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Abstract 

In recent years, the development of portable platforms for performing fast and point-of-care analyses 

has drawn considerable attention for their wide variety of applications in life science. In this 

framework, tools combining magnetoresistive biosensors with magnetic markers have been widely 

studied in order to detect concentrations of specific molecules, demonstrating high sensitivity and 

ease of integration with conventional electronics. In this work, first, we develop a protocol for 

efficient hybridization of natural DNA; then, we show the detection of hybridization events involving 

natural DNA, namely genomic DNA extracted from the pathogenic bacterium Listeria 

monocytogenes, via a compact magnetic tunneling junction (MTJ)-based biosensing apparatus. The 

platform comprises dedicated portable electronics and microfluidic setups, enabling point-of-care 

biological assays. A sensitivity below the nM range is demonstrated. This work constitutes a step 

forward towards the development of portable lab-on-chip platforms, for the multiplexed detection of 

pathogenic health threats in food and food processing environment. 

 

Keywords 

Magnetic biosensor, Magnetic tunnelling junction, Magnetic bead, Genotyping, Listeria, Point-of-
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1. Introduction 

Waterborne and foodborne pathogens play a crucial role when dealing with health threats and public 

safety. Finding highly sensitive biological detection schemes, suitable for rapid and point-of-care 

assays, has therefore become an important technological challenge.  

In this context, several kinds of biosensors have been proposed [1]. In particular, genosensor, i.e. 

sensors capable of detecting nucleic acids, are considered to be extremely promising [2–4]. They are 

mainly based on the natural affinity of single strand DNA (ssDNA) to its complementary strand, 

allowing the detection of specific target genes. DNA microarrays represent a widely used, fast and 

low cost implementation of this concept, exploiting the immobilization of different DNA probes on 

the same substrate to achieve multiplexing. The use of nucleic acid as recognition elements ensures 

long-term stability, high temperature resistance, and ease of chemical modification after the initial 

synthesis. The detection of biomolecular recognition is then achieved via several methods. Among 

others, we mention electrochemical transduction [5–7], fluorescence [8–10], chemiluminescence 

[11,12], surface plasmon resonance [13] and magnetoresistive (MR) detection [14,15]. The latter 

technology combines extremely low noise, because of the absence of magnetic background in most 

biological environments, with very high sensitivity. The most widespread detection scheme employs 
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MR sensors combined with magnetic markers. Molecular recognition takes place between probe 

molecules, bound onto the sensor surface, and magnetically labeled target molecules, which bind 

specifically to the complementary probes. The magnetic stray field of the superparamagnetic labels 

in proximity to the sensor surface causes a change in the electrical resistance of the sensor, which is 

related to the concentration of the immobilized target molecules. Giant magnetoresistive (GMR) 

sensors arrays based on spin-valves have been successfully used to detect synthetic DNA 

hybridization events and protein interactions with concentrations in the femto- to zepto-molar range 

[15–17]. MTJ-based sensors have been also employed for detecting magnetic particles at low 

concentrations [18,19] and synthetic DNA hybridization events [20–23]. 

Together with their high sensitivity, the ease of integration with conventional electronics makes the 

MR sensors among the most promising candidates for the development of compact platforms able to 

perform point-of-care (POC) detection, thus enabling fast on-site (OS) screening for pathogens.  

One of the first works employing a MR sensor platform for the detection of magnetic nanoparticles 

was based on GMR sensors integrated in a disposable cartridge [24]. A MTJs array embedded in a 

microfluidic cartridge has been used for the detection of AMI bio-markers [25]. Two different MR 

handheld platforms, with portable electronics but without microfluidics, have been validated through 

synthetic DNA hybridization experiments [26] and washing-free immunoassays [27]. 

In this work, we accomplish a fundamental step towards the exploitation of MTJs based biosensors. 

We demonstrate the detection of natural DNA hybridization, in a real case of bacteria genotyping, 

utilizing a portable MTJ-based platform provided with electronic and microfluidic apparatus. One of 

the major issues, when dealing with natural DNA, is related to the length of the oligonucleotides 

(70/100-mer in our case), which leads to a reduced efficiency both in the hybridization and in the 

subsequent labelling, due to steric hindrance [28]. This problem was overcome by combining 

optimized hybridization and magnetic labelling protocols with highly sensitive MTJ-based 

biosensors. 

The paper is organized as follows. First, we demonstrate the magnetic detection of hybridization 

events of natural DNA extracted from Hepatitis E virus, Listeria monocytogenes and Salmonella 

typhimurium bacteria. Then, we validate our portable MTJ-based platform (Fig. 1), detecting the 

DNA of Listeria monocytogenes with a sensitivity below the nM range. This work paves the way to 

the deployment of lab-on-chip platforms based on MTJs for point-of-care investigation of biological 

pathogenic threats in agrifood environment. 

 

 

 

3 
 



2. Materials and Methods 

2.1 Sensor definition 

The sensor stacks consist of a CoFeB/MgO/CoFeB MTJ, where the magnetization of the bottom layer 

is pinned by a synthetic antiferromagnet [29]. The multilayers were grown on Si/SiO2 substrates by 

magnetron sputtering in an AJA Orion8 system with a base pressure of 2·10-9 Torr and an applied 

magnetic field of 300 Oe [21,30]. The whole deposited stack is reported hereafter (thickness in nm): 

Ta(5)/ Ru(18)/ Ta(3)/ Ir20Mn80(20)/ Co60Fe40(1.8)/ Ru(0.9)/ Co40Fe40B20(2.7)/ MgO(2.5)/ 

Co40Fe40B20(1.3)/ Ru(5)/ Ta(20). Co60Fe40 and MgO layers were deposited in RF mode while the 

remaining layers were grown in DC mode. 

After deposition, the stacks were processed with optical lithography and ion beam etching in order to 

obtain sensor chips featuring 12 MTJ sensors arrays (Fig. 1(c), Fig. 2(a)). The junction areas are 3 x 

40 µm2, with the shorter side parallel to the easy-axis of the bottom pinned layer. A 100 nm thick 

SiO2 layer was deposited for insulating purposes. Afterwards, the Cr(7)/ Au(300) contact layers were 

deposited by electron beam evaporation. The sensors arrays were then annealed at 310°C at a pressure 

of 10-6 Torr for 1 hour; this step was performed to enable the crystallization of the ferromagnetic 

layers, thus promoting coherent tunneling [31,32]. A SiO2(50)/Si3N4(100)/SiO2(70) trilayer was 

sputtered on the sensors for protecting them from the harsh biological environment. The sensor 

response to a magnetic field applied parallel to the shorter side of the junction area (Fig. 2(b)) is 

shown in Fig. 2(d), featuring a 45% MR ratio and a low-field sensitivity So = (Rμ0)−1(dR/dH) = 

13.6%/mT. The linearity and low hysteresis of the response curve is the result of both the shape 

anisotropy [33] and the superparamagnetic behaviour of the top free layer [34].  

 

2.2 Surface functionalization and hybridization 

The general scheme utilized for the assays is the “post-hybridization method” [35], in which the 

magnetic labeling takes place after the hybridization. 

First, the chips were coated with a functional copolymer (DMA-NAS-MAPS) [36] in order to provide 

active ester moieties suitable for immobilization of amino modified oligonucleotides and, at the same 

time, prevent non-specific adsorption of biological fluids components. Copoly(DMA-NAS-MAPS) 

has been extensively used as a functional coating in DNA microarrays [37–41] and various biosensing 

applications [22,42,43] for its favorable characteristics in terms of  simplicity of use, high probe 

binding capacity and excellent anti-fouling properties. The probe oligonucleotides (20 µM, from 

MWG Biotech AG Germany), complementary or uncorrelated to the target DNA strands and 

modified with an amino group for allowing the covalent binding to the polymer, were then spotted 

on the different sensors surface, so as to implement positive and control bioassays on the very same 
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chip. For this purpose, a non-contact microarray spotter SCENION sci-FLEXARRAYER S5 

assembled with an 80 μm nozzle was used. Spot volume of each drop, temperature and humidity were 

400 pL, 22°C and 50%, respectively, and the spotting buffer was a 150 mM phosphate buffer (pH 

8.5) with 0.01% sucrose monolaurate. Subsequently, the surface was incubated overnight with a 

blocking buffer (ethanolamine, 50 mM in a Tris/HCl buffer 0.1 M, 50° C), in order to prevent 

nonspecific binding during the hybridization step [22].  

Bacterial plasmids DNA, containing a highly conserved region representative of the four major 

genotypes of  Hepatitis E Virus (HEV) and L. monocytogenes hly (Listeriosin O encoding gene), was 

isolated from transformed E. coli overnight cultures. A NucleoSpin DNA purification kit (Macherey-

Nagel, Duren, Germany) was employed according to the manufacturer’s recommendations [44,45]. 

DNA target concentrations were checked by agarose gel electrophoresis and SYBR® Safe DNA gel 

staining (Invitrogen, Oregon, USA). 

Biotinylated target DNA was then amplified by means of PCR, and then incubated on the sample 

surface for enabling hybridization. The last process requires first the denaturation of the amplified 

DNA, i.e. the separation of the two single strands, at a temperature of 95° C, and then the 

hybridization at a temperature of 40° C, in order to ensure high specificity during the binding process.  

 

2.3 Microfluidic apparatus 

After DNA hybridization, the chip is inserted into an apparatus providing both fluidic and electrical 

access to the sensors for the detection experiments. The platform (Fig. 1(a)) comprises a disposable 

aluminum chip-holder, placed on a movable carrier in order to easily insert and remove the biochip. 

A click-on microfluidic Poly(methyl methacrylate) (PMMA) chamber is positioned on the top of the 

chip by means of a small micro-positioner (Fig. 1(c)). The chamber, designed in order to promote a 

laminar flow inside the channel and to ensure a reliable washing procedure during the experiment, 

has a 2.2 x 0.7 mm2 section. The large chamber width allows reducing the effect of the wall on the 

flow profile, while the reduced channel height assures an effective removal of the unbound beads 

from the surface of the chip. A Polydimethylsiloxane (PDMS) gasket is used to seal the chamber. The 

flow-rate is controlled by a syringe pump system connected to the lateral microfluidic channels with 

variable section and inclination, designed to avoid any flow turbulence (see Supplementary 

Information).  

The chip-holder is provided with a Peltier cell for temperature control, in order to enable the 

integration of further processes such as DNA hybridization (see Supplementary Information for 

preliminary experiments) or PCR inside the channel. 
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The electrical connection is provided through retractable tips embedded in the PMMA top cover (see 

the sketch of Fig. 1(b) and Supplementary Information. In order to apply an external magnetic field, 

a low-remanence compact electromagnet is used (see Supplementary Information), able to generate 

a uniform magnetic field on the whole chip area. 

 

 

2.4 Electronic setup and measurement configuration 

A portable electronic platform was developed and connected to the apparatus described above. The 

platform comprises a digital module combining a Field Programmable Gate Array (FPGA) and a 

Hard Processor System (HPS), which is used to control the Peltier cell, the syringe pump, the 

electromagnet and the front-end electronics (see Supplementary Information). Two generation 

channels featuring a 16-bit resistor ladder DAC are employed to force a current in the 

magnetoresistive sensor and, through an analog power amplifier, for driving the electromagnet. 

The voltage across the sensor is read and processed using a compact and low-noise lock-in amplifier 

[46]. A single acquisition chain has been implemented in order to simplify the architecture and limit 

power consumption. An input multiplexer selects one sensor at a time for the duration needed to 

perform low-pass filtering, i.e. about 1 s per sensor (configurable). Due to the limited number of 

sensors, the time required to complete an acquisition is well below the typical time of the bioassay, 

allowing a real-time monitoring of the experiment. After analog amplification and anti-aliasing 

filtering, the signal is converted with a 16-bit 1 Msps ADC. Then, demodulation and low-pass 

filtering are digitally performed on board and the measurement results are transferred to the PC. A 

dedicated software for the control of the platform was developed. 

The general scheme utilized for the detection is the following: first, the chip comprising 12 sensors 

is functionalized in order to have 6 sensors and 6 controls. After the hybridization with 

complementary target DNA, the chip is integrated in the microfluidic cell. Then, the magnetic 

markers (Micromod® Nanomag®-D, 250 nm diameter streptavidin coated magnetic beads (75–80% 

(w/w) magnetite in a matrix of dextran (40 kD)), are dispersed in phosphate buffer (PB)-Tween 

solution (~108 particles/µl) and injected into the microfluidic cell at a flow rate of 50 µl/min. The 

flow is then stopped in order to let the beads settle down and interact with the biotinylated DNA 

immobilized on the sensor surface, while recording the sensor signal. Finally, with the washing step, 

the unbound beads are flushed away. The optical images of the sensors before and after the 

experiment are presented in Fig. 2(c), showing the beads immobilized on top of the sensors, in the 

spotted regions. During the measurement, an external magnetic field is applied parallel to the sensing 

axis in order to magnetize the beads and bias the sensor in its most sensitive point [21] and the sensors 
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signal is acquired in real-time. The microfluidic cell prevents the liquid evaporation thus allowing for 

a reliable monitoring of the different steps: sedimentation, hybridization and washing. In order to 

enhance the sensitivity and minimize the 1/f noise figure, a double modulation technique is used, i.e. 

both the junction voltage and the external magnetic field are modulated [21] at f1=1.1 kHz and f2 = 

39 Hz, respectively. The magnetic signal, eventually depending on the concentration of beads above 

the sensor, appears in the output voltage (Vout) as a component at the frequency (f1 ± f2), which is then 

extracted via the lock-in amplifier. 

 

 

 

3. Results 

3.1 Hybridization and labelling of natural DNA 

Before employing the magnetic biosensing platform, standard fluorescence-based assays for testing 

the DNA hybridization efficiency, as well as for checking the non-specific binding of target DNA 

with non-complementary DNA probe, were performed. 

Fig. 3 shows the results of three different fluorescence assays for Listeria (panel (a)), HEV (panel (b)) 

and Salmonella (panel (c)). In each assay, the complementary probe DNA and the control probe DNA 

were immobilized on spatially separated areas of the polymer-coated chip by micro-spotting. Then, 

hybridization with biotinylated target DNA, extracted from Listeria (70-mer target, panel (a)), HEV 

(100-mer target, panel (b)) and Salmonella (70-mer target, panel (c)),  was carried out following the 

procedure described above. Subsequently, binding of fluorescent streptavidin (Cy3 dye) to the 

immobilized biotinylated target DNA was carried out. The high contrast of the bright spots, related 

to the concentration of hybridized complementary target DNA, confirms the efficiency of the 

immobilization and hybridization procedure. Moreover, the absence of contrast in the control area 

allows concluding that the non-specific binding of target DNA to non-complementary probes is low. 

This last feature is crucial in a prospect of implementing a multiplexed platform for the simultaneous 

detection of different pathogens. Finally, it is worth to notice that the same experiments, performed 

without probes immobilization, resulted in absence of contrast as well, suggesting that the polymeric 

coating is effective in preventing non-specific target DNA immobilization.  

Preliminary experiments demonstrating the magnetic detection of hybridization of HEV and Listeria 

DNA were performed employing the non-integrated platform and measurement configurations of 

[20–22]. For the detection, each biochip was functionalized as described above, i.e. half of the sensors 

with the complementary probe and half (control sensors) with non-complementary probes. The 

control sensors are used to monitor the efficiency of the washing step. When the control signal returns 

7 
 



to the baseline, the removing of the unbound beads can be considered concluded. In Fig. 4, the results 

of the detection experiments of 100 nM HEV target DNA and 500 nM Listeria target DNA, are shown.  

In panel (a), the signal recorded from the sensor functionalized with HEV probe is shown as a function 

of time. Before bead injection, for t < 1900 s, the signal baseline is acquired; then, the solution with 

the beads is injected at t = 1900 s, and the nanoparticles are let to sedimentate onto the sensor surface 

for around 25 minutes, in order to allow the biotin-streptavidin binding. At t = 3400 s the washing 

solution (PB-Tween solution) is injected for removing the unbound beads from the surface of the 

sensors. The ΔSH binding signal in panel (a) is related to the concentration of beads immobilized on 

the sensor after washing, due to the streptavidin-biotin interaction with the hybridized target DNA. 

The signal recorded from the control sensor, functionalized with Klebsiella probe, is shown in the 

Supplementary Information.  

The low non-specific binding is confirmed by the absence of binding signal, as reported in the 

Supplementary Information, where the signal recovers the baseline after washing. The top part of Fig. 

4(a) displays the optical image of the sensor area after the washing step, showing the magnetic 

markers specifically bound to the hybridized DNA. In Fig. 4(b), the results of the detection 

experiments of a chip hybridized with Listeria target DNA at a concentration of 500 nM are shown. 

The experiment was run in the same configuration as described above. Similarly, the ΔSH binding 

signal is present only in the sensor functionalized with Listeria probe, and is absent in the control 

sensor (see Supplementary Information). 

3.2 Listeria detection with the portable platform  

Finally, experiments employing the fully integrated setup shown in Fig. 1 were performed. 

Hybridization detection experiments were performed on different chips, with Listeria target DNA at 

concentrations ranging from 1 µM to 1 nM. Each chip, comprising 12 MTJ sensors, was 

functionalized in order to have 6 sensors with specific probes and 6 control sensors with uncorrelated 

DNA sequences. The hybridization with complementary target DNA was performed outside the cell 

as described in paragraph 2.2. The experimental results are shown in Fig. 5 in case of 1 µM target 

concentration (panel (a)), and in case of 1 nM target concentration (panel (b)). Similarly to the 

previous cases, the ΔSH binding signal is present only in the sensors functionalized with Listeria 

probe, and is absent in the control sensors, where the signal baseline is recovered after washing (see 

Supplementary Information and right graph in panel (b)). The optical image of the sensor area, 

acquired after the washing step, is shown in panel (a). As expected, the magnetic beads are 

immobilized on the sensor surface via biotin-streptavidin binding.  
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4. Discussion 

From the sensor output, it is possible to determine the normalized binding signal (ΔSH/ΔS, see Fig. 

5), which is related to the target DNA concentration. ΔSH/ΔS is calculated considering the mean values 

of the baseline measured before and after the beads sedimentation, and after the washing step. The 

mean is calculated over about 250 values, acquired during the stabilization of all the baselines. 

The ΔSH/ΔS obtained with the integrated platform are 0.81 ± 0.02 and 0.41 ± 0.11 in the experiments 

involving 1 µM and 1 nM concentration of Listeria target DNA, respectively. The values reported 

above are the mean values of the signals arising from different sensors acquired sequentially on the 

same chip. The error, in this case, is the standard deviation of these different measurements, arising 

mainly from the variability of the position of the spotted probes with respect to the sensor [22]. 

Several factors may influence the output signals, such as the binding efficiency of the biological 

probes [22], the quality of the washing step and the disturbances originating from the electronic setup 

[47]. In order to properly discriminate “false-positives” and “false-negatives”, we assume that the 

confidence area corresponds to normalized binding signals on sensors at least three times higher than 

the spurious normalized binding signal on control sensors (SNC). The latter defines the limit of 

sensitivity of the biosensing platform, and constitutes a relevant figure of merit for practical use.  

In our case, the experimental value of SNC is 0.060 ± 0.005, where the error is given by the standard 

deviation of the values measured on different control sensors. This variability arises from slightly 

different washing conditions and from the differences among the sensors due to the fabrication 

process, which reflects in slightly different hysteretic behaviours [33]. 

In both cases (1 µM and 1 nM target concentration), the normalized binding signal is well above the 

spurious normalized signal on control sensors (SNC), so as to respect the above criterion of the 

confidence area, which is, in the worst case, 3* SNC = 0.20.  

In order to understand the impact of the integrated measurement apparatus on the sensitivity of our 

bioassay, we evaluate the uncertainty in the measurement introduced by the acquisition setup as the 

standard deviation of the baseline of the sensors normalized to the sedimentation signal ΔS (see 

Supplementary Information). This figure, namely the noise to signal ratio (NSR) is 0.02 and 0.06 for 

the experiments performed with 1 µM and 1 nM concentrations, respectively. The difference in the 

NSR of the two assays must be ascribed to sensor non-idealities arising from the fabrication process, 

such as variations in the barrier thickness [48], giving rise to different values of resistivity and thus 

to a different noise figure. 

It is worth noting that uncertainty due to the integrated measurement setup are comparable with the 

sensitivity of the assays, i.e. 0.060 ± 0.005, thus allowing to conclude that the noise related to the 

integrated platform does not represent a major limitation for these specific biosensing purpose. We 
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can therefore conclude that that sensitivities below the nM range can be reached in case of natural 

DNA (see also Supplementary Information). Note that these results are comparable with or even 

better than those obtained in the case of Listeria genosensing with electrochemical biosensors [3,4]. 

 

5. Conclusions 

In this work, we demonstrated the detection of natural DNA from pathogenic bacteria, using a highly 

sensitive biosensing platform based on magnetic tunneling junctions. First, assays for the detection 

of natural DNA extracted from HEV, Listeria and Salmonella were developed and tested via 

conventional fluorescence, and subsequently validated with the magnetic platform. In this framework, 

an effective protocol for the sensor functionalization, hybridization and labelling with magnetic 

markers was developed, resulting in a high selectivity and specificity. It is worth noting, that the 

orthogonality of the DNA probes allows to envision multiplexed assays, where the presence of 

multiple pathogens is assessed simultaneously in a single assay.  

Finally, we realized a compact, integrated MTJ-based platform comprising dedicated electronics and 

microfluidics, for bacteria and viruses genotyping. As a proof-of-concept, we employed it for 

detecting different concentrations of DNA extracted from Listeria bacterium, demonstrating a 

sensitivity below the nanomolar range.  

Thanks to its high sensitivity and specificity, the platform paves the way to the development of a 

multiplexed lab-on-chip apparatus for the point-of-care detection of pathogenic health threats. 
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Captions 

 

 

Fig. 1. (Color online) (a). Picture of the biosensing setup comprising the biosensing platform, the 

integrated lock-in amplifier, the control box for signal generation/acquisition and power supply. The 

microfluidic apparatus, marked by the white dashed rectangle, is placed within the poles of a compact 

electromagnet. (b). Sketch of the microfabricated sensor array, integrated within the microfluidic 

apparatus. Inlet and outlet fluidic channels are milled within the PMMA cover, and a PDMS gasket 

defines the chamber volume. Contact tips are used to independently address each MTJ-based sensor. 

(c). Picture of the sensor chip and microfluidic cell. 
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Fig. 2. (Color online) (a). SEM images of the sensor array comprising 12 MTJs with a common 

ground contact. (b). Zoomed view on a single MTJ sensor with a 40 x 3 µm2 area. (c). Optical image 

of the sensor before and after the detection of 100 nM target Listeria DNA. (d). Magnetoresistive 

response curve of a sensor, measured along the sensing direction, featuring a 45% TMR ratio and 

13.6%/mT low-field sensitivity. (e). Detection scheme with magnetic nanoparticles: streptavidinated 

magnetic markers are bound to the biotinilated natural target DNA, immobilized on the sensor surface 

via hybridization with complementary probe DNA. 
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Fig. 3. (Color online) Fluorescence images of natural target DNA extracted from Listeria 

monocytogenes, left square in (a), Hepatitis-E virus (HEV), left square in (b), Salmonella 

typhimurium, left square in (c), immobilized on the chip surface via hybridization with micro-spotted 

complementary probe DNA. The orthogonality of the DNA probes was confirmed by the low non-

specific binding of Listeria target with HEV probe (right square in (a)), of HEV target with Listeria 

probe (right square in (b)), and of Salmonella target with Listeria probe (right square in (c)). 
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Fig. 4. (Color online) Validation of MTJ-based detection of hybridization of natural DNA. (a). In the 

bottom panel, normalized signal acquired as a function of time from a sensor functionalized with 

HEV probe, hybridized with 100 nM HEV target DNA. The sedimentation signal ∆S and the 

hybridization signal ∆SH are indicated by red arrows. In the top panel, optical image of the sensor 

area after bead immobilization. (b). The same as in (a), from a sensor functionalized with Listeria 

probe, hybridized with 500 nM Listeria target DNA. 
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Fig. 5 (Color online) Detection of hybridization of natural DNA with the integrated platform. (a). 

Normalized signal acquired as a function of time from a sensor functionalized with Listeria probe, 

hybridized with 1 µM Listeria target DNA. The sedimentation signal ∆S and the hybridization signal 

∆SH are indicated by red arrows. In the right panel, optical image of the sensor area before the 

experiment and after bead immobilization. (b). In the left panel, normalized signal acquired as a 

function of time from a sensor functionalized with Listeria probe, hybridized with 1 nM Listeria 

target DNA. In the right panel, the signal from a control sensor, functionalized with Klebsiella probe, 

recovers the baseline after washing. 
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