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STATISTICAL PROPERTIES OF REAL–TIME
AMPLITUDE ESTIMATE OF HARMONICS

AFFECTED BY FREQUENCY INSTABILITY

Diego Bellan — Sergio A. Pignari
∗

This work deals with the statistical characterization of real-time digital measurement of the amplitude of harmonics
affected by frequency instability. In fact, in modern power systems both the presence of harmonics and frequency instability
are well-known and widespread phenomena mainly due to nonlinear loads and distributed generation, respectively. As a
result, real-time monitoring of voltage/current frequency spectra is of paramount importance as far as power quality issues are

addressed. Within this framework, a key point is that in many cases real-time continuous monitoring prevents the application
of sophisticated algorithms to extract all the information from the digitized waveforms because of the required computational
burden. In those cases only simple evaluations such as peak search of discrete Fourier transform are implemented. It is well
known, however, that a slight change in waveform frequency results in lack of sampling synchronism and uncertainty in
amplitude estimate. Of course the impact of this phenomenon increases with the order of the harmonic to be measured. In
this paper an approximate analytical approach is proposed in order to describe the statistical properties of the measured
magnitude of harmonics affected by frequency instability. By providing a simplified description of the frequency behavior of
the windows used against spectral leakage, analytical expressions for mean value, variance, cumulative distribution function,
and probability density function of the measured harmonics magnitude are derived in closed form as functions of waveform
frequency treated as a random variable.

K e y w o r d s: digital measurements, discrete Fourier transform, frequency-domain analysis, frequency instability, har-
monics, statistical analysis

1 INTRODUCTION

Modern electrical power systems are characterized by

increasing complexity mainly due to the so-called dis-

tributed generation (DG) and to the widespread use of

nonlinear loads. In particular, the use of time-varying

nonlinear loads (eg, [1]) requires a continuous real-time

monitoring of the harmonic content in the voltage/cur-

rent waveforms spectra for power quality purposes [2].

It is well-known, however, that one of the drawbacks of

DG is frequency instability/inaccuracy of the generated

waveforms [3–5]. Therefore, as the main objective of this

paper, it is of paramount importance to investigate the

effect of frequency instability on the harmonics measure-

ments performed by digital techniques based on analog-

to-digital (A/D) conversion of the waveforms and the dis-

crete Fourier transform (DFT) usually evaluated through

the fast Fourier transform (FFT).

In the past literature many papers have been devoted

to sophisticated algorithms to treat the case of non-

coherent sampling (eg, see [6, 7]), ie, the case of a sam-

pling frequency which is not integer multiple of the fre-

quency of a sine wave component. Such algorithms allow

to recover the magnitude of each sine wave component

with high accuracy. However, when a continuous real-time

monitoring of a wide spectrum is required, implementa-

tion of sophisticated algorithms could be not effective due

to the required computational burden.

In this paper it is assumed that harmonics monitor-

ing is performed by repeated digitization of waveform

windows with given length, ie, by A/D conversion of

NS -sample windows consisting of samples taken with a

given sampling frequency. Each NS -sample window is

transformed into the frequency domain (ie, the DFT)

through the FFT, and the peaks at harmonics locations

provide the estimated magnitude of each harmonic. Due

to frequency instability, it is expected that from one

NS -sample window to another, each harmonic slightly

changes its frequency and, as a consequence, the magni-

tude of the related peak in the DFT changes. By treat-

ing each harmonic frequency as a random variable, the

harmonic magnitude is a random variable as well, whose

statistical properties will be derived in closed form as

functions of the frequency distribution and of the spe-

cific window used against spectral leakage. In particu-

lar, an approximate analytical representation of the fre-

quency behavior of the windows used against spectral

leakage will be provided. This approach allows the an-

alytical derivation of mean value, variance, cumulative

distribution function, and probability density function of

the measured harmonic amplitude as functions of the fre-

quency distribution.
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The paper is organized as follows. In Section 2 the
statement of the problem is provided. In Section 3 the
statistical properties of the measured harmonic amplitude
are derived under the assumption of frequency instabil-
ity spanning less than one frequency bin of the discrete
Fourier transform. In Section 4 the approach and results
are extended to the case of frequency instability involving
more than one DFT frequency bin. Validation through
numerical simulations is provided in Section 5. Finally,
concluding remarks are discussed in Section 6.

2 PROBLEM STATEMENT

Measurement of power system harmonics can be effec-
tively performed by resorting to digital instrumentation
based on A/D conversion of voltage and current wave-
forms, and time-to-frequency transformation through the
DFT (with the efficient FFT algorithm) [6–8]. Thus, har-
monics magnitude at each frequency of interest can be
readily evaluated by reading the amplitude of the rele-
vant spectral lines.

Two main sources of uncertainty can be identified in
the measurement process outlined above. First, the fun-
damental frequency of voltage/current waveforms is typ-
ically affected by random instability. It means that by
repeating the measurement process, slightly different val-
ues of the waveforms fundamental frequency must be ex-
pected. Such frequency instability is of course empha-
sized for harmonic components. When the DFT is ap-
plied, the lack of synchronism between the frequency of
the waveform sinusoidal components and the sampling
frequency (ie, non-coherent sampling) will result in in-
creased uncertainty in the amplitude measurements. The
second main source of uncertainty is additive noise. In-
deed, voltage/current waveforms are always affected by
additive noise which propagates through A/D conversion
and DFT transformation, yielding noisy spectral lines. It
is expected that the impact of additive noise is larger
as the amplitude of the involved harmonic spectral lines
decreases. Spectral effects of additive noise have been al-
ready investigated in many previous papers [8–12]. There-
fore, in this work additive noise will not be considered by
assuming that noise effects can be readily included by
resorting to previous literature results.

The time-domain voltage waveform is modelled as a
sum of N sine waves

v(t) =
√
2

N
∑

h=1

Vh cos
(

2πfht+ ϕh

)

, (1)

where fh = hf1 . A similar expression holds for the
current waveform, therefore in this paper mathematical
derivations will be presented for the voltage waveform
only.

After A/D conversion of (1) with sampling frequency
fS , and weighted time-windowing (NS samples in length)

against spectral leakage [13], the DFT transform provides
the estimates of the complex Fourier coefficients

V n =

√
2

NSNPSG

NS−1
∑

k=0

v[k]w[k]exp
(

−j2πkn/NS

)

, (2)

where w[k] is the selected time window characterized
by the related normalized peak signal gain NPSG (see
Tab. 1 where three examples of commonly used windows
are reported with the parameters exploited in this paper).
The frequency index n is related to the frequency index
h in (1) by n × ∆f = fh , where ∆f = fS/NS is the
DFT frequency resolution. Under non-coherent sampling,
the relation n×∆f = fh is intended as an approximate
relation where n is the index such that n × ∆f is the
discrete frequency closest to fh .

In the next two sections the statistical properties of

V̂n = |V n| will be derived as functions of the statisti-
cal properties of fh treated as a random variable (RV).
The subscript n will be dropped since the derivations
hold for any frequency index. In Section 3 the analysis is
performed for the case of frequency instability spanning
less than one DFT frequency bin ∆f , ie, the case of low
order harmonics typically characterized by low instabil-
ity. In Section 4 the proposed approach is extended to the
case where more than one DFT frequency bin is involved,
ie, the case where higher order harmonics are considered.

3 STATISTICAL ANALYSIS: FREQUENCY

INSTABILITY SPANNING ONE DFT BIN

If the frequency f of a sinusoidal component in the
voltage waveform does not equal one of the DFT discrete
frequencies (ie, the integer multiples of the frequency bin
∆f ), the related spectral-line magnitude does not take its
ideal value. In fact, in this case (ie, the non-coherent sam-
pling condition) the spectral line magnitude is weighted
by the Fourier transform of the time window w[k] used
in (2) against spectral leakage. An approximate method-
ology is here introduced, consisting in the approximation
of the frequency-domain behavior of each specific window
by a parabolic function obtained by setting the constraint
provided by the window Scallop Loss (SL) (see Fig. 1),
ie, the maximum attenuation introduced by the window
at the edges ±∆f/2 of each DFT bin [13]. From Fig. 1,
assuming the n-th DFT frequency bin as the origin of the
frequency axis, the normalized weighted amplitude intro-
duced by the window on a waveform spectral line can be
readily obtained [4]:

y ∼= 1− 4(1− SL)

∆f2
f2 = 1− 4(1− SL)x2 (3)

where x = f/∆f is the normalized frequency.

Such attenuation is applied to the actual amplitude
V of each sinusoidal component in (1). Therefore, the
measured amplitude of each sinusoidal component can be
written:

V̂ = yV (4)
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Fig. 1. Spectral line spanning less than one DFT bin, weighted
by the frequency-domain window
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Fig. 2. Uniform distribution of a spectral line spanning more than one
DFT bin

Table 1. Some figures of merit of three common windows

Window NPSG ENBW SL (dB) SL

Rect. 1 1 3.92 0.637
Tukey (α = 0.5) 0.75 1.22 2.24 0.773

Hann 0.50 1.50 1.42 0.849

where V denotes the non-weighted frequency-centered
spectral line.

In this Section the frequency f of the sine wave com-
ponent is treated as a RV uniformly distributed within an
interval δf centered on the DFT frequency bin n ×∆f
(see Fig. 1) and not exceeding ∆f , ie, δf ≤ ∆f . Thus,
the probability density function (PDF) of the spectral
line frequency is 1/δf within the interval ±δf/2. It fol-
lows that also y is a RV whose mean value and variance
can be evaluated analytically in a straightforward way by
taking into account (3) [14]

µy =

∫ 1

2
δf

−
1

2
δf

y
1

δf
df = 1− 1

3
(1 − SL)b2, (5)

σ2

y =

∫ 1

2
δf

−
1

2
δf

(y − µy)
2
1

δf
df =

4

45
(1− SL)2b4 (6)

where

b =
δf

∆f
(7)

is the normalized frequency instability.

The cumulative distribution function (CDF) of the RV
y can be readily evaluated by considering that for a given
value y the corresponding values of f can be obtained
by inversion of (3) as

f1,2 = ±∆f

√

1− y

4(1− SL)
. (8)

Therefore, by taking into account the frequency inter-
vals defined by (8) and the uniformity of f , the CDF of
the RV y can be derived as

P (y) = 1− 1

b

√

1− y

1− SL
. (9)

The PDF of the RV y can be readily obtained from (9) by
derivation:

p(y) =
dP

dy
=

1

2b
√

(1− y)(1 − SL)
. (10)

Finally, by taking into account (4), the following ana-
lytical results hold for the measured harmonic amplitude
[14]:

µ
V̂
= µyV , (11)

σ
V̂
= σ2

yV
2, (12)

P (V̂ ) = 1− 1

b

√

1− (V̂ /V )

1− SL
, (13)

p(V̂ ) =
1

V

1

2b
√

(

1− (V̂ /V )
)(

1− SL
)

. (14)

4 STATISTICAL ANALYSIS: FREQUENCY

INSTABILITY INVOLVING MORE DFT BINS

In this Section the assumption of harmonic frequency
ranging within only one DFT bin is removed. This can
be the case of higher order harmonics characterized by
wider frequency range of variability.

In Fig. 2 the case of a harmonic frequency with uniform
distribution extending over the two DFT bins adjacent to
the nominal bin is shown. The normalized frequency x =
f/∆f is here considered. The width of the normalized
uniform distribution is b = δf/∆f , whereas the PDF
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Fig. 3. Comparison between analytical (solid lines) and numerical
(dotted lines) mean value of the amplitude of the fifth harmonic as a
function of the normalized frequency range δf/∆f due to frequency

instability, for three different windows
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Fig. 4. Comparison between analytical (solid lines) and numeri-
cal (dotted lines) estimates of the normalized standard deviation
of the amplitude of the fifth harmonic as a function of the normal-
ized frequency range δf/∆f due to frequency instability, for three

different windows

magnitude is 1/b = ∆f/δf . The mean value and the
variance of y can be evaluated similarly to (5) and (6)
assuming 1 ≤ b ≤ 3:

µy = (1− SL)
(b− 2)3 + 2

3b
, (15)

σ2

y =
(1− SL)2

b

{

1

5
[(b− 2)5 + 2]− 1

9b
[(b− 2)3 + 2]2

}

.
(16)

The PDF of y in Fig. 2 can be readily obtained by
resorting to the fundamental theorem of the PDF of a
function of one random variable [14, 15]. Indeed the theo-
rem requires the evaluation of the roots of y = y(x), and
the evaluation of the absolute value of the first derivatives
of y(x) in such roots. Notice that for a given y , all the
related roots correspond to first derivatives with the same
absolute value. From (3) we obtain that the first positive
root is given by

x1 =

√

1− y

4(1− SL)
(17)

and therefore all the first derivatives have absolute value

|y′(x1)| = 4
√

(1− SL)(1− y) . (18)

Thus, according to the fundamental theorem men-
tioned above, each root contributes to the PDF with the
term

P0(y) =
1

4b
√

(1− SL)(1− y)
. (19)

The number of contributions (19) depends on the ex-
tension b of the frequency instability, and on the corre-
sponding intervals defined for the variable y . By means of
geometrical considerations based on Fig. 2, the following
results can be derived.

For a frequency instability b such that 1 ≤ b ≤ 2, the
PDF of y is given by

p(y) =

{

4p0(y) , SL ≤ y ≤ y ,

2p0(y) , y ≤ y ≤ 1
(20)

where
y = 1− (1− SL)(b− 2)2. (21)

For a frequency instability b such that 2 ≤ b ≤ 3, the
PDF of y is given by

p(y) =

{

4p0(y) , SL ≤ y ≤ y ,

6p0(y) , y ≤ y ≤ 1
(22)

where y is still given by (21).

Finally, the CDF can be readily obtained by direct
integration of (20) and (22). The approach can be readily
extended to the case of frequency instability spanning
more than three DFT bins.

5 NUMERICAL VALIDATION

The analytical results derived in Sections 3 and 4 have
been validated by resorting to numerical simulation of
the whole digital measurement process. According to (1),
a voltage waveform consisting of four harmonic compo-
nents have been selected such that f1 = 50 Hz, f3 = 3f1 ,
f5 = 5f1 , f15 = 15f1 . The voltage rms values have been
selected as V1 = 10, V3 = 2, V5 = V15 = 1. Phase angles
have been selected at random. Sampling has been per-
formed such that 10 nominal periods of the fundamental
component are acquired, ie, a 200 ms measurement win-
dow was taken. The selection of the number of samples
NS defines the corresponding sampling frequency. By as-
suming NS = 212 the corresponding sampling frequency
is fS = 20.48 kHz, and the related frequency resolution is
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Fig. 5. Comparison between numerical and analytical CDF of the
amplitude of the fifth harmonic under the assumption of normalized

frequency range δf/∆f = 1, for three different windows
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Fig. 6. Comparison between numerical and analytical PDF of the
amplitude of the fifth harmonic under the assumption of normalized

frequency range δf/∆f = 1, for two different windows

∆f = 5 Hz. A repeated run analysis (104 runs to estimate
each average value) has been performed by assuming f1
taking random values with uniform distribution within a
frequency range δf centered on the nominal frequency
50 Hz. It is worth noticing that a frequency deviation δf
in the fundamental component results in a frequency de-
viation 3δf in the third harmonic, 5δf in the fifth har-
monic, and 15δf in the fifteenth harmonic. In the first
set of the following simulations, analytical results (11)–
(14) have been validated for the fifth harmonic. In fact,

by assuming a maximum δf
∆f

= 0.2 for the fundamental

component, such normalized frequency range equals 1 for
the fifth harmonic (ie, only one frequency bin as assumed
in the derivations in Section 3).

In Fig. 3 the numerical estimates (dotted lines) of the
mean value of the fifth harmonic amplitude are compared
with the analytical result (11). The three different win-
dows considered in Tab. 1 were used. Clearly the rectan-
gular window shows the worst behavior due to its lowest
SL value.

In Fig. 4 the numerical estimates (dotted lines) of the
standard deviation of the fifth harmonic amplitude are
compared with the analytical results (12) (ie, its square
root). Also in this case the best behavior is provided by
the Hann window due to its larger SL.

Figure 5 shows the behavior of the CDF of the ampli-
tude of the fifth harmonic in the case of frequency insta-
bility involving the whole frequency bin, ie, δf/∆f = 1.
Numerical results (dotted lines) and analytical results
(solid lines) provided by (13) are in good agreement. The
spread of the CDF is related to the SL of the window.
Therefore, the rectangular window corresponds to a larger
spread in the CDF.

Figure 6 shows the comparison between numerical and
analytical PDF provided by (14) for the amplitude of the
fifth harmonic under the same assumption as in Fig.5 for
the frequency instability. In this case, for the sake of bet-
ter graphical representation, the behavior corresponding

to Tukey window is not shown (intermediate behavior be-

tween the other two cases). Similar remarks concerning

the correlation between the SL magnitude and the PDF

spread already mentioned above for the CDF can be pro-

vided.

A second set of simulations was performed to test the

fifteenth harmonic. In this case the maximum frequency

instability is 15 times the maximum frequency instabil-

ity of the fundamental, ie, 15 × δf
∆f

= 3. Therefore, the

analytical results derived in Section 4 apply in this case,

since frequency instability involves more than one DFT

bin. Figure 7 shows the comparison between the analyti-

cal mean value provided by (15) (solid lines) and numer-

ical results (dotted lines) for the three different windows

already used in the previous simulations. Notice the os-

cillatory behavior due to the contribution of more than

one DFT bin, in contrast with the monotonic behavior

obtained in Fig. 3.

Figure 8 shows the behavior of the normalized stan-

dard deviation of the fifteenth harmonic amplitude as pro-

vided by the square root of (16) compared with numerical

results. Also in this case the oscillatory behavior is in con-

trast with the monotonic behavior obtained in Fig. 4.

Figure 9 shows the PDF of the fifteenth harmonic

amplitude for a relative frequency instability equal to 1.5.

The relevant analytical result is given by (20). Notice

that, according to (20), a discontinuous PDF is obtained

in this case, where the discontinuity point was derived

in (21). Moreover, notice that, according to (20), the PDF

discontinuity consists in a negative step from 4p0 to 4p0 .

Finally, in Fig. 10 the PDFs are compared for the case of

a relative frequency instability equal to 2.85. In this case

the relevant analytical result is given by (22). In fact,

notice that, in contrast with Fig. 9, in this case the PDF

discontinuity consists in a positive step from 4p0 to 6p0 .
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Fig. 7. Comparison between analytical (solid lines) and numerical
(dotted lines) mean value of the amplitude of the fifteenth harmonic
as a function of the normalized frequency range δf/∆f due to

frequency instability, for three different windows
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Fig. 8. Comparison between analytical (solid lines) and numeri-
cal (dotted lines) estimates of the normalized standard deviation of
the amplitude of the fifteenth harmonic as a function of the normal-
ized frequency range δf/∆f due to frequency instability, for three

different windows
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Fig. 9. Comparison between numerical and analytical PDF of the
amplitude of the harmonic number 15 under the assumption of

normalized frequency δf/∆f = 1.5, for two different windows
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Fig. 10. Comparison between numerical and analytical PDF of
the amplitude of the harmonic number 15 under the assumption
of normalized frequency range δf/∆f = 2.85, for two different

windows

6 CONCLUSION

An approximate analytical approach has been pro-
posed in the paper to provide the statistical characteriza-
tion of the DFT peaks magnitude corresponding to har-
monics affected by frequency instability. The key point
of the paper is the approximate representation of the fre-
quency behavior of the window used in the time domain
against spectral leakage, resulting in a weighting function
for the harmonic spectral line. Such behavior has been
approximated by a parabolic function having the window
scallop loss as parameter. By modeling the frequency of
each harmonic as a random variable with uniform distri-
bution, the mean value, the standard deviation, the CDF
and the PDF of the corresponding DFT peak have been
derived in analytical form. The advantage of the proposed
approach is its simplicity and the possibility to be used in

a straightforward way for a general window by using only
the scallop loss of the selected window as parameter. In
fact, numerical simulations corresponding to three win-

dows characterized by different values of the scallop loss
have shown very good agreement with analytical results.

Future work will be devoted to include in the model
more general statistical distributions of the frequency in-
stability such as unbounded and possibly non-symmetri-

cal distributions (ie, the case of inter-harmonic compo-
nents).
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