proof is only sketched for Lemma 3.1 and omitted for Proposition 3.2.

LEMMA 3.1. Fiz s € [0,T], 7 € T%, o' = (1}, t})nen, 0 = (72,12 )nen € Ag o+,

ut,iu? eUE_, and B € B:..

S,T7

e The double sequence & = (Tp, ln)neN given by

(Tn(y)v Ln(y)) = (Trlb(y)v Lrlz(y))l{ueB} + (Tg(y)v erz(y))l{yeBc}

is in Ag r+.
e The map

ws {(t,y) € [s,T] x (C([5, TERY) x Z([s, T}iLn)): 7(y) L < T} — U
given by
ult,y) = u'(t,y)lyeny +u’ (6 y)lyene
is in LlfT.

Proof. We only prove the first item, where we focus on the two main points. In
particular, the proof that 7, € 7° and ¢, € B} is based on the observation that
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BeBi, C le , 352 for any n € N, which is a consequence of the property 7 < 74, 72

on the set {7 < T} The other nontrivial part is the proof that « satisfies property
(ii) of Remark 2.3. To prove it, consider (y,)nen € C([s, T]); R?) x Z([s,T]; L), with
Yn(t) = ynt1(t), t € [s, 70 (yn)]. Since 7o < 7, for any n € N, we have

Yo(t) = yn(t) YVt e [s,70(y0)], n € N.

As 7 < 79 on the set {r < T}, it follows that
(3.3) yo(tT) = yu(tT) Vit e s, 7(yo)], n € N.
In particular yo(7(y0)™) = yn(7(yo)™). Moreover, from Lemma 2.1 we get 7(yo) =
7(yn), so that yo(7(yo)") = yn(7(yn) ™). Therefore, yo € B if and only if y,, € B, for
any n € N. In conclusion, property (ii) of Remark 2.3 for (7,,)nen follows from the
definitions of (7}),en and (72)nen- O

PROPOSITION 3.2 (concatenation). Fiz s € [0,T], 7,p € T° with T < p < T,
& = (T, In)nen € Ag o, w €UE,. Then

o for each o = (Tp,tn)nen € As (1esp., & = (Tn,tn)nen € Ag+), the double
sequence o ®, & = (7'7?9, L%p)neN given by

(127 (@) e () = (Ta(®) ta(W)) Lmn ) <ot + (Fa(¥)s 20(9)) L ()5 p(w))

is in As (resp AS +);
e for each u € U E_, the map

u®, i {(t,y) € [s,T)x (C([s, T;RY) x L([,T); 1)) : 7(y) <t < T} — U
given by

(u®@pa)(t,y) = ult,y)liry)<t<py)y + @, ¥) 1 {pe)<t<T}
is in LlfT.
3.3. Definitions of YV~, V1 and their properties. We can now provide
the definitions of the classes of functions ¥V~ and VT, which are the cornerstones of
the stochastic Perron’s method. Their elements are known in the literature on the

stochastic Perron’s method as stochastic subsolutions (V) and stochastic supersolu-
tions (V1); see, e.g., [5].
DEFINITION 3.4. V™ is the set of functions v: [0,T] x R? x I,, — R which have
the following properties:
o v is continuous and satisfies the terminal condition v(T, x,i) < g(x,1), (x,1) €
R? x L, together with the polynomial growth condition
sup [ols,, )] < oo
(5,2,0)€[0,T| xRixI,, 1+ [z[4
for some ¢ > 1.
o For any s € [0,T] and 7,p € T* with 7 < p < T, there exists & =
(TnsIn)nen € As o+ (possibly depending on s, T,p) such that, for any o =
(Tns tn)nen € As, u € Us, and (z,i) € RY x I, we have

o(r', Xy, L) {/ F(Xo, Iyu)dt +v(p', X, 1y)

- Z XT JIT/) 7IT’L)]-{T’§7~'T’L<p’}
neN

ff/] P-a.s.
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with the shorthand X = X®®6a@r&u [ — [s@éa@r&u o/ — (X ),
P =p(X,I1-), and 7, =T (X.,1.-).
DEFINITION 3.5. V7 is the set of functions v: [0,T] x R? x I,, — R which have
the following properties:
o v is continuous and satisfies the terminal condition v(T,x,i) > g(x,1), (z,1) €
R? x L, together with the polynomial growth condition
|v(s, z, )|

sup — 2 <0
(s,2,0)€[0, T xRixI,, 1+ |z[4

for some g > 1.

e Forany s € [0,T), 7€ T*, and a = (Tn, tn)nen € As, there exists U € LlfT
(possibly depending on s,T,) such that, for any u € UF, (x,i) € R x Ty,
and p € T* with 7 < p < T, we have

o
U(T/,X-,—/,L—/) > E|:/ f(Xt,It,ﬁt)dt+U(p/,Xp/,Ip/)

D20, SR (A A P
neN

ff/] P-a.s.

with the shorthand X = X$®Hau@cd [ — [s@houdrt o — (X ),
p=pX,I1-), 7 =1(X,I-), and 4 = u(t,X.,I-).

Remark 3.3. The definitions of V= and V* are inspired by [31, Definitions 3.1-
3.2-3.3], but for the fact that in Definition 3.4 above we fix p before &, so that & can
depend on p. This greater freedom in the choice of & turns out to be fundamental
in the implementation of the stochastic Perron’s method, Theorem 3.1, and it is due
to the condition “7 < 79 on the set {7 < T'}” in the definition of A, .+, already
discussed in Remark 3.2. Indeed, using the set A, .+, the existence of an “optimal”
feedback switching strategy & = (7, ln)nen € A+, which works for every p € T°
with 7 < p < T, is not guaranteed. For example, it could happen that every optimal
feedback switching strategy which works V p has to satisfy 7y = 7, therefore it cannot
belong to A ;+. To avoid this problem, first we fix p, then we choose an optimal
& € A, ;+. Another possibility would be to look for an “c-optimal” & € A, ,+ which
works for every p. d

We first notice that, as stated below, the two sets V= and V' are not empty,
moreover, every v € V™ (resp., v € V1) satisfies the subdynamic (resp., superdy-
namic) programming principle, also known as suboptimality (resp., superoptimality)
principle; see [32].

LEMMA 3.2. Let assumptions (H1) and (H2) hold.

(i) V= #£0 and VT £0.

(ii) Ewverywv € V™ satisfies the subdynamic programming principle: for any (s,x,i) €

[0, 7] x RY x I, and p € T*,

p/
(34) wv(s,z,i) < sup inf E[/ [(Xe, Ly ug)dt +v(p', X, Iy)

acA +u€ s

= D e Xey Ty I Vs <)
neN

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/17 to 131.175.12.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ROBUST FEEDBACK SWITCHING CONTROL 2611

with the shorthand X = X$% 6w [ = [s@iau o — o(X [-), and 7, =
(X, 1-).

(i) Every v € V7T satisfies the superdynamic programming principle: for any
(s,2,4) € [0,T] x R x I,,, and p € T*,

p/
(3.5) wv(s,z,i) > ngp lergEE[/ (X, Iy ug)dt +v(p', X, L)
« L u s

- Z C(Xﬂ’u I(TL)_ ) ITL)1{5§T¥L<pI}
neN

with the shorthand X = XS®hauw [ = [s@iau o — (X T.), 7/ =
(X, I-), and wp = u(t, X., 1.-).

Proof. We begin proving that V= # (). Let us consider the function v: [0, 7] x
R? x I,, — R given by

(3.6) v(s,z,i) = —CerT™ (1 + |2]7)  V(s,z,i) € [0,T] x RY x L,

where ¢ = max{4, p}, with p as in assumption (H2)(iii), and C, X are positive constants
to be determined later. Set h(x) = |z|?. Notice that h € C?(R?) and there exists
a positive constant M}, (depending only on q) such that |D,h(x)| < Mp|x|?7! and
D2h(z) < My|z|72 Vo € R,

From the polynomial growth condition of ¢ in assumption (H2)(iii), we see that
v(T,x,i) < g(x,i) if we choose C' large enough.

Now, we choose A opportunely. Fix s € [0,7] and 7,p € T° with 7 < p < T.
We choose & = (T, 0n)nen € As .+ as follows: for any n € N, 7, =T and 7,, = &
for some fixed i € I,. Let & = (Ty,tn)neny € As, u € Uy, and (x,7) € R x 1,
Set X — Xswio@raw [ _ [saie®au o — 1(X [) and p' = p(X,I). Then,
noting that v(r, X, I,) is constant with respect to I, and applying Itd’s formula to
[7 F(Xe, Iy, ug)dt + v(r, X, 1)) between 7/ and p/, we obtain

p/
/f(Xt;Itaut)dt+U(p/7Xp’aIp’)
Pl
/ F( X, Iy ug)dt + (7!, X, L) c/ MDD h(X).b(Xy, I, ur)dt
p/
_ c/ NT=1)(p) h(Xt))Tcr(Xt,It,ut)th+/\C’/ AMT=0(1 1 h(X,))dt
(37) - 50/ EA(T_t)tI'[O'CTT(Xt,It,ut)Dih(Xt)} dt.

Consider the F*-local martingale M, = [ 1,7 7y(£)eNT =9 (D h(Xy)) o (Xy, I, ue)dWe,
r € [s,T]. In order to prove that M is a true martingale, we show that E[sup,<, <7 |M,|]
< 00. From Burkholder-Davis-Gundy’s inequality, we see that it is enough to prove
E[\/(M)r] < oo, namely,

T
\// XT=1| Dy h(X) 2 lo(Xe, I, u) |24t | < oo,
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This latter inequality holds since |Dyh(z)| < My|z|77 Y, |lo(z, 4, u)|| < Mi(1+|z|) (see

Remark 2.2), and X satisfies estimate (2.2). From the martingale property of M and
Doob’s optional sampling theorem, we have in particular

p/
E{/ AT (D (X))o (X, Iy, ug)dW;

f$1:| = E[Mp/

Therefore, taking the conditional expectation with respect to F2, in (3.7), using the
linear growth conditions of b, o, f, and the estimates on D h(x) and D2h(x), we find

o
E{/ (X, I ug)dt +v(p', X Iy )

72|

p/
zv(T’,XT/,IT/)+IE{—M2/ (1+ | X,[P)dt

’

P
— CM, M, / A=Y X, 19711 + | X, |)dt

T

p/
+ /\O/ AMT=D(1 1| X,|9)dt

1 o
—§CM,LM12/ e’\(Tt)|Xt|q2(1+|Xt|)2dt‘.7-'f,].

T/

We see that there exists a positive constant C' (depending only on C, My, My, Ms)
such that

p/
E|:/ f(Xt,It,ut)dt—i—v(p’,Xp/,Ip,)

> U(Tla X, I7r)

72|

_ o
+(A0—0)1EU AT (1 4| X,|9)dt

Now, we choose A > 0 such that AC — C > 0. Then, we have

p/
E[/ F(Xe, Iy w)dt +v(p', Xpr, 1)

]:TS,} > o(r, Xpr, I).

From the definition of &, we see that ) c(Xz:, I(7)~, Iz )1 (/<7 <y = 0. There-
fore, it follows that v € V™. In a similar way we can prove that —v € V7, so that
VT £ (.

Concerning (ii), let v € V™~ and fix s € [0,T], 7,p € T*, withs =7 < p < T. From
the second item of the definition of V~, there exists & = (7, In)nen € Ag+ such that,
for any u € Us and (z,i) € R? x I,,, (we choose o = (Tp, tn)nen € As with 7, = T
and ¢, = i for any n € N; with this choice we have (X®®Ha@s&u [szha@au) —
(X sz hau [s268u). iy particular, [5®50®:®% = ) we find

p/
U(vavi) S E|:/ f(Xtvjt;ut)dt + U(p/)Xp’vjp,)

(38) - ZC(X;-T/L,I(;.T/L)f,ff;l)l{sg.;;z<p/} ]:;:| P-a.s.

neN
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with the shorthand X = Xs@iidu [ — [s@idu 5 — (X [ ) and 7 = 7,(X.,1.-).
Taking the expectation in (3.8) and the infimum with respect to u € Us, we get

p/
v(s,x,1) < inz/ft E[/ f(Xt,It,Ut)dt+U(P/7Xp’ajp/)
ue s S

- ZC(X%J(%)Jfé)l{8<ﬁ’b<p’}}
neN

p/
< sup inf E|:/ f(Xt,It,Ut)dt+U(p/,Xp/7Ip/)
acA 4 u€Us s

- C(Xr;af<r;>afr;)l{s<m<pf}]-
neN

In a similar way we can prove statement (iii). O

As stated below, every v € V™ is less than every v € V7T, while the value functions
V and V are squeezed between them.

LEMMA 3.3. Let assumptions (H1) and (H2) hold.

(1) supyep-v =2v- <V <V <ot :=inf,cp+v.
(ii) v~ s Isc and satisfies the polynomial growth condition

(3.9) sup 7“)7(8’%1')'
(s,2,0)€[0, T xRixT, 1+ |z[4

for some ¢ > 1.
(iii) v™ is usc and satisfies the polynomial growth condition

sup [vT (s, z,1)]

(s,2,0)€[0, T xRixI, 1+ |z[4

for some ¢ > 1.

Proof. Concerning (i), to obtain the inequality v < Vv € V™ (resp., V < vVov €
VT) we take p = T in the subdynamic programming principle (3.4) (resp., super-
dynamic programming principle (3.5)) and we use the inequality v(T, z,7) < g(z,1)
(resp., v(T,z,4) > g(x,i))V (x,i) € R? x I,,. Regarding (ii), we notice that v~ is Isc
since it is the supremum of a family of Isc (actually, continuous) functions. Moreover,
let v € V™ and v € V*. From (i) it follows that v < v~ < ¥, and from the polyno-
mial growth condition of v, v we see that v~ satisfies the polynomial growth condition
(3.9). Statement (iii) can be proved in a similar way. O

We can now state our main result.

THEOREM 3.1 (stochastic Perron’s method). Let assumptions (H1) and (H2)

hold. Then, v~ is a viscosity supersolution to (2.10) and v is a viscosity subsolution
to (2.10).

In order to prove Theorem 3.1, we need the following two lemmas. In particu-
lar, Lemma 3.4 states that V= (resp., V1) is stable by supremum (resp., infimum),
which gives the existence of a monotone approximating sequence for v~ (resp., v™)
in Lemma 3.5.
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LEMMA 3.4. Let assumptions (H1) and (H2) hold.
(i) Ifvt,v? €V~ thenv:=0v' Vo2 e V™.
(i) Ifvl,v? € VT then v := vl Av? € VT,

Proof. Let us prove (i). As the first item in Definition 3.4 clearly holds, we prove
that v satisfies the second item. To this end, fix s € [0,T] and 7,p € T*° with
T<p<T. Let &' = (71,0 nen, &% = (Tﬁ,%)neN € A, .+ be the two feedback
switching controls, starting strictly later than 7, corresponding to v' and v2. Now,
consider the set B := {(v! — v2)(T(y),y(T(y)+)) > 0} € B, and define the double
sequence & = (Tn, In)nen as follows:

(7 (), 2 () = (Ta ), in (W) Lyeny + (T2 (), 0 () Liye ey
for any y € C([s, T]; R?Y) x Z([s,T); L), n € N. From Lemma 3.1 it follows that & €

A ++. Now, we prove that & satisfies the condition in the second item of Definition 3.4.
Take a = (T, tn)nen € As, u € Uy, and (x,7) € R? x I,,,. We adopt the shorthand

X = ‘X's,z,i;oz®.,.6¢,u7 Xl — ‘X's,z,i;oz®.,.c~)¢1,u7 XQ — Xs,r,i;a®7.6¢2,u’

I = Is,r,i;a®7.&,u Il — Is,r,i;a®7&1,u IQ — Is,z,i;cx®1.&2,u
) ) *

We also denote 7/ = 7(X.,I.-), p' = p(X., I ), pt = p(XL IV, p¥ = p(X2,12),
o= F (X, 1), T = ~,{(X_1,11 ) and 72 = 72(X2,I?). Notice that (X, I,-) =

(Xe, It) = (X I o1 —o2y (o x 0 1) >0y + (XE ID) 101 —02) (7, X0 1) <0}

As a consequence,

P = p" Lwi—u2) (X0 1)50r + P77 L{(w1—02)(r, X, 1.1) <0}

o= T L) X 120} + T L -2 X0 1) <0}

Therefore, from the previous identities and the properties of v!, we obtain

Ul(T/ X, I )1{(1/ —v2) (7!, X s,1.,)>0}
(T XT 7IT )1{(’017112)(7",)(7/,I.,_/)ZO}

p ' ’
<E[</ FOXG I u)dt + ot (b, X0 1)

Z Xll ’y (~1 ' I‘;rlz’l)l{"',ff%’/<pl’/}) 1{(vl—v2)(7’,XTz,IT/)ZO} ]:7?’:|

neN

p/
E|:</ f(Xt,It,ut)dt—i—v(p’,Xp/,Ip,)

=

- Z XT’ I(T’) 7 )]‘{T/<T <p' }>1{( 1—v2)(7/,X,/,1,.,)>0}
neN
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Concerning v?, proceeding similarly we get
U2 (7—/7 X, I‘r’)l{(vl—v2)(7’,XT/ JI.)<0}

p/
= E[(/ f(Xt’Itaut)dt+U(PlaXp’=Ip’)

-2 C(ngvf<%;>7ffg>1{r/<%;<p'}> L =o)X, 1,00 <0) fff]-

neN
In conclusion, we find
(!, Xpr, L)

= 0" (7', X, L)1 gor—o2y (o, x50 + 02 (T, X, I ) 101 —o2)(7, X 1.0 ) <0}

p/
< E[/ FX, T ug)dt +v(p, X, T ) = Y e(Xag, Iz )= T )L < <ot
™ neN

7.

which shows that v € V.

A similar argument allows us to prove the stability with respect to infimum of
V* in (ii). In particular, fix s € [0,7], 7 € T*, and a@ = (Tn,tn)nen € As. Let
at,u? € Z/{fT be the two elementary feedback strategies, for the nature, starting at
and corresponding to v! and v?. Let B := {(v' — v?)(7(y),y(r(y)*)) < 0} € B:,.
Then, from Lemma 3.1 we see that the map

a(tv y) = al (t7 y)l{yGB} + ﬂ’2(t7 y)l{yEBC}

is an elementary feedback strategy starting at 7, which allows us to prove that
ve VYt 0

LEMMA 3.5. Let assumptions (H1) and (H2) hold.
(i) There exists a nondecreasing sequence (Vp)nen C V™~ such that v, /v~ .
(i) There exists a nonincreasing sequence (vp)nen C V1 such that v, N, vt.

Proof. From [4, Proposition 4.1] we can find a sequence (0, )nen C V™ satisfying
VT = SUP,en Un. Set vy :==Tg V-V Uy, n € N. Then v, /v~ as n — oo, and from
Lemma 3.4 we see (vp)nen C V™. In a similar way we can prove statement (ii). O

We are now in a position to prove Theorem 3.1. First, we just state here, in the
spirit of Lemma 2.4 in [6], the following technical result, which will be used several
times in the proof of Theorem 3.1.

LEMMA 3.6. Let C C [0,T] xR? be a compact set and consider a continuous func-
tion F': R™xC — R, which is nondecreasing in each of its first m components. If there
exists 6 >0 such that inf(; yyee F(v™ (t,2,),t,2) > 8 (resp., sup(; yyec F (0T (L, z,°),t, 2)
< —0), then

inf F(v(t,x,-),t,z) >0
oot (v(t, @, ), t,x)

<7"esp, sup F(v(t,z,-),t,x) < —5)
(t,x)eC

for some v € V™ (resp., v € VT).

Proof. Notice that, from the strict inequality infy ,ycc F(v™ (¢, x,-),t,2) > 0 we
can find € > 0 such that F(v—(t,z,-),t,x) > 6 + ¢, for any (t,z) € C. Recall from
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Lemma 3.5 that there exists a nondecreasing sequence (vy,)neny C V7~ such that v, 7
v~ . Let
Ay = {(t,x) €C: F(vp(t, "), t,x) <5 +e/2}.

Notice that A, is closed, A,+1 C Ay, and NSy A, = 0. Since A,, C C, using the com-
pactness we see that there exists an ng such that A,, = 0, namely, F (v, (¢, z,),t,z) >
d +¢ for any (¢,7) € C. In particular, inf ,)cc F(vn, (¢, 2,-),t,2) > 0. We then take
v := Up,. In a similar way we can prove the statement for v™. O

Proof of Theorem 3.1. Step 1. v~ is a viscosity supersolution to the HJB equation
(2.10).

Step 1(i). Interior viscosity supersolution property. Let (to,z¢) € [0,T) x R%,
i € L,,, and consider a test function ¢ € C12([0, T] x R) such that v~ (-, -,4) — (-, )
attains a strict global minimum equal to zero at (o, o). Reasoning by contradiction,
we assume that

mln{ — E(tmxo) - iglf] [E “p(to, xo) + f(xo,l,u)],

U_(tﬂv X, Z) - Hl;ZJX [U_(to, 3307.].) - C(ﬂfg, Zaj)] } <0.
Ve
We distinguish two cases. _
Case a. —%(to,xo) —infy,ep[L""(to, o) + f(x0,4,u)] < 0. Then, there exists
e € (0, T — tp) such that

(9(,0 . i .
_E(t()vxo) - 1}2{] [‘C ’ (,O(tg,ﬂfo) + f(ﬂfo,Z,u)] < —¢.

From the continuity of b, g, f, together with the compactness of U, we see that we
can choose a smaller € € (0,7 — tg) such that

02 (10— i (Lol 0) + )] < e V() € Blo,o.2),
where
(3.10) B(to, xo,€) = {(t,x) € [0,T] x R*: max{[t — to|, |z — x|} < &}.

Since v~ (+,-,4) —¢(+, ) is Isc and strictly positive on the compact set C := B(to, o, €)\
B(to, z0,€/2), there exists § > 0 such that inf ; ;)ec(v™ (¢, z,i)—p(t,2)) > J. Denoting
F(p,t,x) :=p—p(t, x), it follows from Lemma 3.6 that there exists v € V= such that
p(t,x) + 0 < v(t,x,7) on C. Now, define

Ué(t,x,i) _ (p(t,x) +0) Vo(t,z,i) on B(ty,xo,€),
v(t,x, ) outside B(to, xo,¢).

Moreover, v’ (t,x,j) = v(t,z,j) for any (t,,7) € [0,T] x R? x I,,, with j # i. Our
aim is to prove that v € YV, which would give a contradiction, since v‘s(to, xo,1) >
v~ (to, 0,14). Clearly, v° satisfies the first item in Definition 3.4, therefore, it remains
to prove the second item. To this end, fix s € [0,T] and 7,p € T* with 7 < p < T.
Let a° = (72,7%),,en be given by

n’’n

(Fnsin) = (Ti) VneN
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Notice that a° € A, ,+. Introduce now the stopping rule

pP1: C([SvT];Rd) x Z([s,T);Lm) = [8,T], 7<p1 <T,

(3.11) p1(y) = inf {t € [r(y),T]: (t,y™ (t)) & Blto,z0,£/2)} AT.
We denote by ! = (7}, i%),en € As,(p1np)+ the feedback switching strategy in Defini-

tion 3.4, corresponding to s, p1 A p, p, for v. Then, we define &? = a° ®,, , @', which
belongs to A, ,+ thanks to Proposition 3.2. Moreover, let a3 = (73,73),en € A, ,+
be the feedback switching strategy corresponding to s,7,p for v. Then, we define
& = (7, in)nen by (for any y € C([s, THRY) x 2[5, T);In) we write y = (y¥,y7)
with yX € O([s, T];RY) and y! € Z([s,T];1m))

(Tn(y), tn(v))
= (T W) T () L) 0 (7 (9))) € Blto.20.2), (v—0) (m(5) u(r () H)) <6,y (7 () ) =i}
~3 ~3
+ (T (), T (W) {7 (9) X (r () € B t0,70,), (v—0) (7 ()5 ( (1) +)) <6, 47 (7(9) ) =i} -

From Lemma, 3.1 it follows that & € A, .+. Moreover, the feedback switching strategy
& satisfies the condition in the second item of Definition 3.4 for v°. To see this, fix
@ = (Tn, tn)nen € As, u € Uy, and (i) € R? x I,,,. We adopt the shorthand
(X, I) _ (Xs,m,i;a®7d7u7 Is7w7i;a®7d,u)’
(Xl, Il) _ (Xs,m,i;a®7d27u7 Is7w7i;a®7d27u)7
(X2, I2) _ (XS,I,i;Ot(X)TdS/u’ Is7w7i;a®7d37u).

We also denote 7/ = 7(X.,I.-), p} = p1(X.,I1.-), and p' = p(X.,1.-). Notice that

(X, 1) = (X' I x. ) eBto,m0.0), (v—p) (7, X s 1) <6, s =i}

+ (X2, )1, X )€ Blto,20.6), (=) (7, X o1 11 ) <6, 11 =i}
In particular, it is useful to decompose v°(7/, X+, I+) as follows:

(3.12)
US(T/a X, IT/) = (@(Tlv Xi’) + 5) 1{(7”7X.,_/)GB(to,wo,a)7 (v=) (7", X 11, 1.1)<8, I.1=i}
+ (7!, X2, I2) 1 ((r X )€ Btom0.6), (v—p)(+, X s 11 )<, s ipe -

We now consider the two terms on the right-hand side of (3.12) individually. Regard-
ing the first term, we apply Itd’s formula to ¢ between 7 and p} A p/, observing that
I} =i for any t € [1/,p} A p]; afterwards, we use the property in the second item
of Definition 3.4 for v with corresponding feedback switching strategy &'. Finally,
concerning the other term in (3.12), the result follows from the properties of v and
the definition of &3.

Case b. v~ (to,20,1) < max;jxi[v™(to, 7o, J) — c(xo,%,7)] and —%—f(to,xo) -
inf,ecv[Lp(to, xo) + f(xo,4,u)] > 0. Since v~ is Isc and ¢ is continuous, there
exists € € (0,T — tg) such that

U_(t07$07i)+5< inf maX[U_(t,Jl,j)—C(ﬂf,i,j)]-
(t.2)€B(to,@0,6) I77

Set F(p,t,x) = max;zi[p; — c(z,1,j)], for any (p,t,xz) € R™ x B(to,xo,c). Then,
from Lemma 3.6 it follows that there exists v € V™ such that F(v(t,x,-),t,x) >
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v~ (to, o, %) + € > v(to, o, %) + € for any (t,z) € B(to,zo,e). We also suppose that
the function v given by Lemma 3.6 satisfies v~ (tg, o, %) — v(to, x0,%) < €/2. Since v
is continuous on B(tg, xp, &), we can find > 0 such that

(3.13) sup ot 2 i) +e < inf max [v(t, z, ) — c(z,1,5)].
(t' ") €B(to,20,5) (t2)€B(to,z0.e) J7?

Let M > 0 be an upper bound for the continuous function |f(x,4, )| on the compact
set B(to,zo,€) X I, x U. We suppose that 6 < ¢/(4M). Now, define (we adopt the
notation ||(¢, )| = max{[¢[, [x[})

W (t,3,7) = o(t,x,4) + 55(6 — ||(t —to,z — 20)||) on @
o(t, i) outside B(tg,xq,0).

Moreover, v (t,z,j) = v(t,x,j) for any (t,z,j) € [0,T] x R? x I,,, with j # i. As
v (to, 0,4) > v~ (to,x0,4), we get a contradiction if we prove that v° € V~. In
order to do so, fix s € [0,7] and 7,p € T° with 7 < p < T. We have to determine
& = (Tn,in)nen € A, 7+ which works for v°. To this end, define p; € T* as follows:

p1(y) = inf {t € [r(y), T): (t,y%(t)) ¢ B(to,xo,é)} AT.

Let a° = (72,1%),,en be given by (79,i0) = (T,4) for any n > 1, and

70 = PO rw)05 rw)eBocod} T T Lm0 (r@)B(to.x0.6)
fo(y) = min{j # i: v(75 (), ™ (70 W), 1) — ey (7 (W), i, 4) = m(y) },
where m: C([s, T];RY) x Z([s,T);L,,) — R is defined as
m(y) = max [v(7 (), y™ (70 (v)). 1) — e(y™ (7 W), 3:9)].
Notice that m is Bﬁg—measurable, so that 7 is Bz,-measurable. Moreover, 7 < 7§ on

the set {7 < T'}. In particular, & € A%, . Now, consider the feedback switching strat-
egy @l = (%,11, L)neN €A, (TO/\p)+ in Definition 3.4, corresponding to s, 7y A p, p, for v.
We define &2 = a° ®- FOAp &', which belongs to A -+ thanks to Proposition 3.2. Con-
sider also the feedback sw1tch1ng strategy &% = (72,73 )nen € As -+, corresponding to

s, 7, p, for v. Then, let & = (7, In)nen be given by

(Fa (W), Tn(®)) = (F2 (W), 22(U)) L {(r ()% (1)) EBto,0,6), ! ((3)+)=i}
+ (T (), T (W)L () (- ()€ Bt ,20,6), w7 (7 () ) =i}

From Lemma 3.1 it follows that & € A, ;+. Moreover, & is the feedback switching
strategy which satisfies the condition in the second item of Definition 3.4 for v. To see
this, fix & = (T, tn)nen € As, u € Us, and (z,7) € R? x I,,,. We adopt the shorthand
introduced in Case a. Consider the event A := {(7/, X.) € B(to,z0,9), I;» =i}. On
A€ the result follows from the properties of v and the definition of &3. On the other
hand, on A we have

(7, Xy, I)1a

=0 (T XL, i1,
{UT X1 0+ —5(5—II(T'—to,Xfl/—xo)H)}lA
1 .
< {U ' X0 2}1,4.
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Using (3.13) and taking the conditional expectation with respect to F?,, we obtain
(denoting 7 = 7(X.,1.-))

S X, T, < { ) . _ 1 1 _E‘ s,:|
(1, X, I)1a <E (T /\p X”A”If(?*/\p’) c(X%OY i1, /\p’) 2—7:7 1a

0" A p ;90
Observe that %8 3 < p' on A. Therefore, the above inequality can be written as
O X T )1 a < E[v(fg",x}o,,,l}o,,) (X Is) - —‘]-'5 } 14.
To To
~o0,’ ’
Adding and subtracting [7° f(X}, I}, u;)dt, noting that (7" —7')14 < 26 and 26M —
£/2 <0, we find

(7, X, I )14

..0/
<E [/ thl,Itl,ut)dt—i—U(TO ,XW 110,)—c(X o i INO/)

,f/:| ].A.

Finally, using that v satisfies the second item of Definition 3.4, with corresponding
feedback switching strategy &', and from the inequality v < v%, we deduce that
v eV,

Step 1(ii). Terminal condition. Reasoning by contradiction, we assume that there
exist zo € R% and i € I,,, such that

(T Lo, ) < g(xo, )

Since g is continuous, there exists € > 0 such that v (T, xo,4) < g(x,i) — € whenever
|x — 20| < e. Consider the compact set

C = (B(T,x0,e)\B(T, xz0,£/2)) N ([0,T] x RY),

where B(T,zo,¢) = {(t,x) € [0,T] x R?: max{|t —tol, |r — 20|} < €}. Since v~ is Isc,
it is bounded from below on C. Therefore, we can find 7 > 0 small enough (possibly
depending on ¢) such that

2

v (T, zo,1) — Z—n < —e+ (tiggfecv_(t,a:,i).

From Lemma 3.6 with F'(p,t,z) = p for any (p,t,z) € R xC, we can find v € V™ such
that
&2
(3.14) v (T, zo,1) — < —e+ inf o(t,z,14).
i

(t,x)eC
For k > 0 define

|z — @0

<p"7€’k(t, x)=v (T,xo,1) —
n

— k(T —t).

Since b, o, f are continuous, we can choose k large enough such that

n,e,k _
_&Pat (t,z) — Helf [L5%p mek (¢ x) + f(z,i,u)] <0, Y (t,x) € B(T, o, ¢).
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From (3.14) it follows that ¢"=*(t,x) < —e + v(t,z,4) on C. Moreover
OPER(T, ) < v (T, z0,1) < g(z,i) — € whenever |z — xg] < e.

Now, for § € (0,¢) define

(¢, 2, 4) (e"ek(t,z) +6) Vu(t,z,i) on B(t,zo,€),
v (¢, z,1) = ) it A R
v(t, z,1) outside B(to, zo,€).

Moreover, v (t,z,j) = v(t,z,j) for any (t,z,j) € [0,T] x R x I,,, with j # i. As
v (T, z0,i) > v~ (T,x0,1), we get a contradiction if we are able to prove that v? €
V~. In particular, for any s € [0,7] and 7,p € T* with 7 < p < T, we have to
find & = (7, in)nen € Ay + which works for v®. Consider the feedback switching
strategy & defined in Step I(i), Case a, with p; the exit time from B(T, xo,e/2). Then,
proceeding as in Case a of Step I(i), we can prove that & satisfies the condition in the
second item of Definition 3.4 for v°.

Step 1. vT is a viscosity subsolution to the HJB equation (2.10).

Step 11(i). Interior viscosity subsolution property. Let (to,r0) € [0,T) x R%
i € Ly, and consider a test function ¢ € C12([0, T x RY) such that v*(-,-,4) — (-, )
attains a strict global maximum equal to zero at (to, o). Reasoning by contradiction,
we assume that

. 0 ; ' j
mln{ B 3_(5(750’ x0) — irelfU [U’“gp(to,xo) + f(xo,l,u)],

v (to, x0,4) — mjx [vF (to, o, ) — c(xo,i,j)]} > 0.
JF

Then, there exists € > 0 and u € U such that

) . ,
S (to,w0) = L p(to, 20) — F(wo, i) > <.

From the continuity of b, o, f, it follows that we can find a smaller € > 0 such that

15 )
~Sh(ta) — Lp(ta) — flaiw) > e V(L) € Blto,ao.),
where B(to,xo,¢) is given by (3.10). As vt (-,-,7) — ¢(+,-) is usc and strictly negative
on the compact set C := B(to, o, ¢)\B(to, zo,£/2), we see that there exists § > 0 such
that sup(; ,)ec (vt (t,2,7) — ¢(t,z)) < —d. Denoting F(p,t,z) := p—p(t, x), it follows
from Lemma 3.6 that there exists v € VT such that ¢(t,z) —§ > v(t,z,i) on C. Now,
define

U(S(t,ﬁ,i) _ (ﬁp(t,ﬁl?) - 5) A U(ta Z, Z) on B(th 37075)7
u(t, 1) outside B(to, xo,¢).

Moreover, v (t,z,j) = v(t,z,j) for any (t,z,j) € [0,T] x R? x I,,, with j # i. As
v (to, z0,1) < vT (to, x0,1), we find a contradiction if we are able to prove that v* € V.
To this end, fix s € [0,T], 7 € T°, and a = (Tp, tn)nen € As. We have to construct
an elementary feedback strategy u € Z/{fT which works for v°. Consider the stopping
rule p; € T° given by (3.11), and let @' € L{fpl be the elementary feedback strategy
for v, corresponding to s, p1, a. Then, we define 4? = u®,, @', which belongs to UZ

5,7
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thanks to Proposition 3.2. Now, let %3 € lefT be the elementary feedback strategy
for v, corresponding to s, 7, @. Then, we define

~ -2
u(t, y) = 0 (6 Y)1{(r(y),5% (7)) B (to,20,), (v—0) (7 (1), (7 (1) F)) > —6, ¥ (7 () +) =i}
8 (b Y) L{(r ()X (r () € B t0,20,0)(v—0) (v () (7 () F)) > — 8 . T (v () F)=i}

From Lemma 3.1 we see that u € LlfT. Moreover, @ is the elementary feedback strategy
for the second item of Definition 3.5 for v°. Indeed, fix u € UF, (z,i) € R? x I,,,, and

p € T* with 7 < p <T. We adopt the shorthand
(X, I) —_ (Xs,w,i;a7u®7ﬁ7 Is7w7i;a,u®7ﬁ)’
(Xl, Il) _ (Xs,w,i;a7u®7ﬁ27Is7w7i;a,u®7ﬁ2)7

(X2, I2) _ (Xs,w,i;a7u®7ﬁ37Is7w7i;a,u®7ﬁ3).
We also denote 7/ = 7(X.,I.-), p} = p1(X.,I1.-), and p' = p(X.,1.-). Notice that

(Xv I) = (le Il)l{(r’7XT/)EB(to,mo7€), (v—)(7", X1, I 1)>=8,1 =1}

+ (X2, I2)1{(7'/,XT/)€B(tg,rg,s), (=) (", X1 T )>—8, I =i}e-
Moreover, write v° (7', X, I,+) as follows:

US(T/a X, IT/) = (@(Tlv Xi’) - 5) 1{(7”7X.,_/)GB(to,wo,a)7 (v=—@) (7", X 11, 1) >—=08, I 1=i}
+0(7!, X2, I2) 1+ X )eBto,w0.6), () (7, X o L) >—6, 1) =i}
Then, applying It6’s formula to ¢ and using the properties of v, we see that v® € V.

Step 1I(ii). Terminal condition. Reasoning by contradiction, we assume that
there exist g € R? and i € I,,, such that

v (T, z0,1) > g(z0,1).

Since g is continuous, there exists ¢ > 0 such that v* (T, zg,7) > g(z,i) + ¢ whenever
|z — 20| < e. Consider the compact set

C = (B(T,xo,e)\B(T, z0,£/2)) N ([0,T] x RY).
As vt is usc, it is bounded from above on C. Therefore, we can find n > 0 small
enough (possibly depending on ¢) such that

2
€
v (T, 20,1) + — >e+ sup v'(t x,4).
477 (t,z)eC

From Lemma 3.6 with F(p,t,z) = p for any (p,t,2) € R x C, we can find v € VT such
that

2
(3.15) v (T, x0,1) + sy sup v(t,z,1).
4n (tx)eC

For k > 0 define

|z — 20 |?

Pk (t,x) = v (T, 2o, 1) + ;

k(T — 1),
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Since b, o, f are continuous, we can choose k large enough and u € U such that

agpn,s,k
_T

From (3.15) it follows that =¥ (¢,z) > ¢ + v(t,z,4) on C. Moreover,

(t,ZII) - Li&(pms’k(ta 33) - f(xvzvﬂ) >0 V(t, 33) € B(Tv Zo, 6)'

OPER(T, ) > v (T, 20,4) > g(x,i) + ¢ whenever |z — xg] < €.

Now, for § € (0,¢) define

’Ué(t T Z) _ ((pms’k(t? 33) - 5) A U(tv €T, Z) on B(tg, Zo, 5)7
O T () outside B(to, zo,€).

Moreover, v (t,z,j) = v(t,z,j) for any (t,x,j) € [0,T] x R x I,,, with j # i. As
v (T, z0,i) < vT(T,x0,i), we get a contradiction if we prove that v® € V*. In
particular, for any s € [0,T], 7 € T*°, and & = (Tn, tn)nen € As, we have to find
@ € UE_ for the second item of Definition 3.5 for v°. Let & € UE_ be the elementary
feedback strategy defined in Step II(i), with p; the exit time from B(T,zg,&/2).
Then, we can prove, as in Step II(i), that 4 satisfies the condition in the second item

of Definition 3.5 for v°. 0

4. Dynamic programming and viscosity properties of V. In the present
section, by means of the comparison principle for (2.10), we prove that V satisfies the
dynamic programming principle and is a viscosity solution to (2.10), which therefore
turns out to be the dynamic programming equation of the robust switching control
problem.

4.1. Comparison principle and viscosity characterization. We need to
make an additional assumption on the switching costs in order to get the comparison
principle.

(H3)
The switching cost function ¢ satisfies the no free loop property: for any
sequence of indices i1,...,ix € I, with k& € N\{0,1,2}, iy = i, and
card{iy,...,ix} = k — 1, we have

c(x,i1,12) + c(x,ia,i3) + - + e(x, ig—1,0k) + c(x, ik, 41) > 0 Vo e RY.

We also assume that c(z,i,7) = 0, for any z € R? and i € I,,,.

THEOREM 4.1 (comparison principle). Let assumptions (H1), (H2), and (H3)
hold and consider a viscosity subsolution © (resp., supersolution ©) to (2.10). Suppose
that

|0t @,4)| +|0(t, z,7)|

sup <
(t,2,0)€[0,T] xR X I, 1+ [x|e

for some ¢ > 1. Then, we have ¥(t,x,i) < 0(t,z,) for any (t,z,i) € [0,T] x RE x I,,,.

Remark 4.1. The proof can be done along the lines of Proposition 3.1 in [18],
apart from minor changes due to the presence of the infimum over U in (2.10), which
are dealt with by the uniform Lipschitz condition in (H1)(ii). More precisely, it is
proved, as usual, proceeding by contradiction and then using the doubling variable
technique. We simply note here that (2.10) requires a particular step. Indeed, along
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the sequence of maximum points (¢, x, ), coming through the doubling of variables,
we require

(4.1) by, T, 1) > r?;g [17(tn,xn,j) — c(xn,i,j)},

so that, from the viscosity subsolution property of ¥, we can derive an inequality for
the PDE part of (2.10) (concerning ¥, the viscosity supersolution property implies
already the nonnegativity of both terms in (2.10)). Condition (4.1) is obtained from
a “no-loop” argument presented in [21, Theorem 3.1] (see also [2, Lemma A.2] and
[18, Proposition 3.1]), which is based on the no-free-loop-property in (H3). d

COROLLARY 4.1. Under assumptions (H1), (H2), and (H3), we have v~ =V =
V =wvt. In particular, V (as v=,V,vt) is continuous. Moreover, V is the unique
viscosity solution to (2.10) satisfying a polynomial growth condition. Furthermore, V
satisfies the dynamic programming principle: for any (s,z,i) € [0,T] x R x I,, and
peT?,

p/
V(s,z,i) = sup inf E / F( Xy, Le,u)dt + V(o' , X, Iy )
a€A + ueUs s

- ZC(Xr;Jw;)Jm)l{s<r,;<p'}]
neN

p/
= sup inf E|:/ f(Xt,It,u;)dt—FV(,O/,Xp/,jp/)
a€A + ueUl s

= > el Xey Iy, fnq)l{sgmp'}]
neN

with the shorthand X = X$%bau [ = [s@bau ol — (X [ ), 7/ = 1,(X.,1-),
and v, = u(t, X, I.-).

Proof. The equality v~ = V = V = v follows from the comparison principle
Theorem 4.1. Since v~ is Isc and v is usc, we see that V is continuous. Moreover,
from Remark 2.7 and Theorems 3.1 and 4.1 it follows that V is the unique viscosity
solution to (2.10) satisfying a polynomial growth condition. Finally, let us prove
the dynamic programming principle for V. We begin noting that v~ and v+ satisfy,
respectively, the sub- and super-dynamic programming principles: for any (s,z,i) €
[0,T] x RY x I, and p € T%,

o'
(4.2) v (s,2,4) < sup inf E{/ F(Xe, L, ug)dt + 0™ (p, X, Ly)

acA +“€ s

- ZC(Xr;Jw;)Jm)l{s<m<p'}]

neN

p/
(43)  vf(s,z,0) > sup lergEE[/ F(Xe, Ly up)dt + 0" (0, X, Iy)
acA 4 U s

- Z X‘r/ I (th)~ i )1{S<T <p’ }:|

neN
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with the shorthand X = Xs®bau [ = [s@bou o — o(X [_) 7/ = 1(X., 1.-),
and w, = u(t,X.,I.-). As a matter of fact, let (v,)neny C V™ be the sequence in
Lemma 3.5(i). From Lemma 3.2 we know that each v, satisfies the subdynamic

programming principle: for any (s, z,i) € [0,7] x R? x I, and p € T?,

p/
Un(s,x,1) < sup inf E[/ F(Xe, Iy ug)dt + vn(p), X, Iy)
aC€A + u€ls s

- ZC(XWI@)afr;)l{s<r;<pf}]-
neN

Since v, < v™, we get

p/
(4.4) (s, x,7) < sup inf E[/ F(Xy, L, u)dt + 0~ (0, X, Iy)
acA 4 u€Us s

- ZC(Xme;)afr;)l{s<r;<p'}]-
neN

Letting n — oo in (4.4), we finally obtain the subdynamic programming principle
(4.2) for v~. In a similar way we can prove (4.3). Combining (4.2) and (4.3) with the
equalities v~ = V = v, gives us the dynamic programming principle for V. d

4.2. Elliott—Kalton formulation. We now describe the Elliott—Kalton formu-
lation of the robust switching control problem, and we present in the next paragraph
an example which shows that this is, in general, a different control problem than
the robust feedback switching control problem studied here. As a by-product of this
example, we will find a counterexample to uniqueness for (2.10). Let us begin by
introducing the concept of nonanticipating strategy for the switcher. First, we define
a standard switching control, not necessarily of feedback form.

DEFINITION 4.1 (switching controls). Fiz s € [0,T]. We say that the double
sequence o = (Tp, Ln)neN @8 a switching control starting at s if
e 7, is an F°-stopping time, for any n € N, and

s<1< <71, <---<T.
Moreover, (Ty,)nen satisfies the following property: for P-a.e. w € €,
Tolw)=T for n large enough;
o 1, Q= 1y, is F; -measurable for any n € N.

A, denotes the family of all switching controls starting at s.

When using switching controls as defined above, the well-posedness of (2.1) be-
comes easier. In particular, we have the following result, whose standard proof is
omitted.

PROPOSITION 4.1. Let assumption (H1) hold. For any (s,z,i) € [0,T] x R x Ly,
a€ A, ue Us, there exists a unique (up to indistinguishability) F*-adapted process
(X smbou o) = (X HOEGU [R5 1 to (2.1). Moreover, estimate (2.2) holds.

We can now introduce the concept of nonanticipating strategy for the switcher.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/17 to 131.175.12.9. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ROBUST FEEDBACK SWITCHING CONTROL 2625

DEFINITION 4.2 (nonanticipating strategies). Fiz s € [0,T]. We say that the map

B:Us — As,

ur— Blu] = (Tn[u],Ln[u])neN,
is a nonanticipating strategy starting at s if
P[(Tn[ul],Ln[ul])l{m[qut} = (Ta[u?], Ln[u2])1{7n[uz]§t}Vn eN] =1

whenever P(ul = u2, Vr € [s,t]) = 1 for any t € [s,T] and u',u* € Us. A, denotes
the family of all nonanticipating strategies starting at s.

We can now define the corresponding value function

V(s,x,i) ;= sup inf J(s,z,; Bul,u),
BEA, uEUs

VY (s,,i) € [0,T] x R? x L,,. Notice that

(4.5) V(s,x,i) <V(s,z,i)  Y(s,2,9) €[0,T] x R x I,.

Under assumptions (H1) and (H2), we expect that V (as V) is a viscosity solution
to (2.10). Therefore, when (H3) holds, by comparison, we have V = V. However,
if (H3) is not assumed, the above inequality (4.5) might be strict at some (s,z,) €
[0,T] x R? x L,,. The following example illustrates this latter point.

Ezample. Fix d =1, m = 2 so that Iy = {1,2}, and take U = I. Moreover, set
b(z,i,u) = —|i —u| and o = 0. Notice that b € {—1,0}. Since assumption (HI) is
satisfied, from Proposition 4.1 it follows that, for any (s, z,4) € [0,T] xR x Iy, o € As,
u € Us, there exists a unique solution (X &®heu [6a) = (X TEWU 86N 4 to
(2.1).

Set g(z,i) =, f =0, and ¢ = 0. Our aim is now to determine the explicit form
of V and V. To this end, it is convenient to give the following definition.

DEFINITION 4.3 (step controls). Fiz s € [0,T]. We say that u is a step control

starting at s if there exists n € N\{0} such that

e s=1tg < St <<ty =T

o &k Q= U is Fy -measurable, for any k=0,...,n— 1.
The control w: [s,T] x Q — U is given by uy := EZ;& Elty<t<ty,}- US denotes the
family of all step controls starting at s.

Let us now determine the form of the function V. Since the terminal payoff g is
strictly increasing and the drift b is nonpositive, the aim of the switcher is to keep the
system still. Having this in mind, we define, for every € > 0, the strategy ¢ € A,
with 8°[u] = (t5[u], ¢, [u])nen ¥V u € Us, as follows:

(i) For any uy = ZZ;; Eil ity <t<tr,,} I U, we set

(rilul, ilu]) = (th, &) YE=0,...,n—1.
With this choice, X**"# " = 2 for any t € [s, T] and J(s, =, 4; 85[u], u) =

x.
(ii) For any u € U;\U?, it follows from the approximation result in [25, Lem-

ma 3.2.6], that there exists u® € U2 such that E[fST |ug — uf|dt] < e. Then
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we define 5¢[u] := °[uf], where 8¢[uf] has already been defined in item (i),
since u® € U?. Therefore

. e T .. Qe
J(s,2,%; Bu],u) = E[X;’I’Z;ﬁ [u]’“} =z — E[/ ‘I;’z’z’ﬁ i _ u|dt

T - € €
=$—E[/ ‘I;,m,z;ﬁ [u ],u_ut|dt:|

S

T
:x—E[/ }ui—ut|dt} >z —ec.

In conclusion, we find, for every ¢ > 0,
J(s,x,4; B u],u) >z —¢ Yu e lUs,

which implies inf, ez, J(s,7,4; °[u], u) > z — ¢, and then V(s, x,1) > x —e. From the
arbitrariness of £, we obtain V (s, x,i) > x. On the other hand, since J(s, z,#; Su], u) =
IE[X;’I’“B[”]’“] =z — E[fST |If’w’“6[”]’u — ug|dt] <z, we deduce that

V(s,z,i) = g(z,i) =2 YV (s,2z,4) € [0,T] x R x .
As a consequence of this result, we also have

V(s,x,i) = sup inf J(s,z,i;Bul,u), ¥(s,z,i) € [0,T] x R? x I,,,.
BEA, UEUT

Let us now find the expression for V. Fix (s,z,i) € [0,T7] x R x Iy and o =
(Tns tn)nen € As. The aim of nature is to minimize the quantity J(s, z,%; a, u) over
U, which means to maximize the drift b, i.e., to keep it at the value —1. This can be
done as follows. Define u € Uy, depending on «, by

ug = (3 — 1) Lis<p<roy + 2(3 — )l <t<rnin}s Vte s, T].
neN

Observe that, since i,t, € Iy then 3 — 7,3 —¢,, € Iy; moreover, when i = 1 then
3 —4 = 2, while if 4+ = 2 then 3 — 4 = 1. Notice that, for P-a.e. w € 2 we have
I (w) = 3 — ug(w) Vit € [s,T] with t # 7, (w), n € N. Therefore, P-a.s.,

b(XPH [ ) = |12 — | = -1,

Vt € [s,T], with t # 7,,, n € N. It follows that, P-a.s. we have X/*"*" = z— (T —s).
In other words, we obtain

V(s,z,i) =2z — (T —s) V(s,x,i) € [0,T] x R x L.

In conclusion, V < V on [0,T) x R x Iy. We finally observe that both V" and V are
classical solutions to (2.10), so that the comparison does not hold. This is due to the
fact that while assumptions (H1) and (H2) hold, the no-free-loop property in (H3) is
not satisfied.

Remark 4.2. In the example above, because of the assumption that the switching
costs are always zero (¢ = 0), it would be more natural, at least intuitively, to formu-
late the robust switching control problem as a classical two-player zero-sum stochastic
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differential game as in [16]. In this latter setting, we recall from [16, Theorem 2.6]
that the lower value function VE* (see [16, Definition 1.4]) is the unique viscosity
solution to the lower Bellman—Isaacs equation:

(4.6) —88—1:(3,3:) — maxjer, Minger, [L7%w(s,z)] =0, (s,x) €[0,T) x R,

w(T,z) =z, z€R4,

where L4%w(s,z) = —|i — u|Dyw(s,z). On the other hand, the upper value function
UFS (see [16, Definition 1.4]) is the unique viscosity solution to the upper Bellman—
Isaacs equation:

(@7) —%(s, ) — minyer, max;er, [L5%w(s,z)] =0, (s,z) € [0,T) x RY,

w(T,z) =z, z¢€R%

By direct calculation, we see that V' satisfies (4.6), so that it coincides with the lower
value function VS (this is expected from the results of [16] and [30], since V is
the sup/inf over feedback strategies/open-loop controls), while V satisfies (4.7), and
therefore it coincides with the upper value function U (this is also not surprising,
since V is the sup/inf over strategies/open-loop controls). Notice that in the present
framework the Isaacs condition does not hold:

max min[—|i — ulp] # minmax|[—|i — u|p] VpeR. 0
i€ly u€ls u€ly i€ls
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