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Abstract. Landslides are exceptional natural hazards that can generate extensive damage to
structures and infrastructures causing a large number of casualties. A particularly critical
condition occurs when the landslide impinges in water reservoirs generating high waves. This
work proposes a numerical tool to simulate the macroscopic behavior of a propagating land-
slide. The Particle Finite Element Method (PFEM) is here used and adapted to the specific
case of landslide runout. The Lagrangian Navier-Stokes equations of incompressible fluids are
used to describe the macroscopic landslide behavior. A rigid-visco-plastic law with a pressure
dependent threshold, typical of a non-Newtonian, Bingham-like fluid, is used to characterize the
constitutive behavior of the flowing material. Special attention is devoted to the definition of
ad-hoc pressure-dependent slip boundary conditions at the interface between the flowing mass
and the basal surface to better represent the real landslide-slope interaction. The proposed ap-
proach has been validated against numerical benchmarks and small scale experimental tests,
showing a good agreement with the physical measurements. Real case scenarios have also
been considered. 3D geometries of critical sites, where landslides have occurred, have been
reconstructed allowing for the simulation of large scale real landslide runouts. Results are
compared with post-event images and measurements, showing the accuracy and the capability
of the method.
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1 INTRODUCTION

Catastrophic landslides impinging into water reservoirs may generate impulsive waves whose
propagation can cause considerable damages. Instability of a slope can be triggered by natural
events (erosion, earthquakes, intense rainfalls) or by human activities (deforestation, construc-
tion). Once initiated, a landslide can run along a slope with different velocities and cover
long distances, depending also on the slope morphology. The prediction of landslides velocity,
runout distance and traveling path is useful for preventing and mitigating the consequences of
these events.Consequently, the interest for numerical tools capable to simulate landslides with
potentially long run-out distance, including their interaction with water basins, is continuously
growing.

Recent developments in the simulation techniques for coupled problems have led to efficient
analysis procedures allowing for the accurate reproduction of landslide-reservoir interactions
(see for example [1, 2]). The numerical analysis of these events requires capabilities for tracking
interfaces and free surfaces undergoing large displacements, and accounting for the mixing of
different constituents, for complex constitutive behaviors and for multi-physics processes. In
this work, a recently developed Lagrangian finite element approach [3, 4, 5], formulated in the
spirit of the Particle Finite Element Method (PFEM), is here reconsidered and adapted to the
specific case of landslide-reservoir interaction. The PFEM was originally developed [5, 6, 7]
for solving problems involving free surfaces fluid flows and fluid-structure interaction. The
Lagrangian nature of the approach allows for a natural treatment of free surfaces undergoing
large displacements and of fast evolving interfaces, making the method particularly suitable
for the simulation of landslide phenomena and of landslide-water interaction problems, which
are dominated by fast propagating waves and interfaces. Due to the excessive distortion of the
mesh, typical of Lagrangian approaches for fluids, a continuous remeshing, based on a fast 3D
Delaunay triangulation, is implemented. A 3D version of the alpha-shape technique [5] is used
to define the position and the evolution of the free-surfaces. New slip boundary conditions of
Navier type have been formulated to model the interaction between the sliding material and the
basal surface. The PFEM formulation has been modified to incorporate these new conditions.

2 GOVERNING EQUATIONS

The running landslide material is assumed to behave as a rigid-viscoplastic fluid. As a con-
sequence, both landslide and water motions are governed by Navier-Stokes equations (here
written in an Arbitrary Lagrangian-Eulerian framework [8]):

ρ

(
∂u

∂t
+ (c · ∇x)u

)
= ∇x · σ + ρb in Ωt × (0, T )

∇x · u = 0 in Ωt × (0, T )

(1)

where ∇x is the gradient spatial operator computed with respect to the current configuration,
σ is the Cauchy stress tensor, ρ is the density and and b are the external body forces. The
convective velocity c is defined as:

c = u− r (2)

u being the velocity of the fluid and r the mesh velocity. In general, an additional equation
governing the evolution of the mesh r is necessary. The standard Eulerian description of the
equation of motion can be recovered when r = 0 (i.e. c = u). Conversely, the Lagrangian
description is obtained with r = u (i.e. c = 0). As a consequence, in the Eulerian approach
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the mesh is fixed, while in the Lagrangian one the mesh moves with the velocity of the fluid
particles.

Equations (1) need be supplemented with proper initial and boundary conditions. The bound-
ary ∂Ωt is partitioned into three non-overlapping subsets ∂Ωt = ΓDt ∪ ΓNt ∪ ΓSt . On ΓDt and ΓNt
standard Dirichlet and Neumann boundary conditions are imposed, while on ΓSt slip boundary
conditions are considered. On ΓDt Dirichlet boundary conditions are imposed on velocities and
on ΓNt Neumann boundary conditions are imposed on surface tractions:

u(x, t) = ū(x, t) on ΓDt

σ(x, t) · n = h(x, t) on ΓNt
(3)

where ū(x, t) and h(x, t) are assigned functions and n is the outward normal to the boundary.

3 CONSTITUTIVE LAW

Both the landslide and the reservoir water are modeled as viscous fluids. The Cauchy
stress tensor σ = σ(x, t) is decomposed into its hydrostatic p and deviatoric τ components
as σ = −pI + τ where I the identity tensor. Water is assumed to be a Newtonian isotropic
incompressible fluid so that the deviatoric stress τ can be directly related to the symmetric part
of the velocity gradient:

τ =
1

2
µ
(
∇u +∇uT

)
(4)

where µ is the dynamic viscosity.
Unlike in standard Navier-Stokes formulations, the landslide material is assumed to obey

a regularized elastic-viscoplastic non-Newtonian, Bingham-like constitutive model. When ex-
ternal actions trigger the landslide motion and the yield limit is exceeded, large viscoplastic
deformations take place and the running landslide behaves as a viscoplastic Bingham fluid. In
the assumed model the deviatoric stress follows again the relation (4), but the dynamic viscosity
µ is replaced by the apparent viscosity µ̃ defined as:

µ̃ = µ+
p tan(ϕ)

|γ̇|
(
1− e−n|γ̇|

)
(5)

where ϕ is the friction angle and |γ̇| represents a norm of the symmetric part of the velocity
gradient. The exponential term in (5) has only a regularization purpose [2, 9], and does not have
a constitutive interpretation. The constitutive law expressed by equation (5) can be interpreted
as a viscoplastic behavior with a Drucker-Prager type yield criterion. A detailed description of
the derivation of this model can be found in [10].

4 SLIP CONDITIONS

Along the boundary ΓSt , Navier type slip boundary conditions with a pressure dependent
threshold are enforced:

uslip = −β t

‖t‖
〈‖t‖ − p tanϕbasal〉 (6)

where uslip is the velocity at the interface and t the traction force defined as (see also Figure 1
for a graphical representation):

t = (I− n⊗ n) (σn) (7)
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being β = hslip/µ a parameter, having the dimension of a length over a viscosity, characterizing
the basal interface, hslip is the slip length for an ideal Couette flow with no threshold (ϕbasal = 0)
and ϕbasal is the friction angle of the basal interface.

Figure 1: Slip velocity profile and basal tangential traction.

5 DISCRETIZATION AND NUMERICAL TECHNIQUE

Slip boundary conditions are difficult to enforce in a fully Lagrangian framework, in which
nodes on the basal surface move according to their own velocity, but at the same time, in view
of the PFEM remeshing strategy, have to define the position of the boundary. To overcome
this difficulty, all nodes in the mesh are treated as Lagrangian (i.e. c = 0 in eq. 1) except
those on ΓS (where slip conditions are imposed), which are treated as Eulerian (i.e. c = u)
and therefore remain fixed in their initial position. This special treatment gives rise to a mixed
Lagrangian-Eulerian formulation, where some nodes are Lagrangian and others are Eulerian.

A classical Galerkin Finite Element procedure is used to discretize the problem in space with
linear interpolation functions for both pressure and velocity. The following semidiscretized
form is obtained:

MU̇ + (K + Kslip + Kc)U + DTP = B (8)
DU = 0 (9)

where U and P contain the nodal values of velocity and pressure respectively, M is the mass
matrix, K is the matrix of viscoplastic coefficients, D is the discretization of the divergence
operator, B is the vector of body forces and boundary tractions (see [3] for the definition of
these matrices). Kc represents the discretization of the convective term on the slip boundary
and Kslip is the discretization of the integral slip term. The contribution to matrices Kc and
Kslip by all elements with no nodes on ΓS is zero. A detailed description of these matrices can
be found [10].

Introducing now a backward Euler integration scheme for the time integration, the final fully
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Figure 2: Cougar Hill. Finite element mesh used in the simulation.

discretized nonlinear problem writes:(
M

∆t
+ K + Kslip + Kc

)
Un+1 + DTPn+1 = Bn+1 +

M

∆t
Un (10)

DUn+1 = 0 (11)

The Lagrangian PFEM is here used to solve the differential problem (10-11). In the spirit of
the Particle Finite Element Method, to avoid excessive mesh distortion due to the Lagrangian
nature of the equations, the domain is frequently remeshed. An index of the element distortion
is used to check whether the mesh should be regenerated or not. When a new mesh has to
be created, a Delaunay tessellation technique is used to redefine the element connectivities
starting from the current nodal positions. Moreover, an ”alpha shape” technique is introduced
to identify the free-surfaces and the interacting surfaces between water and landslide. Details
on the numerical procedure can be found in [2, 3, 4, 5].

6 NUMERICAL EXAMPLES

6.1 Cougar Hill Landslide

The real event considered in this test case took place on Rocky Mountain in west Canada
in 1992 [11]. Approximately 200 000 m3 of debris started to flow from a 100 m high dump;
the material stopped to flow after about 700 meters. The dump slope angle was estimated to
be 37◦-38◦. According to [11], the debris material was mainly sandy gravel and the foundation
was composed by sand and gravel colluvium. The material parameters can be found in Table
1. Density and friction angles are provided in [11] while viscosity and slip length are estimated
through back analysis.

Numerical results on the same example as well as some interesting discussions can be found
in [12, 1, 13]. The 3D CAD model of the terrain (kindly provided by prof. M. Pastor) is plotted
in figure 2. For the numerical analysis, a finite element mesh of 106046 nodes has been used
with a fixed time step of 5 · 10−3 seconds. The real time simulated in the analysis is 100 s.

Results are shown in Figure 3, where contour plots of the velocity at different time instants
are plotted, and are in good agreement with results of other simulations available in the liter-
ature. Moreover, in Figure 4 the final deposit obtained with the present approach is compared
with the result of the post-failure geotechnical investigations proposed in [11].
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Figure 3: Cougar Hill. Velocity contour plots at t=0, 5, 20, 30, 70, 110 seconds.
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ρ 1.9 103 Kg/m3

φ 32◦

φbasal 28◦

µ0 0.01 Pa s
hslip 4 m

Table 1: Cougar Hill. Material parameters.

Figure 4: Cougar Hill. Comparison of the final deposit.

7 Vajont Landslide

The Vajont valley is located in the western part of Friuli Venezia Giulia region, in Italy. The
topographic boundaries of the Vajont valley are the S. Osvaldo pass on the east, the Tóc mount
on the south, the SADE dam on the west and the mount Borga on the north. The valley is
oriented east-west and was formed as the result of the erosion of an ancient glacier. The two
main waterways are the Vajont stream which gives the name to the valley and its major tributary,
the stream Mesazzo (see figure 7).

Figure 5: Aerial view of the Vajont and Piave valleis.

At about 10 pm of 9th October 1963, approximately 270 millions cubic meters of material
slid from the mount Toc into the dam reservoir, generating a huge wave that overtopped the
dam destroying the town of Longarone in the Piave valley, downstream the dam. The landslide
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produced a wave that has been estimated to have reached a height of about 105 meters above the
the dam crest. Due to the irregular terrain topography, the wave did not reach the same elevation
around the reservoir, as could be determined observing the contour of destroyed vegetation. In
the Piave valley, the effects were much more destructive: the city of Longarone was almost
completely destroyed, only a portion of the city at the north was not affected; the same happened
for the surrounding villages of Villanova and Fa. Over 2000 people were killed and this is
considered to have been one of the most disastrous landslides occurred in the XX century.

(a) hslip = 5m (b) hslip = 500m

Figure 6: Vajont Slide. Effect of the slip boundary conditions.

The previously described numerical technique is here used for the simulation of the complete
sequence of events: landslide runout, interaction with the water reservoir and generation of the
overtopping wave. Other numerical simulations of this tragedy have been reported in [14, 15].
Table 2 summarizes the parameters used in the simulation [14].

terrain water
ρ 2.4 103 Kg/m3 103 Kg/m3

φ 26◦ -
φbasal 5◦ -
µ0 0.1 Pa s 0.001 Pa s
hslip 500 m -

Table 2: Vajont Landslide. Material parameters.

For the numerical analysis, a finite element mesh of 78137 nodes has been used with a fixed
time step of 10−2 seconds. The effect of the slip boundary conditions can be appreciated in
Figure 6, where two velocity profiles are plotted for varying slip length. As expected, it can
be observed that a larger value of the slip length leads to a more homogeneous velocity profile,
which is consistent with the almost rigid motion of the sliding mass observed in reality.

Figure 8 shows snapshots of the numerical simulation at different time instants while fig-
ure 7 shows a comparison between numerical results and post-event surveys of the maximum
elevation reached by the wave on the right bank. A satisfactory agreement can be noted, with
discrepancies mainly due to the coarse adopted discretization. The estimated overtopping height
is of 100 meters, which closely matches the observed one.
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Figure 7: Vajont Slide. Maximum height of the wave reached in the right bank.

8 CONCLUSIONS

In the present work, a Lagrangian finite element method has been presented for the numerical
simulation of landslide-water interaction. The landslide has been modeled as a viscoplastic non-
Newtonian frictional fluid while water as a standard Newtonian fluid. Slip boundary conditions
have been introduced between the landslide and the slope to better represent the real behavior
of the basal interface. To validate the proposed approach, the proposed approach has been
applied to two real landslides. The second example in particular concerned the simulation of a
complex event, consisting of a landslide impinging in a water reservoir and generating a wave
overtopping an existing concrete dam. Good accuracy has been obtained in the simulations.
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