
1

Policy search for the optimal control
of Markov decision processes:

a novel particle-based iterative scheme
Giorgio Manganini, Matteo Pirotta, Marcello Restelli, Luigi Piroddi and Maria Prandini

Abstract—Classical approximate dynamic programming tech-
niques based on state space gridding become computationally
impracticable for high–dimensional problems. Policy search tech-
niques cope with this curse of dimensionality issue by searching
for the optimal control policy in a restricted parameterized policy
space. We here focus on the case of discrete action space and
introduce a novel policy parametrization that adopts particles to
describe the map from the state space to the action space, each
particle representing a region of the state space that is mapped
into a certain action. The locations and actions associated to the
particles describing a policy can be tuned by means of a recently
introduced policy gradient method with parameter-based explo-
ration. The task of selecting an appropriately sized set of particles
is here solved through an iterative policy building scheme, that
adds new particles to improve the policy performance and
is also capable of removing redundant particles. Experiments
demonstrate the scalability of the proposed approach as the
dimensionality of the state space grows.

Index Terms—Markov decision processes; Stochastic optimal
control; Approximate dynamic programming; Reinforcement
learning; Policy search.

I. INTRODUCTION

In this paper, we address the optimal control of large
scale stochastic systems. Stochastic optimal control problems
arise in several application domains such as communication
networks, manufacturing systems, air traffic management, and
power networks. These problems are particularly challenging
when the stochastic dynamics of the system is hybrid [1], [2],
i.e., it is characterized by a tight coupling between continuous
and discrete dynamics. Furthermore, the computational com-
plexity of the problem increases rapidly with the system size,
motivating the quest for efficient algorithms.
We consider systems that can be modeled as discrete time
Markov Decision Processes (MDPs, see e.g. [3]) with a contin-
uous state space component and a finite control space. MDPs
are a powerful modeling framework for addressing problems
involving sequential decision making under uncertainty – even
in the presence of hybrid dynamics as in stochastic hybrid
systems. An MDP is a probabilistic dynamic model where
the state evolution is governed by transition probabilities that
depend on the control input. A control policy is a rule to
determine which control action to apply given the current
state of the system. Such a rule can be either deterministic
(a function mapping each state into a control action) or
stochastic (a function mapping each state into a probability
distribution over the control input space). If the objective is
to maximize some additive reward function along a future

time horizon, an optimal control policy can be characterized
through the Dynamic Programming (DP) approach [4]. In
the DP framework the maximum expected return that can
be obtained starting from any given state is expressed by
the optimal value function. This function is calculated by
solving the Bellman equation [5], which takes into account the
immediate effect of the decisions taken at each stage (through
some instantaneous reward), as well as their expected future
impact over the residual look-ahead time horizon. In turn, an
optimal policy can be computed based on the optimal value
function. However, applying DP becomes problematic with
large or infinite state spaces, or when the system dynamics
are not explicitly modeled. In such cases one may resort to
approximate techniques that rely on the simulation of the
actual system, and approximate parametric representations of
either the value function or the policy. A wide variety of
methods have been developed along this line, giving rise to
the fields of Approximate/Adaptive Dynamic Programming
(ADP) [6], [4], [7], and Reinforcement Learning (RL) [5],
[8]. ADP methods typically consist of an iterative scheme for
successively improving the quality of the approximation of
the optimal value function (value iteration methods, see, e.g.,
[9], [10]), the optimal control policy itself (policy iteration
methods, see, e.g. [11], [12], [42]), or both of them (actor–
critic methods, see, e.g. [13], [14], [15]). RL approaches
approximate the expected values involved in the value function
computation and in the policy evaluation using empirical
averages over data, either taken from available time histories
or obtained through the direct interaction between the learning
algorithm and the system to be controlled. Such approaches
allow to learn optimal or near-optimal policies, even when the
system dynamics are unknown (see, e.g., [16], [41]).

Many recent works in RL have focused on algorithms
that search directly through a space of parameterized poli-
cies (policy search methods) [17]. These are indeed among
the most effective learning algorithms for stochastic control
problems with continuous state and action spaces, in view
of the following aspects: i) policy parameterizations can be
chosen according to the task and the exploration can be
directly controlled, ii) the policy can be parameterized in
a much more compact way than the value function, and
iii) tuning algorithms with guaranteed convergence properties
are available. Policy search methods have been successfully
applied to several real-world tasks [19], [20], [21], [22].

A policy search method is characterized by a parametric
policy representation and an optimization algorithm to tune

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/74313466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

the policy parameters. Few policy parameterizations discussed
in the literature are suitable for the considered framework of
MDPs with finite control input spaces. For example, the Gibbs
policy [23] associates to every state a Boltzmann distribution
over the finite set of actions, using the Q–function to express
the relevance (energy) of each action. The Q-function is
represented by a parametric function and the policy search
process consists in tuning its parameters, the main advantage
being that the optimization is carried out over a continuous
parameterization. In [24], actions are associated to regions
of the state space using Gaussian functions to perform such
state aggregation. More specifically, the state space is covered
by Gaussian functions, each labeled with a specific action,
and the actual action associated to a specific state is given
by the Gaussian with the highest value in that state. The
policy is tuned by adapting the position and variance of all
involved Gaussians. The interesting aspect of this approach
is the ability to represent wide areas of the state space using
concise information.

In this paper, we present a novel policy parametrization
that combines the features of both the mentioned policy
parameterizations. The policy is represented through particles
positioned over the state space and labeled with different con-
trol actions. A set of particles defines a policy by partitioning
the state space through the associated Voronoi diagram, so
that the control action applied in a given state is the one
associated to the closest particle. Particle positions and labels
are tuned through the use of suitable parameterized Gaussian
and Boltzmann functions, respectively.

Various optimization algorithms can be employed to tune
the policy parameters. For example, [24] employs a gradient–
free cross-entropy method [25] to tune the parameters of the
Gaussian basis functions representing the policy. We focus
here in particular on policy gradient methods [26], which per-
form a local search in the policy space guided by the gradient
of the return obtained by simulating the MDP. These methods,
as all gradient-based techniques, enjoy local convergence
guarantees. Some particularly notable approaches belonging to
this family are REINFORCE and G(PO)MDP [27]. However,
they are known to suffer from slow convergence problems due
to the high variance of the gradient estimates, caused by the
repeated sampling from a probabilistic policy which leads to
erratic rewards.

Policy Gradient with Parameter-based Exploration (PGPE)
[28] is an alternative gradient-based strategy recently intro-
duced in the literature, which overcomes this limitation by
focusing on deterministic policies and introducing a proba-
bilistic distribution over the policy parameters. The search in
the policy space is then replaced by a search in the space of the
parameters of such a distribution, denoted hyperparameters.
This yields two main advantages over the previously men-
tioned gradient-based methods: i) the gradient estimates have
a low variance [29] (leading to a faster convergence rate), and
ii) the PGPE does not require the differentiability with respect
to the policy parametrization, since the gradient is evaluated
with respect to the hyperparameters.

In view of these features, the PGPE scheme has been here
adopted to develop an optimization method for the proposed

particle-based policy parametrization. More precisely, a proba-
bilistic distribution of the policy parameters (particle positions
and labels) is defined in terms of a multivariate Gaussian
density function for the particle locations and a categorical
distribution for the action labels. The mean vector and covari-
ance matrix of the Gaussian density function, together with
the parameters of the categorical distribution, constitute the
hyperparameters to be tuned in the PGPE scheme.

However, as with the Gibbs and Gaussian basis func-
tion parameterizations, the optimization of a fixed size pol-
icy parametrization may yield unsatisfactory results. Indeed,
choosing the appropriate number of particles in advance is a
difficult task and a wrong choice may lead to poor performance
(not enough particles) or very slow convergence rates (too
many particles). Starting from this observation, an iterative
process has been developed that constructs the policy by
changing both its structure and parametrization according to its
performance, as evaluated through system simulation. Particles
may be added or removed at each iteration, thus refining the
current best policy.

The following are the main contributions of this paper:
• Introduction of a particle–based representation of the

control policy for MDPs with finite control space;
• Extension of the PGPE to this representation, which also

includes a categorical distribution for the selection of the
control action;

• Design of an iterative procedure for the structure selection
of the particle-based policy parametrization.

A preliminary version of this work has been presented in
[30], and is here extended and generalized, in particular
by removing the limitation that the policy be characterized
statically by a fixed number of particles with pre-assigned
action.

The rest of the paper is organized as follows. Section II
briefly recalls the concept of MDP and formulates the control
policy optimization problem. It also describes the PGPE ap-
proach. The policy parametrization with particles is introduced
in Section III. Section IV presents the iterative algorithm for
particle selection. Its convergence properties and computa-
tional characteristics are discussed in Section V. Section VI
illustrates the application of the presented method to two
benchmark control problems, demonstrating the effectiveness
and scalability properties of the iterative PGPE procedure.
Finally, some conclusions are provided in Section VII.

II. PRELIMINARIES

In this section we briefly describe the considered opti-
mal control problem for discrete-time MDPs and provide an
overview of the PGPE algorithm.

A. Optimal control of Markov Decision Processes

An MDP is a tuple 〈S,U, f, r, γ,D〉, where S is the state
space; U is the control (or action) space; f : S×S×U → R+

is the Markovian transition model with f(s′|s, u) denoting the
probability density function governing the one-step evolution
from the current state s to the next state s′ when the control
action u is applied; r : S × U × S → R is the reward

3

function, with r(s, u, s′) representing the one-step reward
obtained when action u is applied in state s and the next state
is s′; γ ∈ [0, 1) is a discount factor; and D is the distribution
of the initial state.

A (stationary) stochastic policy is given by a probability
density function π(·|s) over the action space U . If U is dis-
crete, π(u|s) denotes the probability of taking action u when
the state of the MDP is s. When the policy is deterministic,
with a slight abuse of notation, we use π to denote the map
between states and actions, i.e., π : S → U .

We consider control problems where the future rewards are
exponentially discounted with γ. The value of state s under
policy π is expressed as the expected return when starting in
s and following π thereafter1:

V π(s) = E
u(k) ∼ π
s(k) ∼ f

[
T−1∑
k=0

γkr(s(k), u(k), s(k + 1))|s(0) = s

]
,

where E denotes the expectation operator, and the notation
u(k) ∼ π means that the random variable u(k) is drawn from
the density π at each step k (a similar interpretation holds for
s(k) ∼ f).

The time horizon length T can either be finite or infinite.
Given the initial state distribution D, the policy performance
can be evaluated through its expected discounted return:

J(π) = E
s(0)∼D

[
V π(s(0))

]
.

Solving an MDP implies finding a policy π∗ that maximizes
the expected return: π∗ ∈ arg maxπ∈Π J(π), where Π is the
set of all stochastic policies.

B. Policy search: The PGPE algorithm

Let us consider a class of parameterized policies Πθ ={
πθ : θ ∈ Rd

}
, where d is a positive integer. The problem

of finding a policy πθ ∈ Πθ that maximizes the expected
discounted reward can then be addressed via policy gradient
approaches, where the policy parameter vector θ is updated
following the direction of the gradient ∇θJ(πθ). We define a
history to be a sequence h = {s0, u0, s1, u1, . . . , sT } of states
and actions along the time horizon [0, T]. Then, the expected
return of a policy πθ can be written as an expectation over all
the possible histories H:

J(πθ) =

∫
H

pθ(h)r(h)dh, (1)

where r(h) =
∑T−1
k=0 γ

kr(sk, uk, sk+1) is the total cumulative
discounted reward of a history h and

pθ(h) = D(s0)

T−1∏
k=0

f(sk+1|sk, uk)πθ(uk|sk)

1The time dependence of stochastic variables is indicated in brackets, e.g.,
s(k), whereas sk denotes a possible extracted value of s(k).

is the probability density function of h when policy πθ is
applied. This leads to the following expression for the gradient

∇θJ(πθ) =

∫
H

pθ(h)∇θ log pθ(h)r(h)dh

=

∫
H

pθ(h)

T−1∑
k=0

∇θ log πθ(uk|sk)r(h)dh, (2)

where the equality ∇θpθ(h) = pθ(h)∇θ log pθ(h) has been
exploited.

Since solving the integral (2) analytically is generally un-
feasible, the gradient can only be estimated, e.g., by means
of Monte Carlo simulations as in the REINFORCE algo-
rithm [31]:

∇θJ(πθ) ≈ 1

N

N∑
i=1

T−1∑
k=0

∇θ log πθ(uk,i|sk,i)r(hi),

where the histories hi, i = 1, . . . , N , are independently
extracted from H according to pθ(·). Note that, in the case
when the time horizon is infinite, a finite length history is used
to approximate the expected return (1) in the first place. This
entails that some error is introduced, which, however, can be
set arbitrarily low by suitably choosing the history length.

Local convergence properties have been established for
REINFORCE [31], but a significant problem with this class of
policy gradient algorithms is their slow convergence rate. This
is caused by the high variance of the Monte Carlo estimate
of the gradient [27], which derives from simulating stochastic
policies (the control action is sampled at each step). In addi-
tion, the REINFORCE method requires the differentiability of
the policy with respect to the parameters θ, which makes the
policy design trickier when the control space is finite.

A method that has proved to be successful in mitigating
the variance problem and that does not require policy differ-
entiability is the PGPE algorithm [28]. Instead of optimizing
over stochastic policies, the PGPE may consider only deter-
ministic ones and moves the stochasticity to a higher level,
introducing a probability distribution over the set of the policy
parameters θ. An extraction from such probability distribution
yields a deterministic policy. The optimization problem is
thus reformulated as that of tuning such distribution so as
to increase the probability of drawing deterministic policies
with higher expected returns. To this aim, distribution pρ(θ)
is parameterized through coefficients ρ, denoted “hyperparam-
eters”. It is by tuning these hyperparameters that pρ(θ) is
refined. In the specific case of the PGPE, the updating of such
hyperparameters follows a classical gradient ascent approach.

Note that restricting the search to deterministic policies is
a sensible strategy. Indeed, deterministic policies are more
convenient from a practical perspective, since they are easier
to implement. Also, under appropriate measurability assump-
tions, there exists at least one deterministic policy among the
optimal ones, [32].

The performance measure in the PGPE is the expected value
of J(πθ) with respect to the distribution pρ(·):

V (ρ) =

∫
Θ

pρ(θ)J(πθ)dθ, (3)

4

and the optimal value for the hyperparameters ρ is given by

ρ∗ ∈ arg max
ρ

V (ρ). (4)

Ideally, the probability distribution pρ∗(·) should be a proba-
bility mass function attributing probability one to the choice
of an optimal deterministic policy πθ∗ .
The ρ parameters are updated along the gradient ascent
direction:

ρ(n+ 1) = ρ(n) + β∇ρV (ρ(n)),

where

∇ρV (ρ) =

∫
Θ

pρ(θ)∇ρ log pρ(θ)J(πθ)dθ

=

∫
Θ

pρ(θ)∇ρ log pρ(θ)

∫
H

pθ(h)r(h)dhdθ.

A sampling method can be exploited also in this case to
estimate the gradient, thus leading to:

∇ρV (ρ) ≈ 1

N

N∑
i=1

r(hi)∇ρ log pρ(θi), (5)

where each pair (θi, hi), i = 1, . . . , N , is extracted indepen-
dently. The components of each pair are generated according
to the following mechanism: parameter θi is drawn first from
pρ(·) and then history hi is drawn from the conditional
distribution pθi(·).

In [29] it is shown that the gradient estimate in PGPE
has a lower variance than in REINFORCE since one extracts
multiple deterministic policies and for each extracted policy
the actions along the history are determined only by the states
that are visited and are not extracted at random. The variance
in the gradient estimate can be further reduced by subtracting
a baseline bρ:

∇ρV (ρ) ≈ 1

N

N∑
i=1

(r(hi)− bρ)∇ρ log pρ(θi).

The optimal baseline has been derived in [29] by minimazing
the variance of the above equation with respect to bρ, leading
to the following formula:

b∗ρ =

Eθ,h

[
r(h)

∥∥∥∇ρ log pρ(θ)
∥∥∥2
]

Eθ

[∥∥∥∇ρ log pρ(θ)
∥∥∥2
] .

III. A NOVEL PARTICLE-BASED PGPE
PARAMETERIZATION

In this section, we present a new parameterization of a
deterministic policy πθ : S → U with a continuous state
space S and a finite control space U , and we incorporate the
parameterization into the PGPE framework.

In the literature, the PGPE method has only been applied
in combination with policy parameterizations that are linear
in the parameters and the adopted probability distribution for
the policy parameters θ is a multivariate Gaussian. Linear
regression-type parameterizations are common in the function

approximation literature, where they are employed to approxi-
mate a function defined over a continuous space, using various
families of basis functions. In the policy search context, they
can be used to approximate a policy, and they have been shown
to be effective in high dimensional continuous problems.
However, they are not directly applicable in the case of a
finite discrete control space, where the policy turns out to
be discontinuous. Inspired by clustering methods, we next
introduce a parameterization of a policy that is well suited
for the case when the control space is discrete.

A. Policy parameterization via particles

We use particles labeled with actions to identify the regions
of the state space S that are mapped to different control
actions. More precisely, a particle is a point in the state space
S with a label in U , and the policy deterministically associates
to s ∈ S the action defined by the label of the particle that is
closest to s. Provided a sufficient number of particles is used,
one can in principle reproduce the map associated with the
optimal policy with arbitrary accuracy.

A deterministic policy πθ is then represented as a set of
p labelled particles, collectively described by the parameter
vector:

θ =

θ
(1)

...
θ(p)

 ,
where each particle θ(i) =

[
s(i)T, u(i)T

]T
∈ S × U is

characterized by a “position” s(i) in the state space and a
“label” u(i), that identifies the corresponding action in the
control space. Given s ∈ S, the action u associated to s
by policy πθ is obtained via the k-NN (k-nearest neighbors)
algorithm, with k = 1:

πθ(s) = u(i), with i = arg min
j

∆(s, s(j)),

where ∆(s, s(i)) is the Euclidean distance between s and the
position s(i) of the i-th particle. As a result, the state space is
partitioned into polyhedral sets defining the Voronoi diagram
generated by the particle locations, each set defining a region
in the state space associated to a specific particle. The idea
is to identify the best action and position for each particle in
such a way that states in its neighborhood (as induced by the
Euclidean norm distance) share the same optimal action.

An example of a Voronoi diagram is given in Figure 1,
for a 2-dimensional state space S. Figure 1 plots also the
corresponding Delaunay diagram, which is the dual graph of
the Voronoi diagram [33].

B. Distribution of the policy parameters

According to the PGPE scheme, the policy parameters are
drawn from some probability distribution

θ ∼ pρ(·).

The p particles θ(i), i = 1, . . . , p, are assumed to be inde-
pendent, and each one has its own distribution over S × U .

5

Fig. 1. Pictorial representation of the Voronoi (solid lines) and Delaunay
(dashed lines) diagrams associated with a set of particles.

Given a particle θ(i) =
[
s(i)T, u(i)T

]T
, we assume that its

position and label are independent, in order to simplify the
policy representation. Position s(i) has a Gaussian distribution
s(i) ∼ N (·;µ(i),Σ(i)), and label u(i) has a Boltzmann dis-
tribution u(i) ∼ B(·;α(i)). More specifically, the probability
of selecting action ul in the control space U of cardinality
|U | = m is given by

B
(
ul;α

(i)
)

=
eα

(i)
l∑m

j=1 e
α

(i)
j

.

The hyperparameters ρ are then defined as follows:

ρ =

ρ
(1)

...
ρ(p)

 , where ρ(i) =

 µ(i)

vect(Σ(i))
α(i)

 .
A graphical representation of the particles distribution pρ(·)
is given in Figure 2, together with a policy with parameters
extracted from pρ(·).

In order to reduce the number of parameters, we discard the
cross-correlation terms in the covariance matrix, so that Σ(i)

is diagonal, with the elements on the diagonal parameterized
by the logistic function

Σ
(i)
jj =

τ

1 + e−σ
(i)
j

so as to prevent the variance from becoming negative [34].
Coefficient τ is a design parameter that determines the asymp-
totic (maximum) value of the variance. The total number of
hyperparameters is then nρ = (2n + m) · p, where n is the
dimension of the state space S, m is the number of actions in
U , and p is the number of particles.

Each hyperparameter vector ρ defines a probability density
function over the set of deterministic policies Πθ parameter-
ized via particles. In the following, we will use the concept
of representative policy π̄ρ associated to hyperparameters ρ
to indicate the deterministic policy given by the particles

θ(i) =

[
µ(i)

arg max
u∈U

B(u;α(i))

]
, i = 1, . . . , p.

C. Gradient estimation

The partial derivatives of log pρ(θ) =
∑p
j=1 log pρ(θ(j))

with respect to µ(i), Σ(i) and α(i), required to compute the

p 1 p 2 p 3 p 4 p 5 p 6

u 1

u 2

u 3

s1

s 2

p 1

p 2
p 3

p 4

p 5 p 6

s1

s 2

u 1

u 1

u 1
u 2

u 2

u 3

Fig. 2. Illustrative picture of a policy parameter distribution and of
an extracted policy in a two dimensional state space (S ⊆ R2)
with 3 actions (|U | = 3): Boltzmann (top) and Gaussian (middle)
distributions of 6 particles (the bars represent the action probabilities,
the plus symbols and the ellipses represent the mean values and the
standard deviation isolevel curves, respectively), and Voronoi diagram
(bottom) of a deterministic policy extracted from the distributions of
the particles.

gradient ∇ρV (ρ) (see expression (5)), are given by:

∇µ(i) log pρ(θ(j)) =δij(Σ
(j))−1(s(j) − µ(j))

∇
σ
(i)
l

log pρ(θ(j)) =δij
e−σ

(i)
l

2
(

1 + e−σ
(i)
l

)
×
[
(s

(j)
l − µ

(j)
l)2(Σ

(j)
ll)−1 − 1

]
∇
α

(i)
l

log pρ(θ(j)) =τδij

(
δu(j)ul − B(ul;α

(j))
)
,

where δij = 1 when i = j, and 0 otherwise.

IV. ITERATIVE PGPE ALGORITHM

In this section, we present an iterative algorithm that refines
the policy obtained through the proposed particle-based PGPE
approach. In the particle-based parameterization of a policy, a
particle is used to identify a connected region of the space that
is labeled with an action. In principle, by suitably deciding the
number of particles, and their locations and labels, it would be
possible to define a particle-based approximation of an optimal
deterministic policy up to some desired accuracy. The defini-
tion of the particle set—and, in particular, its cardinality—is
a critical issue.

6

The idea proposed here is to set-up an iterative procedure
that adds and removes particles until a proper policy parame-
terization is found. One starts by applying the PGPE approach
to some initial particle set. The resulting hyperparameters are
referred to as “optimal” hyperparameters and the performance
of the representative policy associated with them as “best”
performance. At each iteration, one new particle is added with
a certain initialization of the related hyperparameters. Then, all
hyperparameters are optimized through the PGPE approach.
After convergence, redundant particles are removed. The per-
formance of the representative control policy associated to the
resulting hyperparameters is evaluated. If such a performance
is better than the current best, then it takes its place and
the corresponding hyperparameters are marked as optimal.
Otherwise, the best performance is not updated and a new
iteration starts. The algorithm ends when a maximum number
of iterations is reached. The pseudo-code of the iterative
procedure iPGPE is reported in Algorithm 1.

Algorithm 1 iPGPE algorithm
Input: ρ(0)

1: ρ∗(0)← PGPE(ρ(0))
2: [ρ∗(0), π̄ρ∗(0)]← FIX(ρ∗(0))
3: π? ← π̄ρ∗(0)

4: ρ? ← ρ∗(0)
5: for k = 1 to K do
6: ρ(k)← ρ?

7: Σ(i)(k)← cΣ(i)(k), i = 1, . . . , p

8: ρ(k)←
[
ρ(k)
ρ+

]
where ρ+ =

 µ+

vect(Σ+)
α+

 with

µ+ ← DELAUNAY(µ(1)(k), . . . , µ(p)(k))
Σ+ ← Σ(1)(0)
α+ ← 0

9: ρ∗(k)← PGPE(ρ(k))
10: [ρ∗(k), π̄ρ∗(k)]← FIX(ρ∗(k))
11: if J(π̄ρ∗(k)) > J(π̄ρ?) then
12: [ρ?, π?]← [ρ∗(k), π̄ρ∗(k)]
13: end if
14: end for
Output: Optimal deterministic policy π?

The algorithm starts by taking as input an initial set ρ(0)
of hyperparameters. The PGPE procedure is run to optimize
the hyperparameters ρ(0) with respect to the performance
index V (ρ) defined in (3). Redundant particles are removed
from the resulting hyperparameters ρ∗(0) by means of the
procedure FIX. This procedure consists of the following steps:
(i) it builds the representative policy π̄ρ∗(0) associated to the
optimal hyperparameters ρ∗(0) and (ii) it detects the particles
that are redundant and can be removed without modifying the
representative policy performance.

A particle is redundant if it does not contribute to the
definition of the state space partition in regions associated with
different actions, since it is surrounded by particles with the
same label. This condition is purely geometric and can be
easily verified by building the Voronoi diagram. A particle
may be redundant also because it belongs to a region of the

state space that is not visited when the representative policy
is applied.

At the k-th iteration the best parameterization ρ? obtained
so far (namely, the one associated to the representative policy
π? with the highest expected return J) is chosen as the current
hyperparameter vector ρ(k). The variance of the correspond-
ing particles is increased by a factor c > 1 to encourage the
exploration of the policy space.
Then, a new particle is added to the current parameterization.
The hyperparameters ρ+ of the new particle are set as follows:
(i) the position µ+ is set equal to one of the intersection points
between the Voronoi diagram and the Delaunay diagram of
the current representative policy, selected at random; (ii) the
variance Σ+ of the new particle is set equal to the variance
of the first particle in ρ(0); (iii) the weights of the Boltzmann
distribution α+ are set to 0 so as to obtain a uniform proba-
bility over the labels. The rationale is that the new particle
should serve the purpose of refining the policy map, and
hence it is placed on a facet of a polytope in the Voronoi
diagram defining the current policy map. The intersection of
such facet with the Delaunay diagram provides a convenient
candidate position for the new particle, in that it is the nearest
point to the particles determining the considered facet, and
hence most likely to disrupt significantly the previous solution.
Such set of points is identified by the intersections between
the Voronoi diagram and the Delaunay diagram. The PGPE
and FIX procedures are then executed starting from the new
augmented hyperparameter vector. If the representative policy
associated to the resulting hyperparameters ρ∗(k) improves
over the current best, it is stored in its stead.

The iterative nature of the algorithm carries two favorable
properties. The process of insertion and removal of parti-
cles helps to alleviate the sensitivity of the algorithm with
respect to the hyperparameters initialization and to reduce
the risk of being stuck in local optima (which is a typical
drawback of gradient–based optimization algorithms). Indeed,
the structural modification of the policy parameterization can
be reinterpreted as a partial reset of the current solution, that
causes the optimization to restart from a different point in the
hyperparameters space.

V. ALGORITHM ANALYSIS

A. Convergence properties

The PGPE algorithm belongs to the class of policy gradient
algorithms to which the following properties and consid-
erations apply. Specifically, convergence is obtained if the
estimated gradients are unbiased and the learning rates βk
satisfy the conditions [5], [27]:

∞∑
k=0

βk =∞,
∞∑
k=0

β2
k <∞ (6)

Although in the general case policy gradient algorithms are
guaranteed to converge only to locally optimal policies, in [35]
the author shows that policy gradient approaches converge
to a globally optimal policy under the same assumptions
required by Q-based algorithms—e.g., SARSA(λ) [5]—that
are commonly used to solve RL problems. Such assumptions

7

require that the state and action spaces are countable, while
for continuous-domain problems only convergence to a local
optimum can be guaranteed. Nonetheless, as suggested in [35],
local optima can be avoided by increasing exploration and the
representational power of the policy parametrization, which
is actually what is pursued by the iterative insertion of new
particles in the proposed iPGPE approach.

More in detail, the inner loop of the iPGPE algorithm (step
9 in Alg. 1) amounts to the execution of the PGPE with a
fixed structure policy parameterization, which is guaranteed
to converge to a local optimum. The outer loop proposes
a structure modification of the policy which is accepted if
the local optimum it leads to improves over the current best
(notice that the two local optima could be defined in different
hyperparameter spaces). As such, the iPGPE is also endowed
with local convergence properties. An example discussed in
Section VI emphasizes the performance improvements achiev-
able by means of the structural modification of the policy
parameterization carried out in the outer loop of the iPGPE.

B. Computational complexity

We next analyze the worst-case computational complexity
of the iPGPE, providing an asymptotic upper bound expressed
in the so called O–notation.

For this purpose, it is necessary to first provide a bound for
the plain PGPE algorithm, which is iteratively executed in the
inner loop of the iPGPE (step 9 in Alg. 1). The structure of the
PGPE algorithm comprises two nested loops, one accounting
for the gradient ascent iterations, limited to some M value, and
the other for the gradient estimation, which is repeated exactly
N times, N being the number of pairs (θi, hi) of histories
and parameters employed. In the gradient estimation loop,
two main tasks are performed. The computation of the partial
derivatives of log pρ(θ) with respect to the hyperparameters
has a complexity of order O(nρ) for the assumed setting (see
Section III.C), where nρ is the number of hyperparameters.
The other task, namely the Monte Carlo simulation of the
system is of order O(T), where T is the time horizon length.
Each step of the system simulation involves the selection of
the control action using the particle policy, which amounts to
O(np) operations, where n is the size of the state space and p
is the number of particles, since it requires the calculation of
the distance between the current state and all the particles and
the selection of the nearest one. In summary, the complexity
of the PGPE is of order O(MN(Tnp+ nρ)).

The iPGPE consists of an iterative procedure that adds
and removes particles until a proper policy parametrization
is found. A PGPE iteration is launched after each structural
modification of the policy. The computational bottleneck is
represented by the Delaunay triangulation process, for which
a worst-case exponential bound O(pdn/2e) is given in [36].
However, many efficient algorithms are available for this
operation (see, e.g., [37]). Notice also that much less costly
heuristics can be employed to pick the positions of new
particles compared to the Delaunay triangulation, in order
to mitigate this source of computational complexity. Finally,
since the maximum number of the outer iterations is bounded

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Position

Fig. 3. The “Car on the Hill” picture.

by K, the overall computational complexity of the iPGPE is
of order O(KMN(Tnp+ nρ) +Kpdn/2e).

VI. SIMULATION EXAMPLES

Two numerical examples are presented in this section. The
first example is the classical “Car on the Hill” problem
described in [9]. The second example addresses a multi-room
heating control problem and is inspired by the benchmark
described in [38], and addressed also in [39], [1], [40].

A. Car on the Hill example

An under-powered car is traveling in a valley between two
hills (see Figure 3), and the objective is to bring the car to the
top of the rightmost hill in minimum time, while preventing
the position and the velocity of the car to exit some prescribed
set. The control policy decides whether to drive the car to the
left, to the right or not to use the engine at all. Since gravity is
stronger than the car engine, even at full thrust the car cannot
accelerate up the steep slope and the only way to solve the
problem is to drive up the opposite hill before reaching the
goal to the rightmost hill. The model of the car [9] is described
by the following dynamics:ẋ = v

v̇ =
u

m(1 +H ′(x)2)
− gH ′(x)

1 +H ′(x)2
− v2H ′(x)H ′′(x)

1 +H ′(x)2

(7)
where (x, v) ∈ R2 is the continuous state component of the
system, x and v = ẋ being respectively the position and the
velocity of the car, and u ∈ U = {−4, 0, 4} is the control
action representing the horizontal force applied to the car. A
binary discrete state q is also present to distinguish the normal
mode (q = 1), from the terminal conditions where either the
car has exited some prescribed set {(x, v) : x ≥ −2, |v| ≤ 4},
or it has reached the goal, i.e. the target set A = {(x, v) :
x > 1, |v| ≤ 4} (q = 0). When one of the two described
terminal conditions is reached, q is switched to 0, and the car
motion is stopped. The full hybrid state vector is then given
by s = (q, x, v).

Function H(x) describes the slope of the hill and is defined
by:

H(x) =

{
x2 + x if x < 0

x/
√

1 + 5x2 if x ≥ 0
. (8)

Parameters m = 1 and g = 9.81 are the mass of the car and
the gravitational acceleration, respectively.

8

−1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3

Position x

V
el
oc
ity

ẋ

-4

4

-4

−1 −0.5 0 0.5 1

−3

−2

−1

0

1

2

3

Position x

V
el
oc
ity

ẋ

-4

4

4

Fig. 4. Car on the Hill problem – Continuous state evolution starting from
[−0.5, 0] in the discrete state q = 1 obtained with policy π̄ρ∗(1) (top) and
π̄ρ∗(4) (bottom).

System (7) is discretized with a sampling time ∆t = 0.1
and assuming a constant input over each sample time interval.
The reward function r : S × U × S → {−1, 0, 1} is defined
by the following expression:

r(s, u, s′) =

−1 if x′ < −2 or |v′| > 4 and q = 1

1 if x′ > 1 and |v′| ≤ 4 and q = 1

0 otherwise
(9)

where s = (q, x, v) and s′ = (q′, x′, v′) are the current and
next states, respectively.

A close analysis of the iPGPE algorithm evolution on the
Car on Hill problem shows its ability to tune the policy
parameters and the number of particles, in order to improve
the performance. The initial number of particles is set to 3,
one for each possible control action. The particle positions are
initialized randomly, with unitary initial variance and τ = 6.
The initial car state is [1,−0.5, 0] (the car is initially in the
valley). The gradient is evaluated based on 1000 extractions
of deterministic policies.

Figure 4 (top) graphically displays the policy π̄ρ∗(1) ob-
tained by the algorithm after the 1st iteration. Different colors
identify regions of the state space associated to different
control actions, according to the Voronoi partition of the
representative policy. Although the goal is reached, the policy
is not optimal since the car traverses the valley twice, using
more time than necessary to reach the goal.

Thanks to the insertion of an additional particle at the
3rd iteration, the iPGPE algorithm is able to find a more
rewarding policy, that initially moves the car away from the
target position to gain sufficient momentum to reach the top of
the hill, as shown in Figure 5. The optimal history obtained at
the last iteration of the iPGPE is shown in Figure 4 (bottom).

The process of insertion and removal of particles during the
mentioned iterations is summarized in Figure 6. The reader
may notice that the particle added at the 2nd iteration did not

1 2 3 4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

D
is

co
un

te
d

R
et

ur
n

V

Fig. 5. Car on the Hill problem – Evolution of the performance index V (ρ)
as a function of the iPGPE iterations.

−2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4

5

Position x

V
el
o
ci
ty

v

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

5

Position x

V
el
o
ci
ty

v
(b)

−2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4

5

Position x

V
el
o
ci
ty

v

(c)

Fig. 6. Car on the Hill problem – Insertion and removal of particles:
a) representative policy π̄ρ∗(1) (the square and the star symbols are the
locations where new particles will be added at the 2nd and 3rd iterations),
b) representative policy π̄ρ∗(2), and c) representative policy π̄ρ∗(3).

improve the policy, leading to the same performance of π̄ρ∗(1).
As a consequence, the iPGPE recovers the hyperparameters
ρ∗(1) of the 1st iteration, looking for another location for the
insertion of a new particle. At the 3rd iteration the algorithm
found a suitable position for the new particle that improves
the policy. A close examination of Figures 6.b-c reveals the
removal of particles θ(1) and θ(2), which turn out to be
redundant at the 2nd and 3rd iterations, respectively.

It is interesting to underline that the problem is characterized
by the presence of a useless action (u = 0). As shown in
Figure 4, the algorithm is able to discard this action from
the very start. Furthermore, the car cannot simply drive up
the steep slope (u = 4), but it must use the features of the
landscape to build momentum and eventually escape the valley.

In this example, multiple iterations were necessary for
refining the control policy and achieving better results. The
process of insertion and removal of particles allowed to escape
from local optima and to recover from unfavorable initial
conditions of the hyperparameters. More precisely, the iPGPE
moves from one local maximum to an improved one, as clearly
shown in Figure 5.

For comparison purposes and to assess the quality of
the solution found through the iPGPE, the same problem

9

has been addressed with an alternative state-of-the-art algo-
rithm, namely the Relative Entropy Policy Search (REPS)
algorithm [17]. This comparison is all the more interesting
considering that a completely different policy representation is
adopted, i.e. a Gibbs policy with the Q-function approximated
using a linear combination of radial basis functions (RBF). In
the example, 16 RBFs uniformly distributed in the continuous
state space [−2, 1]× [−4, 4] have been used.

Figure 7 shows the trajectory (originating from the initial
state [1,−0.5, 0]) obtained by the optimal policy learned with
the REPS. Comparing Figures 7 and 4, it appears that both
methods converge to the same trajectory, which confirms the
capability of the iPGPE scheme to approach optimality. On
the other hand the calculated state-action maps appear to be
extremely different, which requires some further discussion.
Indeed, the task addressed in this particular benchmark prob-
lem is not that of finding the full control policy, but exclusively
the optimal trajectory from the initial point. This greatly
constrains the state exploration process, which is important
in that the resulting policies are optimal only with respect to
the partial exploration of the space they resulted from. The
two policies found with the iPGPE and the REPS, though
extremely different, are in fact equivalent in providing the
optimal trajectory from the initial point.

B. Multi-room heating problem

The temperature of n rooms is controlled by means of n
heaters, one per room. The objective is to design a control
policy that keeps the temperature of each room in a desired
range activating as few heaters as possible at the same time.
The control policy defines which rooms should be heated,
depending on the temperature values in all rooms. A nice
feature of this benchmark is that it is suitable for testing
the scalability of the proposed algorithm, since the problem
dimensionality can be easily increased by adding more rooms.

The described system is stochastic and hybrid, the state
being defined as s = (q, x) ∈ S, where the discrete state
component q identifies the actual combination of rooms being
heated, while the continuous state x = (x1, . . . , xn) ∈
X = Rn represents the (average) temperature in each room.
Accordingly, the discrete state space Q is defined as the power
set of {1, . . . , n} and the control space is given by U = Q.
Action u ∈ U corresponds to the command of heating a certain
set of rooms, while q ∈ Q indicates the set of rooms that are
actually heated.

Fig. 7. Optimal Gibbs policy calculated with the REPS algorithm.

The average temperature in room i is governed by the
following stochastic difference equation, obtained by Euler
discretization of the corresponding continuous time dynamics
with constant time step ∆t:

xi(k + 1) = xi(k) + [bi(xa − xi(k)) + cihi(k) (10)

+
∑

j=1,...,n;j 6=i

aij(xj(k)− xi(k))]∆t+ ni(k), i = 1, . . . , n,

where xi(k) is the average temperature in room i at time k,
xa is the ambient temperature (assumed constant), and hi(k)
is a boolean function equal to 1 when room i is heated, and
0 otherwise. Parameter aij is the heat exchange coefficient
between room i and room j, bi represents the heat loss rate
of room i to the ambient, and ci is the heat rate supplied by
the heater in room i, all these coefficients being normalized
with respect to the average thermal capacity of room i. Finally,
the disturbance ni(k) affecting the temperature of room i is
assumed to be a sequence of i.i.d. Gaussian random variables
with zero mean and variance ν2∆t, independent of nj(k),
j 6= i.
The heaters are controlled by a thermostat that is subject
to delay and switching failures. This is modeled through a
discrete transition probability function that governs the mode
transitions:

fq(q
′|q, u) =

1, u = q = q′

1− α, u 6= q, q′ = q

α, u = q′, q′ 6= q

, (11)

where q is the current discrete state, q′ is the next one, and
α ∈ [0, 1] is the one-step delay/failure probability.
The desired operating region is given by

A = [xl, xu]n,

where xl and xu specify the lower and upper bounds for the
temperature in each room.

The control design problem can be formulated as in Sec-
tion II, by defining the reward function r : S × U × S → R
as:

r(s, u, s′) =
1

n

(
g(x′)− g(x)− β (|q′| − 1)

)
where s = (q, x), s′ = (q′, x′), g(x) =

∑n
i=1 1[xl,xu](xi) is

the number of rooms whose temperature is within the desired
range [xl, xu], |q′| is the cardinality of the set q′ ∈ Q, and β
is a weight coefficient that penalizes the simultaneous heating
of more than one room at a time.

Transitions leading the temperature of k rooms outside
[xl, xu] are penalized with −k/n, and transitions leading the
temperature of k rooms back into [xl, xu] are rewarded with
+k/n. All other transitions do not provide neither a penalty
nor a reward. The discount factor γ weighs short-term rewards
more than long-term ones, favoring a rapid come back into A
if some room has exited it.

The parameters are set as follows: ∆t = 1/30, ν = 1, xa =
6, α = 0.8, bi = 0.25 and ci = 12 for i = 1 . . . n, aij = aji =
0.33, for i = 1, . . . , n− 1, j = i+ 1. The “safe” temperature
range is A = [17.5, 22]n. The time horizon is T = 100, the
weighting coefficient is β = 1/100 and the discount factor is

10

16 17 18 19 20 21 22 23 24

16

17

18

19

20

21

22

23

24

Room 1 −Temperature [°C]

R
oo

m
 2

 −
Te

m
pe

ra
tu

re
 [°

C
]

16 17 18 19 20 21 22 23 24

16

17

18

19

20

21

22

23

24

Room 1 − Temperature [°C]

R
oo

m
 2

 −
Te

m
pe

ra
tu

re
 [°

C
]

Fig. 8. Multi-room heating problem: 100 temperature trajectories (blue lines)
obtained following the representative policy, starting from x(0) = [19 19]T

(top) and x(0) = [17 17]T (bottom).

set to γ = 0.95. The initial state distribution D is characterized
by a uniform distribution over the set [15.25, 24.25]n for the
room temperatures, while the discrete state is deterministically
set to the condition where no room is heated.

The iPGPE algorithm has been applied to this problem
setting the initial number of particles equal to |U |, and
assigning each action to one of the particles. The positions
of the particles are randomly initialized over the domain
[15.25, 24.25]n, with variances set to 6 and τ = 6. The Monte
Carlo estimates of the gradient are based on 1000 deterministic
policies drawn from the distribution described by the current
hyperparameters, and the set of initial states is composed by
100n states drawn from D.

Figure 8 refers to the 2-room case and shows 100 tem-
perature trajectories obtained using the representative policy
resulting from the application of the iPGPE, starting from
x(0) = [19 19]

T and x(0) = [17 17]
T.

In the sequel, the iPGPE algorithm is compared with the
ADP approach based on state gridding proposed in [40]. The
latter approach has been applied using 30 bins to discretize
the temperature of each room, uniformly partitioning each
dimension of the (continuous) state space. Though well known
to scale exponentially with the state dimensions, the gridding
scheme provides a reliable reference on the optimal perfor-
mance. Indeed, the policy calculated in this way tends to the
optimal one for decreasing sizes of the grid bins.

Figure 9 shows the optimal policy calculated using the
mentioned state gridding ADP approach. Apparently, the pol-
icy calculated by the iPGPE is well in agreement with the

16 17 18 19 20 21 22 23 24

16

17

18

19

20

21

22

23

24

Room 1 − Temperature [°C]

R
oo

m
 2

 −
 T

em
pe

ra
tu

re
 [°

C
]

Fig. 9. Optimal policy for the ADP approach.

TABLE I
ADP APPROACH: AVERAGE OF S(h) (IN PERCENTAGE) OVER 10000

HISTORIES.

recovery safety general
rooms problem problem problem

1 95.38 99.97 96.53
2 93.78 99.94 94.98
3 93.00 99.90 93.67

ADP one, especially in the more densely explored areas,
showing the capability of the algorithm to effectively approach
optimality.

Tables I and II compare the two approaches in terms of the
safety index:

S(h) =
1

T

T∑
k=1

1A(x(k)),

where 1A(·) denotes the indicator function (1A(x) = 1 if
x ∈ A, and 0 otherwise). S(h) represents the percentage of
time steps for which the temperature of all rooms is within the
safe set A. To emphasize the robustness and reliability of the
iPGPE, 10 independent executions have been performed, start-
ing from different initial hyperparameters, and a statistic of the
performances of the resulting policies is provided in Table II.
Both the ADP policy and the 10 iPGPE policies have been
subjected to 10000 tests, starting from different initial states.
The reported figures concern the average performance of each
policy over all these validation histories hi, i = 1, . . . , 10000.
The initial states have been uniformly extracted over different
regions, depending on the specific problem addressed. More
precisely, the initial states have been extracted over the set
[15, 17.5]n (recovery problem), over A (safety problem), and
over [15.25, 24.25]n (general problem). In the safety problem,
the objective is to keep the temperature within A as long as
possible, while in the recovery problem, the goal is to reach A
as soon as possible starting from an initial condition outside
A.

The ADP approach has been tested only up to n = 3 for
computational reasons. To deal with larger problem instances
the number of bins used for gridding has to be drastically
reduced to avoid memory overflow, resulting in dramatic
performance losses. Notice also that the ADP approach has

11

TABLE II
IPGPE ALGORITHM: STATISTICS OF THE AVERAGE S(h) PERFORMANCE

FOR 10 POLICIES OBTAINED STARTING FROM DIFFERENT INITIALIZATIONS
(MEAN VALUE WITH 95% CONFIDENCE INTERVAL).

recovery safety general
rooms problem problem problem

1 95.38 ± 0.01 99.96 ± 0.01 96.47 ± 0.01
2 94.15 ± 0.04 99.92 ± 0.05 94.84 ± 0.26
3 93.26 ± 0.44 99.85 ± 0.08 93.37 ± 0.54
4 91.12 ± 1.37 99.78 ± 0.04 92.47 ± 0.16
5 89.16 ± 1.31 99.65 ± 0.08 91.30 ± 0.23
10 79.95 ± 2.95 97.87 ± 0.96 82.90 ± 1.42

0 10 20 30 40 50 60 70 80 90 100

16

17

18

19

20

21

22

23

24

T
em

pe
ra

tu
re

 [°
C

]

steps

0 10 20 30 40 50 60 70 80 90 100

16

17

18

19

20

21

22

23

24

T
em

pe
ra

tu
re

 [°
C

]

steps

Fig. 10. Multi-room heating problem – Performance of the iPGPE algorithm
in the safety (top) and recovery (bottom) problems for the 5-rooms case:
100 histories obtained following the policy π? starting from 100 initial states
drawn in A (top) or in [15, 17.5]n (bottom).

complexity |G||U |(2 + |U |) per iteration, where |G| is the
number of bins in the gridded state space [8].

The iPGPE algorithm yields comparable results in the cases
where both approaches are applicable, but scales much more
favorably, performing reasonably well even with 10 rooms.
Table II also reports the variability of the performance results
with respect to different executions of the iPGPE. Apparently,
all executions converge to policies that yield comparable
performances.

Consider, e.g., the 5-rooms scenario. The histories obtained
with the representative iPGPE policy in the safety and recovery
problems are shown in Figure 10 (the temperature histories of
all rooms are plotted on a single axis for simplicity).

The optimal policy appears to be quite capable of driving
and maintaining the temperature of all the rooms inside the
safe set efficiently.

It is also worth noting how the weight coefficient β influ-

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

Iterations

P

ar
tic

le
s

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Iterations

D
is

co
un

te
d

R
et

ur
n

V

Fig. 11. Multi-room heating problem – Evolution of V (ρ) (top) and of the
number of particles (bottom) as a function of the iPGPE iterations, in the
5-rooms case.

ences the control policy: even if in principle the controller is
able to simultaneously heat all the rooms, the optimal policy
decides to heat on average 1.25 rooms in the safety problem
and 1.64 rooms in the recovery case.

Figure 11 reports for the same 5-room case the evolu-
tion over time of the performance index V (ρ), as well as
the number of particles per iteration. Notice that, while the
improvements obtained through the iterative procedure are
smaller than in the Car on the Hill example, the performance
index is still improved throughout the process by suitably
rearranging and retuning the particles. Notice also that the
iPGPE starts with 32 particles, which are reduced to 19 already
at the end of the first iteration.

Figure 12 illustrates some basic computational results of
the two studied algorithms. The computational complexity
of the ADP approach increases exponentially, both in terms
of the CPU time and memory occupancy. On the contrary,
the computational effort required by the iPGPE algorithm
increases much less rapidly with the state space dimension.

Some additional data regarding the efficiency of the iPGPE
algorithm are reported in Table III. The complexity of the
iPGPE algorithm depends essentially on the number of parti-
cles, the number of policies drawn from the hyper-distribution,
the number of histories generated for each policy and the
number of steps per history. The number of simulation steps
performed at each iteration of iPGPE is obtained by multiply-
ing the last three values. Comparable results in terms of J are
obtained for increasing values of n, provided that the number
of histories is linearly incremented.

VII. CONCLUSIONS

This paper has investigated a policy search technique that
applies to stochastic systems with continuous state and finite
control spaces, and appears to scale favorably with state space
size. The presented approach is based on the PGPE policy
gradient technique, endowed with a novel policy parameteri-
zation using particles to describe entire areas of the state space

12

0 5 10
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

n

C
P

U
 ti

m
e

[s
]

0 5 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

n

M
em

or
y

[k
B

]

Fig. 12. CPU time (left) and memory occupancy (right) for ADP (circles)
and iPGPE (squares) algorithms, for increasing problem dimension (n).

TABLE III
IPGPE ALGORITHM: COMPUTATIONAL COMPLEXITY.

n # particles J # histories # gradient estimates
1 2 0.3802 1 · 105 391
2 9 0.3933 2 · 105 822
3 12 0.3946 3 · 105 931
4 15 0.3886 4 · 105 1001
5 19 0.3793 5 · 105 1092

10 14 0.3204 10 · 105 1089

associated to the same action. By encapsulating the policy
parameterization in the PGPE framework, it is possible to
automatically learn both the positions of the particles in the
state space and their associated actions. This ability comes
at the price of a high number of parameters to be tuned,
that scales proportionally to the number of particles. However,
the number of samples required by the algorithm in order to
estimate the gradient direction is not strictly related to the
number of parameters (i.e., particles) and does not increase
exponentially with the state dimension.

The a priori definition of the particle set to be adapted turns
out to be the greatest limitation of the basic PGPE scheme. To
overcome this problem an iterative procedure is here suggested
that interleaves the particle adaptation task with a particle
selection one. More precisely, at each iteration a new particle
is added and the whole set of particles retuned. After this
tuning, redundant particles are detected and removed and a
new iteration is performed.

The proposed iterative PGPE algorithm is applied to two
benchmarks problems, to demonstrate its scalability properties
and effectiveness. Novel particle insertion rules inspired by
actor-critic methods are currently under study, the idea being
to improve the iterative algorithm by inferring where the policy
must be refined. Also, it will be valuable to investigate other
optimization algorithms, like [17], [18], for tuning the particles
hyperparameters.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the European Commission project UnCoVerCPS under grant
number 643921.

REFERENCES

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems,”
Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[2] J. Lygeros and M. Prandini, “Stochastic hybrid systems: a powerful
framework for complex, large scale applications,” European Journal of
Control, vol. 16, no. 6, pp. 583–594, 2010.

[3] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. New York (NY), USA: Wiley-Interscience, 1994.

[4] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. II.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, March 1998.

[6] W. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality. John Wiley & Sons, 2007.

[7] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive dynamic programming
for control: Algorithms and stability. Springer Science & Business
Media, 2012.

[8] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton (FL), USA: CRC Press, Inc., 2010.

[9] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6, pp.
503–556, 2005.

[10] A. Antos, C. Szepesvári, and R. Munos, “Fitted Q-iteration in continuous
action-space MDPs,” in Advances in neural information processing
systems, 2008, pp. 9–16.

[11] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” Journal of Control Theory and Applications, vol. 9, no. 3, pp.
310–335, 2011.

[12] A. M. Farahmand, M. Ghavamzadeh, S. Mannor, and C. Szepesvári,
“Regularized policy iteration,” in Advances in Neural Information Pro-
cessing Systems, 2009, pp. 441–448.

[13] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[14] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 10, pp. 1513–1525, 2013.

[15] H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal
control for a class of discrete-time affine nonlinear systems with control
constraints,” IEEE Transactions on Neural Networks, vol. 20, no. 9, pp.
1490–1503, 2009.

[16] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems
Magazine, vol. 9, no. 3, pp. 32–50, 2009.

[17] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1–2, pp.
1–142, 2013.

[18] G. Manganini, M. Pirotta, M. Restelli and L. Bascetta, “Following
newton direction in policy gradient with parameter exploration”, IJCNN,
2015.

[19] J. A. Bagnell and J. G. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” in IEEE International
Conference on Robotics and Automation (ICRA), vol. 2, 2001, pp. 1615–
1620.

[20] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in 3rd IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids2003), Karlsruhe, Germany, Sept. 29–30 2003.

[21] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in IEEE International Conference on Robotics
and Automation (ICRA), vol. 3, April 2004, pp. 2619–2624.

[22] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[23] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and
Claypool Publishers, 2010.

13

[24] L. Busoniu, D. Ernst, B. D. Schutter, and R. Babuska, “Cross-entropy
optimization of control policies with adaptive basis functions,” IEEE
Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41,
no. 1, pp. 196–209, 2011.

[25] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and
machine learning. Springer, 2004.

[26] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 42, no. 6, pp. 1291–1307, 2012.

[27] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

[28] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Parameter-exploring policy gradients,” Neural Net-
works, vol. 23, no. 4, pp. 551–559, 2010.

[29] T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama, “Analysis and im-
provement of policy gradient estimation,” Neural Networks, vol. 26, pp.
118–129, Feb. 2012.

[30] M. Pirotta, G. Manganini, L. Piroddi, M. Prandini, and M. Restelli,
“A particle-based policy for the optimal control of Markov decision
processes,” in IFAC World Congress 2014, Cape Town, South Africa,
August 2014.

[31] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3–4,
pp. 229–256, 1992.

[32] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The
Discrete-Time Case. Athena Scientific, 1996.

[33] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. New York (NY), USA: John
Wiley & Sons, Inc., 1992.

[34] H. Kimura and S. Kobayashi, “Reinforcement learning for continuous
action using stochastic gradient ascent,” Intelligent Autonomous Systems
(IAS-5), pp. 288–295, 1998.

[35] P. Thomas, “Bias in natural actor-critic algorithms,” in 31st International
Conference on Machine Learning, 2014, pp. 441–448.

[36] P. McMullen, “The maximum numbers of faces of a convex polytope,”
Mathematika, vol. 17, no. 2, pp. 179–184, 1970.

[37] B. Chazelle, “An optimal convex hull algorithm in any fixed dimension,”
Discrete & Computational Geometry, vol. 10, no. 1, pp. 377–409, 1993.

[38] A. Fehnker and F. Ivančić, “Benchmarks for hybrid systems verifica-
tions,” in Hybrid Systems: Computation and Control, ser. LNCS 2993,
R. Alur and G. J. Pappas, Eds. Springer Verlag, April 2004, pp. 326–
341.

[39] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Computa-
tional approaches to reachability analysis of stochastic hybrid systems,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Sciences, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds.
Berlin: Springer-Verlag, 2007, no. 4416, pp. 4–17.

[40] M. Prandini and L. Piroddi, “A self-recovery approach to the proba-
bilistic invariance problem for stochastic hybrid systems,” in 51st IEEE
Conference on Decision and Control, Maui (HI), USA, Dec. 2012, pp.
2096–2102.

[41] H. Zhang, C. Qin, L. Busoniu, B. Jiang and Y. Luo, “Online Adaptive
Policy Learning Algorithm for H∞ State Feedback Control of Unknown
Affine Nonlinear Discrete-Time Systems”, IEEE T. Cybernetics, vol. 4,
no. 12, pp. 2706–2718, 2014.

[42] K. Senda, S. Hattori, T. Hishinuma, and T. Kohda, “Acceleration of
Reinforcement Learning by Policy Evaluation Using Nonstationary
Iterative Method”, IEEE T. Cybernetics, vol. 44, no. 12, pp. 2696–2705,
2014.

Giorgio Manganini was born in Merate, Italy, in
1985. He received the M.S. degree in Computer
Engineering in 2010 from the Politecnico di Milano.
Between 2010 and 2012 he worked as a software
engineer at an ICT international company. From
November 2012 he is a Ph.D. student in the Systems
and Control Division at the Dipartimento di Elettron-
ica, Informazione e Bioingegneria at Politecnico di
Milano. His research interests include Approximate
Dynamic Programming, Machine Learning and Ran-
domized Algorithms with applications to building

energy efficiency.

Matteo Pirotta received the M.S. degree in com-
puter science from the Politecnico di Milano, Mi-
lano, Italy, in 2012. He is actually a Ph.D. student in
information technology at the Politecnico di Milano.
His current research interests include machine learn-
ing (specially reinforcement learning) and robotics.

Marcello Restelli received the Dr.Eng. degree in
computer science engineering and the Ph.D. de-
gree in information engineering from Politecnico
di Milano, Milan, Italy, in 2000 and 2004, respec-
tively. Since 2008, he is an Assistant Professor
with the Politecnico di Milano, where he has held
various courses in the areas of machine learning
and robotics. His research interests include machine
learning, reinforcement learning, multi-armed ban-
dit, and robot learning.

Luigi Piroddi (M’07) was born in London, U.K.,
in 1966. He received the ”Laurea” degree in elec-
trical engineering and the Ph.D. degree in computer
science and control theory from the Politecnico di
Milano, Milano, Italy, in 1990 and 1995, respec-
tively. Between 1994 and 1999, he was a Professor
of fundamentals of automation with the Universit
degli Studi di Bergamo, Bergamo, Italy. From 1999
to 2004, he was an Assistant Professor with the
Politecnico di Milano. Since 2004, he has been an
Associate Professor with the same institution, where

he holds various courses in the systems and control area. His research interests
include nonlinear model identification, Petri nets, modeling, and control of
manufacturing processes.

Maria Prandini received an M.S. degree in Electri-
cal Engineering from Politecnico di Milano, Italy, in
1994 and a Ph.D. degree in Information Technology
from the Universit degli Studi di Brescia, Italy, in
1998. From 1998 to 2000 she was a visiting post-
doctoral researcher at the University of California at
Berkeley. From December 2002 she held positions
at Politecnico di Milano, Italy, where she is cur-
rently an Associate Professor of Automatic Control
at the Dipartimento di Elettronica, Informazione e
Bioingegneria.

Her research interests include stochastic hybrid systems, randomized al-
gorithms, constrained control design, system abstraction and verification, dis-
tributed and stochastic optimization, system identification, and the application
of control theory to air traffic management and power networks.

She currently serves on the editorial boards of IEEE Transactions on Control
Systems Technology and Nonlinear Analysis: Hybrid Systems, and previously
of European Journal of Control (2007 - 2013) and IEEE Transactions on
Automatic Control (2009 - 2013). She is a member of the IFAC Technical
Committee on Discrete Event and Hybrid Systems, of both the IEEE CSS and
EUCA Conference Editorial Boards. In 2013 she became editor for Electronic
Publications of the IEEE Control Systems Society, and she is responsible for
the E-Letter on Systems, Control, and Signal Processing.

