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Abstract. We present an optimal sensor placement methodology for structural health moni-
toring (SHM) purposes, relying on a Bayesian experimental design approach. The unknown
structural properties, e.g. the residual strength and stiffness, are inferred from data collected
through a network of sensors, whose architecture, i.e., type and position may largely affect the
accuracy of the monitoring system. In tackling this issue, an optimal network configuration is
herein sought by maximizing the expected information gain between prior and posterior prob-
ability distributions of the parameters to be estimated. Since the objective function linked to
the network topology cannot be analytically computed, a numerical approximation is provided
by means of a Monte Carlo analysis, wherein each realization is obtained via finite element
modeling. Since the computational burden linked to this procedure often grows infeasible, a
Polynomial Chaos Expansion (PCE) approach is adopted for accelerating the computation of
the forward problem. The analysis expands over joint samples covering both structural state
and design variables, i.e., sensor locations. Via increase of the number of deployed sensors
in the network, the optimization procedure soon turns computationally costly due to the curse
of dimensionality. To this end, a stochastic optimization method is adopted for accelerating
the convergence of the optimization process and thereby the damage detection capability of
the SHM system. The proposed method is applied to thin flexible structures, and the resulting
optimal sensor configuration is shown. The effects of the number of training samples, the poly-
nomial degree of the approximation expansion and the optimization settings are also discussed.
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1 INTRODUCTION

Let us consider a structural system, monitored through a network of sensors. The measured

response of the system subjected to a set of given actions is collected in the vector y € R™,
where entries can be either displacements or rotations. Here ny is the number of measurements,
i.e., the number of sensors to be deployed multiplied by the number of physical quantities that
can be measured by each sensor.
Let us define a set of mechanical properties like Young modulus, stiffness, modal parameters,
collected in the vector 8 € R"¢, to be identified using the measured data y. The capability of a
SHM system to detect and identify the said mechanical properties is basically affected by two
aspects [[1]: the mathematical tools exploited to estimate the parameters; and the experimental
setting, i.e., the physical quantities to be measured and the procedure to measure them. Con-
sidering the experimental design alone, the estimation capability is affected by several aspect,
including:

e sensor characteristics such as accuracy, resolution, sensitivity, noise, etc.;
e number of sensors;
e orientation and deployment of sensors;

which should be appropriately set to ensure high accuracy at a reduced cost.

Optimal sensor placement (OSP) forms a fundamental task for real SHM applications, as it can
allow decreasing the cost and complexity of the SHM system. As summarized in [2, 3} 4],
among the most commonly adopted OSP methods we find: the effective independence method
(EFI); the driving-point residue method (EFI-DPR); the kinetic energy method (KEM); the
modified variance method (MVM); methods based on topology optimization [S]. All afore-
mentioned methods do not take into account that measurements are inevitably corrupted with
errors, and hence they should be treated as stochastic quantities. The main goal of the present
work is to determine the optimal configuration of sensors, that guarantees the best estimation
of mechanical parameters or, in other words, the maximum amount of inferred information,
under noise corrupted variables. The general purpose framework proposed in [6] is applied to
the OSP problem, in order to find the sensor configuration guaranteeing a maximal amount of
information, as already proposed in [/] and [8]].

The remainders of the paper is organized as follows: in Section 2, the main theoretical aspects
of the adopted methodology, such as the problem settings, the numerical solution of the prob-
lem and the optimization scheme, are described. In section 3, the framework is implemented
on a simple benchmark problem consisting in a flexible simply supported plate. Finally, some
concluding remarks and possible future developments are friefly summarized in Section 4.

2 BAYESIAN EXPERIMENTAL DESIGN FOR OPTIMAL SENSOR PLACEMENT
2.1 Problem settings

Moving from a space discretized system, the position of the sensors is defined through an
appropriate design variable vector d € R"<, that can be set alternatively as:

e vector of spatial nodal coordinates

d: {xl yl <1 61 m”sens ynsens Znsens 6nsens}T (1)
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where 1 < Ngens < NMpodes 1S the number of sensors to be deployed; variable §; =
{u;, vy, wl-}T identifies the orientation of the 7 — th sensor; the spatial coordinates x;, y;, z;
are defined in the discrete domain of all the nodes of the Finite Element (FE) model;

e vector of nodal labels
d = {dl 61 c dnsens 6nsens }T (2)

with d; designating the FE model node where the i — th sensor is placed.

The measured quantities y are related to the model output u € R"redesdof 14, denoting the
number of degrees of freedom of each node associated to the FE model, through the relation:

y=Lu+e (3)

where € € R is the model prediction error, accounting for the modelling and measurement
errors, and is therefore related to the type of sensors deployed. p. = p(€) is defined as the prob-
ability density function associated with the model prediction error. L. € R™sens*nodesMdof g g
configuration matrix, linking the measurements y to the model response u, defined as a boolean
matrix, with 1 or O entries corresponding respectively to the measured and non-measured quan-
tities. L depends both on the sensors positions, i.e., the nodes in which the sensors are placed,
and the direction of the measured displacement or accelerations. Therefore, L. = L(d) is func-
tion of the experimental variable d.

Since the structure is modeled through a FE model, the model response u depends on the mea-
chanical properties of the system, according to:

u=K(0)'F 4)

where K € R"nodes™dof XMnodes™dof ig the stiffness matrix associated with the discretized structure
and F € R"nedes™dof g the load vector. The load is assumed implemented as a quasi-static way
and therefore any dynamic effect on the response is disregarded.

Egs. (3) and () lead to:
y=G(d,0) +e (5)

where:
G(d, 0) = L(d)K(G)_lF (6)

is the forward model operator R™ x R™ — R™ that maps the design variable and the parame-
ters to be estimated onto the response domain.

The main goal of the OSP problem is to determine the optimal sensor configuration d*, for the
Bayesian inference of the mechanical parameters 8. Here we use the general framework pro-
posed in [6} 9], which is applicable to any Bayesian inference problem; @ and y are therefore
treated as random variables, with their appropriate probability densities, accounting for their
respective uncertainties.

Bayes’ theorem allows to compute the conditional probability density of the parameters to be
inferred, given the acquired data, i.e., the measurements. In the case of experimental design,
the Bayes’ rule can be specialized, taking also into account the design variable, as:

_ p(y|6,d)p(6]d)
PO =" )

where p(@|y, d) is the posterior distribution (probability density of 6, given y and d), p(y|@,d)
is the likelihood, p(@|d) is the prior distribution and p(y|d) is the evidence. In the following, the

(7)

3
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evidence is assumed to be independent of the design variable, therefore p(0|d) = p(0). Hence,
the prior knowledge of @ is not affected by the experimental procedure.

Following [10], the optimal experimental design in a Bayesian sense can be obtained by maxi-
mizing the following expression:

ma / / 6, yld)d0dy ®)

where Y and © respectively designate the supports of p(y|d) and p(@). Within a decision theory
formulation, U(d,y, @) is a utility function defined in (D, Y, ®) — R that takes into account
the usefulness of the experimental decision d, given a particular value of 8 and y. The optimal
experimental design aims to maximize the expected utility function specified by Eq. (8). As
summarized in [11], the choice of the utility function is strictly related to the type of problem,
whether it is a prediction or an estimation one. As suggested in [/]], the most common utility
function for the inference problems is the expected Kullbach-Leibler divergence (also called
expected gain in Shannon information [12] or relative entropy) between the posterior and the
prior probability distributions [13]]:

D1 (p(6ly, d)]p(0 / / log 2193 9) 'y’ p(y. 0]d)dydo ©)

The rationale behind this choice relies on the concept that the optimal configuration should yield
the largest increase in information between the prior and the posterior.
Recasting Eq. (9) into the experimental design problem, the utility function becomes:

p(0ly,d)
p(6)

Remebering that 6 is a dummy variable and using Eq. , the optimization statement of Eq.

(8) becomes:
max / | vow.a) (<|y’>) Op(y|d)dy (an

Rearranging Eq. using Eq. (7)), we can rewrite the optimization problem as:
fi Y= ]
nd d* = arg max U(d)

U(d,y.0) = U(d,y) = /@ log p(Bly,d)dd (10)

_ (12)
such that T(d) = /y /@ {Infp(y. 61d)] — In[p(y|a)]}p(y. 1d)p(6)dBdy

where U(d) is the so-called expected information gain in 6.

2.2 Surrogate modeling

The optimization problem defined in Eq. (I2) is handled through Monte Carlo sampling as:

Nout

Noutz{ln y'6',d)] —In [p(y'|d)] } (13)

where N,,; represents the number of samples 0" to be drawn in the outer Monte Carlo sum.
The evidence computed at y¥) is approximated as:

p(y'|d) ~ Zp y'|6’,d (14)

’L
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The samples 8 and 6’ are drawn from the prior distribution p(8), which is chosen a priori. In
SHM applications, the main goal is to identify the mechanical properties of a damaged struc-
ture, and it is common to assume parameters 6 as drawn from a uniform distribution ¢/(©). In
reducing the associated computational cost, the same set of samples 6 is used for both the inner
and the outer sum, resulting in N;, = N,,;; the computational complexity is thus reduced from
O(NoutNin) to O(N,y:). For further details on the bias introduced by this assumption and on
the numerical approximation, the interested reader is referred to [6].

The term p(y|@, d) corresponds to the probability density of the measured data y, given a spe-
cific set of mechanical parameters @ and a specific sensor configuration d. Using Eq. (5), we
can conclude that:

Hence, via use of Eqgs. (6) and (I5), Eq. becomes:

U(d) ~ Nl Z {lﬂ [pe(€')] —In lNln ZWMG((L 0') + ¢ — G(d, 9j))] } =

out i=1

where K*/ = K(0"/). The samples €’ are drawn from the density distribution p,, that is chosen
once again a priori.

From a computational point of view, the most time-consuming part of the procedure is the eval-
uation of the system response through the model mapping G(d, 6) of Eq. @ Assuming that
we use the same batch of samples 0 for both sums, the Monte Carlo approximation would re-
quire N,,; evaluations of the system output, each one associated to a stiffness matrix inversions,
rendering the computation practically infeasable. In order to overcome this problem, in [6] the
adoption of a Polynomial Chaos Expansion (PCE) scheme has been proposed. Given an input
random vector with independent components x € R"x, described by a joint probability density
function fy, and an output random vector y calculated through a certain computational model
M, the PCE allows to build a map, or metamodel, relating the two spaces. Assuming that:

(16)

1 Rew , 1 Yo R A
= N 2 ] 70 | 2 pe LK - KR )

out i=1

Ely’] = [ M*(x)fi(x)dx < oo (17)

Dx

it is possible to define (see [[14]]):

y=M(x)= Y yatha(x) (18)

acNM

where ), are multivariate polynomials of order p orthonormal to fy, o € N™ is a multi-index
associated with v, and y,, € R are the corresponding coefficients. For practical purposes, the
sum is truncated to a sub-set of the multi-indeces o« € A € NM, according to:

Y2y P = MPER) = yath,(x) (19)

acA

PCE ;

where MPCF stands for the surrogate model, and y is the approximated response computed

through it.
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Recalling Eq. (5), the forward model maps the design variable and the parameters into the
measurement domain (D, ©) — Y as:

y = M(x) =G(d,0) (20)
As suggested in [6], the PCE is applied jointly as:
X = [ﬂ (21)

with x € R™ "™ In this way, it is not necessary to build a different PCE for each possible
design variable d, which would lead to a larger computational cost. In order to compute the
surrogate model, two sets of samples 8, and d; with k = 1,--- , Npcg are drawn from the
respective aforementioned probability densities; the output samples are then calculated through
the complete model y, = M(x;). Once the input and output populations have been built, the
truncated bases and the relative coefficients are computed through the Least Angle Regression
(LAR) algorithm, as specified in [[14} [15]. The accuracy of the surrogate model with respect
to the complete one is affected by both the population size Npcp and the poynomial degree
p; these settings should be chosen so as to minimize the leave-one-out (LOO) cross-validation
error, as defined in [[16]].

2.3 Optimization algorithm

The optimization statement summarized in Eq. is herein solved by applying the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [[17], which comprises a stochastic
search algorithm for numerical optimization of non-linear non-convex functions. The basic idea
is to sample the design variable d from a multivariate normal distribution, and produce a new
mutation of the generated population that is closer to the maximum of the function U (d).

The algorithm can be summarized as follows:

1. for each iteration, a population of design points d is sampled from the Normal multivariate
distribution d; ~ m + o N;(0,C) fori = 1,--- |\, where m € R™ is the mean vector,
o € R is the step size and C € R™*™ jg the covariance matrix;

2. m and C are updated through cumulation, in order the likelihood of the successive itera-
tions to be increased;

3. the previous steps are repeated until a certain tolerance on the function evaluation is at-
tained.

Further details on the algorithm can be found in [18]].

3 RESULTS

The method discussed in Section 2 is now applied to a simple SHM benchmark case; a
square plate, simply supported at four edges and subjected to a static force applied at its centre
point (see node 1 in Figure[I)). The structure is ideally subdivided into four zones and the aim
of the SHM system is the estimation of the Young modulus E;, j = 1,...,4, of each zone.
The sensors can be positioned at each node of the adopted 10x10 FE model and, for the sake
of simplicity, only the out-of-plane deflections are assumed to be measured. The structure
is discretized through conventional shell elements, with 6 degrees of freedom per node. The
mechanical behaviour of the material is supposed to be linear elastic.

Two cases are considered herein:
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Figure 1: Benchmark structural case.

(a) the position of the damaged zone is known, therefore the input variables of the PCE
surrogate model are summarized in vector:

x={Ey dy - dn,,.}" (22)

(b) the position of the damaged zone is unknown:

X = {E1 Ez Eg E4 dl dnsens}T (23)

Let us consider the simplest case: only one sensor is deployed. Figures [2]and [3]demonstrate the
contour plot of the objective function defined by Eq. computed on each node of the plate,
respectively related to cases (a) and (b). The parameters to be estimated, aggregated in vec-
tor 0, are sampled from a uniform distribution ¢ (0, E), where E is the Young modulus of the
undamaged material. The probability distribution of the model prediction error € is supposed
to be Gaussian A (0, 0?) with standard deviation ¢ = 107° m. In order to compute the PCE
coefficients and bases, the design variable d is sampled uniformly with coordinates defined over
the interval [0, 0.2], both along the width and the length of the plate.

The optimal configuration, i.e., maximizing the objective function, is determined at position
(x*,y*) = (0.08,0.12) for case (a), i.e., as expected near the zone in which the damage will
occur, see [3]. In case (b), the problem settings are perfectly symmetric and therefore the ob-
jective function as well: the optimal is determined in point (z*,y*) = (0.10,0.10). The figures
show the optimization paths obtained through the CMA-ES algorithm: each path corresponds
to a different initial condition, i.e., the four corner points, and the red circles identify the results
reached after 25 objective function evaluations. It is demonstrated that, for both cases, the re-
sults are stable with respect to the initialization settings and they correspond to the maximum
of the contour plot.

The accuracy of the optimization process is largely affected by the PCE approximation phase.
The error introduced by the PCE surrogate model with respect to the FE model can be measured
through the leave-one-out (LOO) error, as defined in [[16]]:

é (M(Xz) _ MPCE(Xz‘)>2

€LOO = T h / (Z (M(x") — ﬂy)2> (24)

=1
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Figure 2: Contour plot of the objective function 0(d) with one sensor for case (a) and CMA-ES optimization paths
(NPCE =10%, p =10, NMC = 5.10%).
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Figure 3: Contour plot of the objective function U(d) with one sensor for case (b) and CMA-ES optimization paths
(NPCE =10% p =10, NMC = 5.10%).

where [iy = % Zfil M (x?) is the sample mean of the set of quadrature points and h; is the 7**
component of the vector given by:

h = diag (A(ATA)'AT) (25)
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where A is the experimental matrix that contains the values of all the basis polynomials in the
experimental design points.

Figures [] and [5] report the LOO error as a function of the polynomial order p and the number
of samples N"”“F in a log-log plot. Figures show that, as expected, the error decreses as N7¢F
and p increase; we can point out that for increase beyond a certain value of N¥“F the error
trend remains basically stable.

10t w w ‘ 10t

—_—p=2 —_— =2

€LOO
€LOO

10 ' '
10! 102 10° 10* 10t 102 10° 10*
j\'17('E /V'I“('E

Figure 4: LOO error €100 associated to the PCE surro- Figure 5: LOO error €00 associated to the PCE surro-
gate model for case (a). gate model for case (b).

4 CONCLUSIONS

In the present paper, a new method has been proposed for optimal sensor placement in struc-
tural health monitoring applications, having supposed the measurements are noise-corrupted.
The method is adapted from the general framework proposed in [6] for the optimal design of
experiments; the procedure is coupled with a Covariance Matrix Adaptation Evolution Strategy
optimization scheme, which allows for determining the optimal sensor configuration, associated
with the maximum amount of information given by the measurements. In order to reduce the
computational cost linked to the multiple forward problem simulations required, a Polynomial
Chaos Expansion metamodeling scheme is adopted.

The method is herein applied to a simple benchmark problem of a simply supported plate un-
der bending loads. It has been demonstrated that the optimization algorithm is able to find the
optimal sensor configuration, further taking also into account measurement error. The method
proves successful and yielding a design of experiments corresponding to reduced approxima-
tion error.

Further developments will concern the application to more complex structures, with multiple
sensors configurations.
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