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Abstract 

This work is devoted to the analytical investigation of the 

impact of frequency deviation on the detection probability of 

power system harmonics. In particular, the analysis is 

performed by assuming a Gaussian distribution of power 

system frequency around its nominal value. Since additive 

random noise is always present in actual measurements, 

detection of low amplitude harmonics can be greatly affected 

by frequency deviation. Analytical derivations provide 

explicit expression of the detection probability as a function of 

the false alarm probability. The role of system parameters, 

such as signal-to-noise ratio and the standard deviation of the 

frequency Gaussian distribution, are clearly put into evidence. 

Analytical results are validated through numerical simulations 

of the measurement process. 
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INTRODUCTION 

It is well known that the widespread use of nonlinear and 

switched components in electrical power systems leads to 

several power quality issues [1]-[4]. Monitoring of the 

harmonics content in voltage/current waveforms is one of the 

most important among such issues. Digital methods for 

harmonics measurement are well established techniques, 

mainly based on the evaluation of the discrete Fourier 

transform (DFT) and further algorithms to improve the 

accuracy of the measured amplitude, phase and frequency of 

each harmonic component [5]-[8]. Real time monitoring of a 

distributed power system, however, prevents the use of 

sophisticated algorithms because of the heavy computational 

burden required. Moreover, the need for limiting the 

computational burden leads to the choice of limiting the 

number of acquired waveform samples. However, as far as 

additive noise is concerned, it is well known that a decrease in 

the number of acquired samples results in higher noise level in 

the DFT spectra. Therefore, the issue of the detection of low-

amplitude harmonics come into play. Such topic was 

investigated in [9], where the detection probability as a 

function of the false alarm probability in case of additive 

noise and use of windows against spectral leakage was 

addressed. In [9], however, the case of time-varying frequency 

of sine components was not considered. Frequency fluctuation 

is an important issue in modern power systems [10], and a 

thorough power quality analysis cannot disregard this point. 

As far as harmonic detection is concerned, frequency 

fluctuation is of paramount importance since it results in a 

non-coherent sampling of the waveform. As a consequence, 

the harmonic amplitude is attenuated by the frequency-domain 

main lobe of the window used against spectral leakage. Thus, 

frequency instability results in a decreased probability of 

detection of each harmonic. Therefore, a thorough 

investigation of harmonic detection probability should include 

both the effects of additive noise and frequency instability. 

Such effects are strongly dependent on the specific window 

used against leakage [11]-[12]. 

In this paper, the main novelty with respect to [11]-[12] is 

given by the adopted statistical model for the frequency 

fluctuation. In fact, a more realistic Gaussian distribution for 

the harmonic frequencies is considered instead of the simple 

uniform distribution assumed in [11]-[12].More specifically, 

the paper is organized as follows. First, previously obtained 

results are recalled and summarized, concerning in particular 

the DFT and simplified frequency-domain model of the 

selected window against spectral leakage. Second, the 

frequency fluctuation is modeled as a Gaussian random 

variable, and the corresponding probability density function of 

the measured spectral line is derived in closed form. Third, the 

general results concerning detection probability and false 

alarm probability are recalled, and the specific results 

obtained through the Gaussian assumption are used to obtain 

the detection probability including both additive noise and 

frequency fluctuation effects. Finally, numerical simulations 

are presented to validate the analytical results derived in the 

paper. 

 

 

BACKGROUND AND PROBLEM STATEMENT 

Power system harmonics can be measured through digital 

techniques based on A/D conversion of voltage and current 

waveforms, and time-to-frequency transformation through the 

DFT [3], [5]-[12], leading to spectral lines whose amplitude at 

proper frequency bins represents the magnitude of the 

measured harmonics. 

As far as frequency fluctuation is considered, the fundamental 

frequency of voltage/current waveforms is typically affected 

by random instability. It means that by repeating the 

measurement process, slightly different values of the 

waveforms fundamental frequency must be expected. Such 

frequency instability is of course proportionally emphasized 

for harmonic components. When the DFT is applied, the lack 

of synchronism between the frequency of the waveform 

sinusoidal components and the sampling frequency (i.e., non-

coherent sampling) will result in increased uncertainty in the 

amplitude measurements [11]-[12]. Moreover, additive noise 
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must be included as a source of uncertainty. In fact, 

voltage/current waveforms are always affected by additive 

noise which propagates through A/D conversion and DFT 

transformation, resulting in noisy spectral lines. Of course the 

frequency-domain impact of additive noise is larger for lower 

amplitude harmonics. DFT effects of additive noise have been 

already investigated in many previous papers (e.g., [3], [6], 

[13]-[16]). 

The time-domain voltage waveform is modelled as a sum of N 

harmonically related sine waves and zero-mean white 

Gaussian noise: 

 

(1) 

A similar expression holds for the current waveform. 

After A/D conversion of (1) with sampling frequency , and 

time window w(t)(  samples in length) against spectral 

leakage [5]-[6], the DFT transform provides the estimates of 

the complex Fourier coefficients: 

, 

(2) 

where NPSG is the Normalized Peak Signal Gain of the 

selected window (see Tab. 1). The frequency index n is related 

to the frequency index h in (1) by , where 

 is the DFT frequency resolution. Under non-

coherent sampling, the relation  is intended as 

an approximate relation where n is the index such that  

is the discrete frequency closest to . 

In the following, the subscripts n and h will be dropped since 

the derivations hold for any frequency index. 

 

 

FREQUENCY FLUCTUATION AS A GAUSSIAN 

RANDOM VARIABLE 

In case of non-coherent sampling condition, the spectral-line 

magnitude of a harmonic component with frequency f is 

weighted by the Fourier transform of the time window  

used in (2) against spectral leakage. An approximate 

methodology was introduced in [11]-[12], consisting in the 

approximation of the frequency-domain behavior of each 

specific window by a parabolic function obtained by setting 

the constraint provided by the window Scallop Loss (SL) (see 

Fig. 1), i.e., the maximum attenuation introduced by the 

window at the edges  of each DFT bin [5]. From Fig. 

1, assuming the n-th DFT frequency bin as the origin of the 

frequency axis, the attenuation introduced by the window on a 

waveform spectral line can be readily obtained [12]: 

 

Table 1: Some figures of merit of three common windows. 

 

Window NPSG ENBW SL [dB] SL 

Rect. 1 1 3.92 0.637 

Hann 0.50 1.50 1.42 0.849 

Blackman-Harris min. 4 term 0.36 2 0.83 0.909 

 

 

 

 
 

Figure 1: Spectral line with Gaussian frequency distribution 

and magnitude weighted by the frequency-domain window. 

 

 

 

(3) 

Such attenuation is applied to the actual amplitude V of each 

sinusoidal component in (1). Therefore, the measured 

amplitude of each sinusoidal component can be written: 

 

(4) 

where V denotes the non-weighted frequency-centered spectral 

line. 

In this paper the frequency f is modeled as a zero-mean 

Gaussian random variable (RV) centered on the DFT 

frequency bin and with standard deviation  such that 

the distribution can be neglected outside the frequency bin , 

i.e., (see Fig. 1). The probability density function 

(PDF) of y can be readily evaluated by resorting to the theorem 

on the transformation of RV [17]-[19]. Indeed, for a given y, 

from (3) the corresponding frequency (positive root) can be 

readily obtained: 

 

(5) 

The theorem on transformation of RV requires the evaluation 

of the magnitude of the first derivative of (3) at the frequency 

in (5): 

 

(6) 

Notice that by considering the negative root of (3) (i.e., (5) 

with negative sign), the same result (6) would be obtained. 

Therefore, from the theorem on transformation of RV we 

obtain that the PDF of y is given by two times the PDF of f 

(i.e., the Gaussian PDF) evaluated in (5) and divided by (6): 

 

(7) 

Finally, by taking into account (4), the PDF of the measured 

harmonic amplitude is given by [17]: 
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(8) 

 

 

DETECTION PROBABILITY AS A FUNCTION OF 

ADDITIVE NOISE AND FREQUENCY FLUCTUATION 

Additive noise n(t) in (1) results in a random behavior of the 

DFT coefficients  in (2). The real and the imaginary parts of 

each  can be approximated as a Gaussian RV with unbiased 

mean value (i.e., the deterministic noise-free values), and 

variance [3], [6] 

 

(9) 

where ENBW is the equivalent noise bandwidth of the 

selected window w(t), and  is the variance of the input noise 

n(t). 

By defining a threshold level α, the false alarm probability is 

defined as the probability that an only-noise spectral line is 

larger than α. In [12] it was shown that the false alarm 

probability is given by 

 

(10) 

The detection probability is defined as the probability that a 

signal spectral line is greater than the threshold. In [12] it was 

shown that the detection probability is given by 

 

(11) 

where Q1 is the Marcum Q function [20].By solving (10) with 

respect to α and substituting into (11) we obtain [12] 

 

(12) 

Therefore, for a given signal-to-noise ratio , eq. (12) 

provides the detection probability as a function of the 

accepted false alarm probability. 

The measured amplitude of a harmonic spectral line is 

affected by both additive noise and frequency fluctuation. 

Therefore, the detection probability for a given threshold level 

α must be obtained from the total probability theorem by 

combining (11) (representing only the noise contribution for a 

given harmonic amplitude M) and (8) (representing the 

frequency fluctuation contribution) [17]: 

 

 

(13) 

and by taking into account (4) we obtain: 

 

(14) 

where 

 

(15) 

is the harmonic signal-to-noise ratio. 

Finally, by taking into account (12), the detection probability 

can be expressed as a function of the false alarm probability as 

 

(16) 

where  is given by (7). 

 

 

NUMERICAL VALIDATION 

Numerical validation of the analytical result (16) was 

performed by simulating the whole measurement process. 

According to (1), a voltage waveform consisting of three 

harmonic components was selected such that and 

. The harmonic amplitudes were selected as 

 Phase angles were selected at 

random. Sampling was performed such that 10 periods of the 

fundamental component were acquired, i.e., a 200 ms 

measurement window were taken. The selection of the number 

of samples  defines the corresponding sampling frequency. 

By assuming  the corresponding sampling frequency 

was , and the related frequency resolution was 

 A repeated run analysis (  runs to estimate each 

average value) was performed by assuming  taking random 

values with Gaussian distribution centered on the nominal 

frequency 50 Hz. Notice that the standard deviation of the 

fundamental frequency is multiplied by the harmonic order 

when a harmonic component is considered. In the following, 

analytical results were validated for the fifth harmonic. 

Therefore, by denoting as  the standard deviation of the fifth 

harmonic, the corresponding standard deviation of the 

fundamental is . Two different windows against spectral 

leakage were used, i.e., the rectangular and the minimum 4-

term Blackman-Harris windows (see Tab. 1), corresponding to 

substantially different values of the parameters ENBW and SL. 

Figure 2 shows the detection probability of the fifth harmonic 

as a function of the accepted false alarm probability, for the 

two windows mentioned above. Dashed lines correspond to 

numerical simulations, whereas solid lines correspond to the 

analytical result (16). The signal-to-noise ratio (15) was equal 

to 5, and the standard deviation of the harmonic frequency 

. Agreement between numerical and analytical 

results is good. Blackman-Harris window provides a higher 

detection probability than the rectangular window. Figure 3 

differs from Figure 2 in the standard deviation of frequency, 

i.e., . Comparison between the two figures shows 

that by increasing the frequency fluctuation the difference 

between the detection probability of the two windows 

increases. This result can be explained by considering that the 

two windows have very different behavior near the frequency 

bin edges. 
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Figure 2: Detection probability of the fifth harmonic as a 

function of the false alarm probability. Signal-to-noise ratio is 

5, and standard deviation of frequency is 1 Hz. Two windows 

are compared, i.e., rectangular and minimum 4-term 

Blackman-Harris windows. 

 

 
 

Figure 3: Same as Figure 2, but with standard deviation of 

frequency equal to 1.25 Hz instead of 1 Hz. 

 

 

Figures 4 and 5 are similar to 2 and 3, apart from a lower value 

of signal-to-noise ratio equal to 4. The weight of noise is larger 

in this case, and therefore the different behavior of the two 

windows is less apparent, i.e., the curves corresponding to the 

two windows are closer each other with respect to Figures 2 

and 3. Moreover, detection probabilities are lower than in 

Figures 2 and 3 because of higher noise level. 

 

 
 

Figure 4: Detection probability of the fifth harmonic as a 

function of the false alarm probability. Signal-to-noise ratio is 

4, and standard deviation of frequency is 1 Hz. Two windows 

are compared, i.e., rectangular and minimum 4-term 

Blackman-Harris windows. 

 

 
 

Figure 5: Same as Figure 4, but with standard deviation of 

frequency equal to 1.25 Hz instead of 1 Hz. 

 

 

Finally, Figures 6 and 7 are related to even lower value of 

signal-to-noise ratio equal to 3. The difference between the two 

windows is even less apparent. In fact, in this case the 

deterministic behavior of the two windows, i.e., the different 

frequency-domain main lobe, is masked by the high level input 

noise. 

 

 

CONCLUSION 

Detection probability of power system harmonics affected by 

frequency fluctuation with Gaussian distribution has been 

investigated for different windows and different additive noise 

levels. It was shown that the frequency-domain shape of the 

main lobe of the selected window plays a crucial role as the 

noise level decreases. On the contrary, as the noise level 

increases, the considered windows provide a similar behavior 
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with respect to detection capability, especially when a low 

false alarm probability is required. 

 

 
 

Figure 6: Detection probability of the fifth harmonic as a 

function of the false alarm probability. Signal-to-noise ratio is 

3, and standard deviation of frequency is 1 Hz. 

 

 
 

Figure 7: Same as Figure 6, but with standard deviation of 

frequency equal to 1.25 Hz instead of 1 Hz. 
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