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Abstract. The paper presents a new stability analysis approach applicable to wind turbines.
At first, a reduced order periodic model is identified from response time histories, and then
stability is assessed using Floquet theory. The innovation of the proposed approach is in the
ability of the algorithm to simultaneously consider multiple response time histories, for example
in the form of measurements recorded both on the rotor and in the stand still system. As each
different measurement carries a different informational content on the system, the simultaneous
use of all available signals improves the quality and robustness of the analysis.

1. Introduction
The linear time periodic approximation for the stability analysis of wind turbines is now amply
understood and adopted. Numerical methods as the implicit Floquet theory are able to lower
its computational cost, but they require a linearization of the system. For this reason some
authors preferred to resort to a system identification approach, which has also the advantage of
being applicable to field data. In Ref. [1], the authors conducted the stability analysis of a wind
turbine by using a SISO (single input, single output) Periodic ARX (autoregressive exogenous).
This identification method successfully accomplished the task. However, it was also observed
that the use of multiple inputs and outputs at once might improve the quality of the results,
and at the same time simplify the procedure.

In this work an extension of the SISO-PARX to the MIMO (multiple input, multiple output)
case is presented. The resulting identification method has guaranteed stability properties, and
allows for the mitigation of mode contamination problems. The accuracy of the method has
been tested against a simplified wind turbine model.

The task of performing the stability analysis of periodic systems by means of MIMO
identifications has been previously tackled in various papers. In Ref. [2] the authors presented a
subspace identification method and used it to identify the periodic modes of a simple helicopter
model. Wang [3] applied the Partial Floquet analysis to the multibody model of a helicopter.
Reference [4] developed a MIMO adaptive identification algorithm for general time-varying
systems. The algorithm presented in the present paper is similar to the one discussed in Ref. [5],
but differs in some aspects. First, the initial guess for the minimization problem is provided by
the Equation-Error method, while in Ref. [5] a two stage least-squares method is used. Secondly,
the convergence of the algorithm is enhanced by two constraints derived from Floquet theory.
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The paper starts by briefly reviewing Floquet theory in Sect. 2. The identification algorithm
is illustrated in Sect. 3, by separating the discussion between the Equation- and the Output-
Error. Section 4 illustrates the main characteristics of the proposed approach with reference to
an analytical wind turbine model. Finally the conclusions are drawn in section 5.

2. Review of Floquet theory for discrete time systems
In this section we briefly review Floquet theory, while for an in depth explanation the reader is
referred to Refs. [6, 7]. A discrete time, strictly proper, Linear Time Periodic (LTP) system is
written as

x(k + 1) = A(k)x(k) +B(k)u(k), x(0) = x0, (1a)

y(k) = C(k)x(k). (1b)

Here x(k) ∈ RNs is the state at time index k, u(k) ∈ RNu is the input and y(k) ∈ RNy the
output. Matrices A(k), B(k), C(k) are periodic, with period K. The State Transition Matrix
(STM) associated to this system obeys the following recursion

Φ(k + 1, κ) = A(k)Φ(k, κ), Φ(κ, κ) = I, (2)

and allows one to compute the state as x(k) = Φ(k, κ)x(κ). The monodromy matrix is defined as
the STM after one period, i.e. Ψ(κ) = Φ(κ+K,κ). The eigenvalues θj of the monodromy matrix
are named characteristic multipliers, and do not depend on κ. The system is asymptotically
stable if and only if the characteristic multipliers lie within the unit circle, i.e.

|θj | < 1 ∀j ∈ [1, Ns]. (3)

It can be proved that the observed STM can be decomposed over the modes j and harmonics n
as

C(k)Φ(k, κ) =

Ns∑
j=1

K−1∑
n=0

cjn%
T
j (κ)ηk−κjn

, (4)

where

ηjn = K

√
|θj | exp

(
ı
∠(θj) + 2nπ

K

)
, (5)

and ı =
√
−1. The scalars ηjn are called characteristic exponents, and play the same role of the

eigenvalues of an LTI system. The complex vectors cjn , with Ny elements, are named observed
periodic mode shapes. Each mode j ∈ [1, Ns] of an LTP system is defined by K characteristic
exponents and their associated periodic mode shapes. To measure the relative importance of
each characteristic exponent ηjn within its mode j, we can introduce the scalars

φjn =
‖cjn‖∑
n‖cjn‖

, (6)

which generalize the output-specific participation factors first introduced in Ref. [1] to the
multiple outputs case. Within each mode, the characteristic exponent with the maximum
participation is called principal harmonic, while all others are termed super-harmonics. It is
important to recognize that the index n of the principal harmonic depends on C(k). The
characteristic exponents are converted in continuous time [1] as

ηcont.jn =
1

∆t
ln
(
ηjn
)
, (7)

being ∆t the time step. The natural frequencies ωjn and damping factors ξjn are obtained from
the continuous time characteristic exponents

ωjn = |ηcont.jn |, ξjn = −
Re
(
ηcont.jn

)
ωjn

. (8)
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3. The identification algorithm
The identification algorithm presented in this paper belongs to the class of the Prediction Error
Methods (PEM), and it represents an extension to the MIMO case of the one presented in Ref. [1].
As its SISO version, it is composed of two parts: the Equation-Error (EE) and the Output-Error
(OE). The model identification step and the subsequent Floquet analysis is performed by the OE,
because its predictor is closer to the true system and it has a better treatment of measurement
noise. However, the OE involves a nonlinear optimization, and we use the solution provided by
the EE for its initial guess.

To ease the identification process, measurements were first resampled, in order to have an
integer number of samples in each period. Next, they were also scaled with respect to their
maximum absolute values, in order to improve the problem conditioning.

3.1. Equation-Error
In the EE framework, measures are assumed to be generated by the following PARX process
(see [1, 8])

y(k) =

Na∑
i=1

Ai(k − i)y(k − i) +

Nb∑
j=1

Bj(k − j)u(k − j) + e(k), (9)

being y(k) the vector of measures at time index k, and u(k) the vector of inputs. Ai(k) is the
matrix of Auto-Regressive coefficients at delay i. Similarly, Bj(k) is the matrix of eXogenous
coefficients. Noise is modeled by the sequence e(k), which is assumed to be white, Gaussian and
with periodic variance. By realizing Eq. (9) in state-space form, and proceeding as explained in
Ref. [9], it can be proved that the optimal one step ahead predictor associated to Eq. (9) is

ŷ(k) =

Na∑
i=1

Ai(k − i)y(k − i) +

Nb∑
j=1

Bj(k − j)u(k − j), (10)

being ŷ(k) the predicted output. In order to reduce the number of unknowns, we resort to a
parsimonious representation of the coefficient matrices. Ai(k) and Bj(k) are approximated with
truncated Fourier series

Ai(k) = Ai0 +

NFa∑
l=1

(
Ac
il

cos (lψ(k)) +As
il

sin (lψ(k))
)
, (11a)

Bj(k) = Bj0 +

NFb∑
m=1

(
Bc
jm cos (mψ(k)) +Bs

jm sin (mψ(k))
)
, (11b)

where ψ(k) is the rotor azimuth angle. The AR parameters are collected in the following block
row vector

Ā =
(
A10 ,A

c
11 ,A

s
11 ,A

c
12 ,A

s
12 , . . . ,A

c
1NFa

,As
1NFa

,A20 ,A
c
21 ,A

s
21 ,A

c
22 ,A

s
22 , . . . ,A

c
2NFa

,As
2NFa

,

. . . ,ANa0
,Ac

Na1
,As

Na1
,Ac

Na2
,As

Na2
, . . . ,Ac

NaNFa
,As

NaNFa

)
. (12)

Similarly, the X parameters are collected in B̄, with elements from B10 to Bs
NbNFb

. All the

parameters are then collected in one block row vector

Θ =
(
Ā B̄

)
. (13)
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Two column vectors for the AR and X basis are formed as

ϕa(k) =
(
1 cos(ψ(k)) sin(ψ(k)) · · · cos(NFaψ(k)) sin(NFaψ(k))

)T
, (14a)

ϕb(k) =
(
1 cos(ψ(k)) sin(ψ(k)) · · · cos(NFb

ψ(k)) sin(NFb
ψ(k))

)T
. (14b)

By means of the Kronecker product, denoted with ⊗, one can define the regressor vectors

αk = ϕa(k)⊗ y(k), βk = ϕb(k)⊗ u(k), (15)

which in turn are used to express prediction (10) as a matrix-vector product

ŷ(k) = Θ
(
αTk−1 αTk−2 · · · αTk−Na

βTk−1 βTk−2 · · · βTk−Nb

)T
. (16)

By collecting the measures from q = max(Na, Nb)+1 to N in matrix ȳ and forming the regressor
matrix Υ

ȳ =
(
y(q) y(q + 1) · · · y(N)

)
, (17a)

Υ =



αq−1 αq · · · αN−1
αq−2 αq−1 · · · αN−2

...
... · · ·

...
αq−Na αq−Na+1 · · · αN−Na

βq−1 βq · · · βN−1
...

... · · ·
...

βq−Nb
βq−Nb+1 · · · βN−Nb


, (17b)

all predicted outputs can be computed. The parameters are then obtained by solving

ȳ = ΘΥ, (18)

in a least-squares sense.

3.2. Output-Error
In the OE framework, measures are assumed to be generated by the following PARX process [1, 8]

y(k) =

Na∑
i=1

Ai(k − i)(y(k − i)− e(k − i)) +

Nb∑
j=1

Bj(k − j)u(k − j) + e(k). (19)

With derivations similar to the ones for the EE case, it can be proved that the optimal one step
ahead predictor associated to Eq. (19) is

ŷ(k) =

Na∑
i=1

Ai(k − i)ŷ(k − i) +

Nb∑
j=1

Bj(k − j)u(k − j). (20)

By defining the regressor vectors
α̂k = ϕa(k)⊗ ŷ(k), (21)

the prediction at the current time index can be efficiently computed as

ŷ(k) = Θ
(
α̂Tk−1 α̂Tk−2 · · · α̂Tk−Na

βTk−1 βTk−2 · · · βTk−Nb

)T
, (22)
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although, differently from the EE case, regressors α̂k can not be pre-calculated. The prediction
error at each time index is defined as

ε(k) = y(k)− ŷ(k), (23)

and its covariance matrix is given by

RN (Θ) =
1

N − q + 1

N∑
k=q

ε(k)εT (k). (24)

The PEM aims at estimating parameters Θ by minimizing a scalar function of RN defined as

VN (Θ) = tr(RN (Θ)). (25)

Parameters Θ are computed by solving a nonlinear minimization problem, where the initial
guess Θ0 is provided by the EE. To improve the conditioning of the problem, the parameters
are scaled with respect to

Γi,j = 10blog10|Θ0i,j
|c. (26)

It is well known that cost functions based on prediction errors may be affected by local
minima. To improve convergence towards the global minimum, while at the same time
augmenting the flexibility of the method, a two-pronged approach has been adopted. Firstly,
two constraints are added to the cost function, and, secondly, multiple local optimizations are
performed by random perturbations of the initial guess.

3.2.1. Stability constraint The minimization of VN (Θ) does not guarantee that the identified
system is asymptotically stable, even if measures having a decaying trend are used. This feature
can be enforced by realizing the AR sequence in state-space form, and applying Floquet theory.

By following a procedure similar to the one exposed in Ref. [1], one can show that the OE
process (19) is equivalent to the following system

x(k + 1) = A(k)x(k) +B(k)u(k), (27a)

y(k) = C(k)x(k) + e(k), (27b)

where

[
A(k) B(k)
C(k)

]
=



0 0 · · · 0 An(k) Bn(k)
I 0 · · · 0 An−1(k) Bn−1(k)
0 I · · · 0 An−2(k) Bn−2(k)
...

. . .
. . .

...
...

...
0 0 · · · I A1(k) B1(k)
0 0 · · · 0 I


. (28)

The monodromy matrix associated with A(k) can be formally computed as

Ψ = A(K)A(K − 1) · · ·A(1). (29)

The constraint simply requires that the characteristic multipliers lie within the unit circle, and
it is written as

|θj | < 1, ∀j ∈ [1, Ns]. (30)

The idea of adding a stability constraint has been already proposed in Ref. [10], although for
the LTI case and only constraining the largest eigenvalue. However, since the max function
is discontinuous, the approach is not suited for a gradient-based minimization. The present
expression of the constraint is instead inspired by the one used in Ref. [11] for the Periodic
SISO-ARMAX predictor.
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3.2.2. Expected participation constraint Systems having whirling modes, as wind turbines,
are particularly prone to mode contamination problems caused by nearly overlapping super-
harmonics [12]. Allen et al. determined the contamination by looking at the observed periodic
mode shapes. However this problem can also be examined by looking at the much simpler output-
specific participation factors. Simplified wind turbine models, as well as previous experience on
high-fidelity models and field data, may give a qualitative idea on the behavior of the output-
specific participation factors. To guide the optimization routine away from un-physical solutions,
one may impose lower and upper bounds to selected output-specific participation factors. By
denoting with j the mode, n the super-harmonic and y the output channel, the constraint is
written as

φyjnmin
≤ φyjn ≤ φ

y
jnmax

. (31)

3.2.3. Constrained minimization problem The parameters are identified by solving the
following constrained minimization problem

Θ = arg min
Θ

VN (Θ)

subject to: |θj | < 1 ∀j ∈ [1, Ns]

φyjnmin
≤ φyjn ≤ φ

y
jnmax

(32)

The process performs a full (discrete time) Floquet analysis at each call of the nonlinear
constraints function. However, due to the small number of states of the identified system,
this does not result in excessive computational costs.

The characteristic multipliers are the result of an eigenvalue computation, and consequently
their order can not be preserved from one call of the routine to the next, thus challenging
the convergence of the solver. To reorder the characteristic multipliers, the Modal Assurance
Criterion (MAC) is used. The eigenvectors of the monodromy matrix are first computed for the
initial guess, and then updated at the end of each iteration. These eigenvectors, denoted soldi ,
are considered as references for the calculation of the constraint gradients by forward differences.
At each call of the nonlinear constraint routine a new set of eigenvectors snewj is computed, and
then used to get the MAC matrix

MACij =
(sHoldisnewj )(s

H
newj

soldi)

(sHoldisoldi)(s
H
newj

snewj )
. (33)

The characteristic multipliers are reordered by starting from the most consistent eigenvectors,
and then moving towards the least consistent ones.

A similar issue arises for the constraints on the participations. The user might want to specify
bounds to the participations of only some of the modes, harmonics and output channels. To get
the participations for the ith output channel it is sufficient to select the following output matrix

Cyi(k) =
[
01×(Na−1) 1i

]
, (34)

where 1i is a row of zeros with Ny elements and the sole element i equal to 1.
When dealing with wind turbines, the output channels might be in a rotating or in a non-

rotating frame. This often implies that the principal harmonic of a mode is displaced by
one position when the mode is observed in a rotating instead of a non-rotating frame. To
overcome this difficulty, one may define an output matrix CMBC(k) that provides as principal
harmonic the one that would have been obtained by the Multi Blade Coordinate (MBC) LTI
approximation. This matrix should have the same pattern shown in Eq. (28), and hence it is
defined by appropriately weighting the output channels

CMBC(k) =
[
0Ny×Ny(Na−1) diag(wi)

]
, (35)
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being wi ∈ [0, 1] the weights. To ensure the order of the modes, it is sufficient to compute the
participations also with respect to this accessory CMBC(k) output matrix, and then to sort the
modes in ascending order of principal frequency. This way the modes will be sorted as in a
standard Campbell diagram.

4. Application to a simplified wind turbine rotor
The performance of the proposed identification method was tested on the simplified three-bladed
wind turbine model described in Ref. [1]. Each blade is modeled by two rigid bodies, joined by
an equivalent hinge that allows for their edgewise motion. The hub is a point mass, constrained
to move only in the side-side direction. Springs and dampers are included in each hinge, as well
as at the hub. The rotor is forced to rotate at a constant angular speed, and it is subject only
to gravitational loads. The model is tuned in order to represent the dynamics of a 6 MW wind
turbine, and it represents the following modes: tower side-side, collective edgewise, backward
and forward whirling edgewise.

To draw the Campbell diagrams in the partial load region II, multiple simulations were
started from suitable initial conditions. After some test with different model order and output,
it has been resolved to select as output signals the three lag angles ζi, and the hub side-side
displacement yH . The original system has eight states, and therefore Na = 2. A spectral analysis
of the A(t) model matrix revealed that NFa = 3 is an appropriate choice. The identification
algorithm has been implemented in MATLAB®. The execution time is of the order of the
minutes on standard hardware, and the number of iterations increases with the system period.

The full (continuous time) Floquet analysis performed in Ref. [1] has shown the rich periodic
content of the system, in turn indicating appropriate lower boundaries for the participation
factors, shown in tables 1a and 1b at rated angular speed.

Table 1: Expected lower boundaries of the output-specific participation factors, at rated angular
speed (Coll.: collective; BW: backward; FW: forward). Super-harmonics are counted from the
principal one, labeled n = 0.

(a) Participations with respect to ζ1.

n Tower Whirl BW Coll. Whirl FW

−1 − − − 0.9
0 − − 0.9 −

+1 − 0.9 − −

(b) Participations with respect to yH .

n Tower Whirl BW Coll. Whirl FW

−1 − − − −
0 0.9 0.9 0.9 0.9

+1 − − − −

By a trial and error approach, weights for CMBC(k) were chosen as wζ1 = 0.3 and wyH = 1,
while the others were set to zero. The motivation behind this choice is that the periodic mode
shapes of the tower and whirling modes are best observed in the non-rotating frame, while the
collective edgewise mode is best observed in the rotating frame. Experience as shown that the
constraints to the participations should be added one at a time, and only if mode contamination
problems arise. In particular, this constraint should not be used to address problems due to lack
of identifiability.

Figures 1a and 1b show an excerpt of the identification results at rated angular speed. The
excellent superposition of the measured and predicted outputs denotes the quality of the results.

Figures 2a to 2d show the Campbell diagrams of the identified system. An examination of
the figures reveals that, as previously observed in Ref. [1], frequencies are well estimated, but
accuracy degrades for the damping and the participation factors. The proximity of the collective
edgewise and whirling modes at low angular speeds diminishes the identifiability of the system,
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Figure 1: Comparison between measured and predicted time histories at rated angular speed.

thus causing a degradation of the quality of the results. This results in an an un-physical change
in the trend of the damping factors at low angular speeds.
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(a) Tower side-side, participations from yH .
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(b) BW whirling edgewise, participations from yH .
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(c) Collective edgewise, participations from ζ1.
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(d) FW whirling edgewise, participations from yH .

Figure 2: Campbell diagrams.
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5. Conclusions and future outlooks
The proposed MIMO-PARX approach has been shown to correctly identify all the modes of the
system with good accuracy, over the entire region II. By adding constraints to the participation
factors, it was possible to eliminate small contamination problems among periodic modes. This
algorithm significantly reduces user workload with respect to its SISO counterpart, since less
identifications are needed to obtain the system Campbell diagram. It has however been noticed
that the quality of the results strongly depends on the number and type of measures used, as
well as on the selected model order.

Future improvements include the addition of the Moving Average term to the model, to
better account for atmospheric turbulence. It would be also advisable to implement a different
method for choosing the initial guess, for example by using a two stage least-squares method,
and compare it to the EE approach used here. Further studies will regard the application to
multibody wind turbine systems, to understand the effect of unmodeled dynamics.
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