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Abstract 

 

Assigning and scheduling vehicle routes in a stochastic time dependent environment is a crucial 

management problem. The assumption that in a real-life environment everything goes according to an 

a priori determined static schedule is unrealistic, resulting in a planning gap (i.e. difference in 

performance between planned route and actual route). Our methodology introduces the traffic 

congestion component based on queueing theory, thereby introducing an analytical expression for the 

expected travel. In real life travel times are subject to uncertainty, we solve a time dependent vehicle 

routing problem to find robust solutions, that can potentially absorb such uncertainties. We model 

uncertainty as perturbations that are randomly inserted on the routes, we optimize the perturbed 

solutions via Tabu Search. We conduct experiments on a set of 32 cities, and found that the perturbed 

solutions generally cope better with the uncertainty than the non-perturbed 

solutions, with a small increase in expected travel times. 
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Introduction 

 

Routing problems have been largely studied due to the interest in different applications in logistics and 

supply chain management. Not surprisingly, transportation is an important component of supply chain 

competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. 

Transportation costs represent approximately 4 to 5 percent of total logistics costs and 4 to 1 percent 

of the product selling price for many companies Coyle et al. [7]. As such, transportation decisions 

directly affect the total logistic costs. The passage of the transportation deregulation acts in the 198’s 

in the USA and in the 199’s in the EU drastically changed the business climate within which the 

transportation managers operate. Within the EU, the competition is becoming intense between 

transporters since they often operate at transnational levels and must provide higher levels of service 

with lower costs to meet the various needs of customers. In this context, assigning, scheduling and 

routing the fleet of a transportation company is a crucial management problem. In many real-life 

circumstances, traffic conditions and the related uncertainty can not be ignored in order to carry out a 

realistic routing optimization. Uncertainty about traffic and thus the travel times is a pervasive aspect 

of routing and scheduling. As the cost impact due to this uncertainty can be substantial, planners may 

wish to know to what extent the routes and schedules are risky in terms of travel times. 

Here, the traffic congestion component is introduced through a queueing approach, that also 

guarantees adherence to the FIFO principle, that was emphasized by Ichoua et al. [16] The 

distribution of the speeds is then calculated based on traffic flows. More specifically, the stochastic 



nature of travel times is captured using queueing theory applied to traffic flows (see Vandaele et al. 

[24] 2; Van Woensel [26], 23). By making use of this analytical approach the necessary data (i.e. 

traffic flow and some queueing parameters to capture road conditions) to model congestion is limited 

which opens the door for real-life applications. This analytical approach to congestion based on 

queueing models allows for the calculation of average speeds. In this paper, Tabu Search is used as 

the prime tool to generate solutions. 

Over the past years optimizing under uncertainty has attracted much research, this is driven from the 

realization that in a modeling process many parameters are assessed and are inserted in the given 

constraints, however in many cases a great deal of uncertainty lies in assessments. In principle this 

means that while sufficiently good solutions are found their applicability is limited, since they do not 

take into account uncertainty. Robust optimization as presented by Bertimas and Thiele [6], is 

essentially defined over a convex space, and hence applies in essence to continuous linear 

programming with uncertainty.  Bental and Nemirovski [5] expand the approach to include conic 

quadratic problems. While this area in combinatorial optimization has dramatically evolved throughout 

the past years,  the  techniques developed depend on the symmetric composition of the problem as 

well as independencies between the arguments of the uncertainty. However more importantly when 

dealing with an NP-Hard problems (Yu and Yan [29]), such as vehicle routing problem (VRP), 

techniques are insufficient and solutions are found via heuristics. 

In a time dependent vehicle routing problem (TDVRP) setting an actual realization of a route might 

lead to a far greater travel time than the truly optimal solution.  Montemanni and Gambardella [21] 

address the issue of travel time uncertainty in the TSP by defining a robustness measure, that is 

incorporated into the target function, which they try to minimize under various scenarios. 

Sorensen [23] defines robustness as the insensitivity of a solution with respect to changes in the 

environment in which this solution is implemented. He further notes that while there are a number of 

powerful tools to obtain robust solutions, they are very hard to implement using local search 

techniques such as tabu search. He proposes an approach that incorporates perturbations on given 

solutions which are then evaluated through the objective function. This approach was presented in 

the context of robust continuous optimization using local search. We choose to adapt this approach to 

our TDVRP setting (due to its simplicity, relevance and adaptability to Tabu Search). We show that the 

travel times and reliability of the travel times can be improved significantly when explicitly taking into 

account random fluctuations during optimization. The rest of the paper is organized as follows: in 

Section 2 we present the queuing model used to depict travel times, we then present our robust 

modeling approach, in Section 3, we present one preliminary experiment and its results, and finally we 

conclude with Section 4 that highlights main conclusions and discusses potential further research. 

 

 

 



Model 

 

Formally, the vehicle routing problem can be represented by a complete weighted graph G=(V,A,c) 

where V={,1...n} is a set of vertices and A={(i,j): i <> j} is a set of arcs. The vertex 0 denotes the 

depot; the other vertices of V represent cities or customers. The non-negative weights cij, which are 

associated with each arc (i,j), represent the cost (distance, travel time or travel cost) between i and j. 

For each customer, a non-negative demand qdi and a non-negative service time di is given (d0 = 0 

and qd0 =0). The objective is then to find the minimum cost vehicle routes where the following 

conditions hold: every customer is visited exactly once by exactly one vehicle; all vehicle routes start 

and end at the single depot; every vehicle route has a total demand not exceeding the vehicle 

capacity Q; every vehicle route has a total route length not exceeding the maximum length L (Laporte 

[20]). If it seems reasonable to assume that the service time at each vertex (customer) is known in 

advance, it is definitely not the case for the travel time between two vertices. In fact, the travel times 

are the result of a stochastic process related to traffic congestion. Clearly, travel times depend greatly 

on the different number of vehicles occupying the road and on their speeds. In this paper, the VRP 

problem considered deals with dynamic travel times. In this case, the non-negative weights cij
p 

associated with each arc (i,j), represent the travel time between i and j starting in time zone p. In the 

rest of this section we start off by presenting the queueing model developed by Van Woensel [26]. 

Later on we present the perturbation model. 

 

Queuing approach 

Vandaele et al. [24] and Heidemann [14], showed that queueing models can also be used to model 

traffic flows and thus offering a more analytical approach, useful for sensitivity analysis, forecasts, etc. 

Jain and Smith [17] describe in their paper a state-dependent M/G/C/C queueing model for traffic 

flows. Also a lot of research is done on a travel time-flow model originating from Davidson [9]. The 

model is based on some concepts of queueing theory but a direct derivation has not been clearly 

demonstrated (Akcelik [2] and [3]). 

Vandaele et al. [24] developed different queueing models that can be used to model traffic flows. The 

M/M/1 queueing model (exponential arrival and service rates) is considered as a base case, but due to 

its specific assumptions regarding the arrival and service processes, it is not useful to describe real-life 

situations. Relaxing the specifications for the service process of the M/M/1 queueing model, leads to 

the M/G/1 queueing model (generally distributed service rates). Relaxing both assumptions for the 

arrival and service processes results in the GI/G/m queueing model. Moreover, following Jain and 

Smith [17], a special case of the GI/G/m queueing model is derived: a state dependent GI/G/m 

queueing model. This model assumes that the service rate is a (linear, exponential,etc.) function of 

the traffic flow. In this case vehicles are served at a certain rate, which depends upon the number of 

vehicles already on the road. 



In our queueing approach to traffic flow analysis, roads are subdivided into segments, with length 

equal to the minimal space needed by one vehicle on that road. We define kj as the maximum traffic 

density (i.e. maximum number of carson a road segment). This segment length is then equal to 1/kj 

and matches the minimal space needed by one vehicle on that road. Each road segment is then 

considered as a service station, in which vehicles arrive at a certain rate λ and get served atanother 

rate µ (Vandaele et al. [24]}; Van Woensel et al. [27]; Heidemann [14]). 

Following Heidemann [14], the arrival rate λ is defined as the product of the traffic density k and the 

free flow speed vf  or λ =k x vf . Similarly, the service rate µ is defined as the product of free flow 

speed vf  with the maximum traffic density kj, or µ= ki x vf. Vandaele et al. [24] and Heidemann [14] 

showed that the speed v can be calculated by dividing the length of the road segment (1/kj) by the 

total time in the system (W). 

W

k
v

j/1
=       (1)

  

The total time in the system W in formula 1 is different depending upon the specific queueing model 

used. The total time spent in the system W equals the sum of the waiting time Wq and the service 

time  Wq. Table 1 shows the specific form of Wq  for the general queueing models. For the GI/G/m 

queueing models, no exact solutions are available and one must rely on approximations. Here, three 

approximations are considered: the Kramer-Lagenbach-Belz (KLB) approximation[19] is widely used 

but is limited to single servers only. To cope with multiple lanes, the heavy traffic or Kingman 

approximation (K) [18] and the Whitt (W) approximations [25] with multiple servers are used. In 

this paper, the GI/G/m queueing models with the Whitt approximations are used. 

 

Table 1 : The specific form of Wq for each queueing model 

 

 

 



Results show that the developed queueing models can be adequately used to model traffic flows (Van 

Woensel and Vandaele [28]). Moreover due to the analytical character of these models, they are very 

suitable to be incorporated in other models, e.g., the VRP. In general, formula 1 can be 

rewritten in the following basic form (see Van Woensel [26] for the details): 

Ω+

=

1

fv
v        (2) 

Formula 2  shows that the speed is only equal to the free flow speed vf if the factor Ω is zero. For 

positive values of Ω, vf   is divided by a number strictly larger than 1 and speed is reduced. The factor 

Ω is thus the influence of congestion on speed. High congestion (reflected in a high Ω) leads to lower 

speeds than the maximum. The factor Ω is a function of a number of parameters depending upon the 

queueing model chosen: the traffic intensity r , the coefficient of variation of service times 

cs and coefficient of variation of inter-arrival times ca, the jam density kj and the free flow speed vf. 

High coefficients of variation or a high traffic intensity will lead to a value of Ω strictly larger than zero. 

Actions to increase speed (or decrease travel time) should then be focused on decreasing the 

variability or on influencing the traffic intensity, for example by manipulating the arrivals (arrival 

management and ramp metering). 

The major strength of using the queueing models is that, given the physical characteristics of the road 

network, it can immediately be linked with the parameters of the queueing model. In practice, the jam 

density and the free flow speed is fixed for a given arc (i,j), leaving only the coefficients of variation to 

represent the traffic conditions (e.g., bad weather, etc.). The flow q is a parameter that is determined 

empirically over time, allowing the determination of realistic velocity profiles as a function of time. 

Analytical queueing models based on traffic counts model the behavior of traffic flow as a function of 

the most relevant determinants (e.g. free flow speeds, jam density, variability due to weather, etc.). 

An empirical validation of the queueing approach is provided in Van Woensel and Vandaele [28]. 

Consequently, the travel times can be modeled much more realistically using these speeds (i.e. 

expressed in kilometer per hour) and are directly related to the physical characteristics and the 

geographical location on the arc. 

For a more detailed discussion of the queueing models and their results, the interested reader is 

referred to Vandaele et al. [24] and Van Woensel et al. [27]. 

Towards Travel Times 

To compute the travel times, one should note that in the time-dependent case, the travel speeds are 

no longer constant over the entire length of the arc. More specifically, one has to take into account 

the change of the travel speed when the vehicle crosses the boundary between two consecutive time 

periods. For example, the speed changes when going from time period p to time period  (p+1)  from 

vij
p to vij

p+1 .The time horizon is discretized into P time periods of equal length ∆p with a different 

travel speed associated to each time period p (1≤p≤ P). The travel speeds are obtained using the 



above discussed queueing models for traffic flows. Formally, the travel time Tij
p0 going from customer i 

to customer j, starting at some time p0,
 must satisfy the following condition: 
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With vp denoting the speed in time period p and dij the distance traveled. Solving this integral for Tij
p0 

and making use of the discrete time horizon, results in: 
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Rewriting as a function of the time slices, gives: 
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The travel time is thus the sum of the following components: 

1.The fraction of travel time still available in the first time zone, given by (φ∆p) with φ the fraction 

parameter (0≤ φ ≤ 1). 

2. The duration of the (k-2) intermediate time zones passed: (k-2) ∆p. 

3. The fraction of the travel time in the last time zone, given by (Φ∆p)  , with Φ the fraction parameter  

(0≤ Φ ≤ 1). 

Concluding, in total k time buckets are crossed. The number k is totally defined by the equations in 

the paper and is a function of the distance i to j and the speeds in the different time buckets. In 

practice, the other values are computed incrementally: Starting at time p0 (part of the first time 

bucket), one knows the fraction of time left in the first time bucket and consequently φ=1- p0/ ∆p. 

Then a number of time buckets ∆p is added as necessary to reach the destination city j. Of course, 

one will spend in the last time bucket only part of the time or the fraction Φ. This fraction is totally 

depending upon the residual distance that needs to be traveled in the last time bucket. Using this 

incremental procedure, the travel time Tij
p0  from customer i to customer j, starting at time p0 can be 

determined easily based on the distance dij and the speed vp for the different time periods p. 

 

Perturbation insertion  

Using the above described queueing model that depicts travel timeswe look into finding robust 

solutions (Sorensen [23]) For a given solution, we generate perturbations with a size δi from a given 

distribution, then we randomly chose a link, and we assess the solution given by the perturbation in 

the target function. This is done n times, at the end of which the average target function value is 

associated with the solution. The following equation describes the procedure, where fr(x) is the target 

function value associated with route x. 
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The power of such an approach lies in the fact that the structure of the Tabu search remains the 

same, however when evaluating each solution a single, yet different, random time perturbation is 

inserted at the beginning of a random link on the route, for n scenarios. The main idea behind such 

an approach, is locating a solution that is in a stable environment, meaning that if fluctuations were to 

occur randomly this solution would on average perform well. 

 

 

Experiments 

 

First, we calibrate the input used in the optimization step based onreal-life data. limited dataset 

collected by the ministry of transportation of the Flemish Government (Belgium) is used tocalibrate 

and validate the model. The original dataset contains minute-per-minute observations the number of 

trucks, the number of passenger cars and their speeds for four counting points in Belgium for two 

weeks (which is the longest period for which this type of date is stored on this level of detail). One 

counting point of this set (Ternat) is selected. All trucks and passenger cars are converted to a vehicle 

equivalent, i.e. cars are 1 vehicle equivalent and trucks are 2 vehicle equivalents (see e.g. [8]). Based 

on these data we select best parameter settings for the queueing model. Similar to Ichoua et al. [16], 

we take into account multiple road types e.g. to represent highways versus rural roads. Due to the 

lack of real-life data on both speeds and flows for different road types, we used the same observed 

speeds by applying a re-scaling to represent different road types. If there is only one road type, the 

original series is used; if there are two road types, both the original as 60% of the original series is 

used; if there are three road types, the original, 60% of the original and 30% of the original series 

was used. In the two road types setting, all even to even node arcs are of the faster type. In the two 

road type setting, all even to even node arcs are of the fast type, all odd to odd node arcs are of the 

middle type and everything else is slow. The parameter settings for the queueing approach are 

obtained via the same procedures as described in van Woensel et al. [27].  

We experiment with a data set from Augerat [4]. This set contains 32 customers with two road types, 

including the depot. The duration of a time zone for this experiment is set equal to 1 minutes. Note 

that the choice of the time settings is purely arbitrarily, i.e. in the extreme case, time zones of 1 

minute can be considered. All capacities of the trucks are set to 1 (following Augerat [4]). All 

coordinates are multiplied with a constant factor of 1 to ensure that multiple time zones are covered 

over longer distances.  The starting time is allowed to be different (comparable to the real-life 

decisions of leaving earlier or later due to congestion) in the dynamic case: trucks are allowed to start 

their routes anywhere between 6AM and 11AM.  



In the second stage we set the perturbation parameters, given the fact that we choose to uniformly 

assign the perturbation at the beginning of a random link, two other parameters need to be set: n 

being the number of perturbations for each solution, and the perturbation size δi which is taken from 

a distribution. We choose to experiment with n={10,20,..80}. As for the size of the perturbation, we 

chose to work with a deterministic perturbation of size 36.36, as well as a normally distributed 

perturbation with (µ=36.36, σ=3.64) (36.6 is the average travel time per link in the initial non 

perturbed setting). 

The solution strategy based is on local search is proposed. According to Aarts and Lenstra [1], local 

search is a solution process that tries to improve a given initial solution by making relatively small 

changes in several steps in the solution space. The quality of the solutions is determined with the cost 

function of the problem. Local search techniques will result in a good but not necessarily optimal 

solution within reasonable computing time. In this paper, the tabu search heuristic is used for 

obtaining solutions for the vehicle routing setting presented. The success of this methods is due to 

several factors: general applicability of the approach, flexibility for taking into account specific 

constraints in real cases and ease of implementation (Pirlot [22]). 

Tabu Search can be described as a local search technique guided by the use of adaptive or flexible 

memory structures. Tabu search was first proposed by Glover ([12] and [13]) and involves the 

examination of all the neighbors of a solution of which the best is selected. To prevent cycling, 

solutions that were recently examined are forbidden and inserted in a constantly updated tabu list. For 

our tabu search implementation the following references where used as a basis: Gendreau et al. [10]; 

Gendreau et al.[11]; Hertz et al. [15]. The only change made to this basic algorithm is to replace 

distance by dynamic travel time. We programmed our implementation in JAVA. 

Unlike in the static VRP where the gain is calculated based on distances, in the time dependent VRP, 

the gain is calculated in terms of travel time. As the evaluation is done in terms of travel times, the 

arrival times at a certain node will be affected by an exchange of two arcs. Therefore, the potential 

gains of the solution has to be re-evaluated. Note that in principle, one does not need to re-evaluate 

the complete solution as the travel times of the arcs traversed before the exchanged ones, do not 

change.  Neither are the subtours not involved in the arc swap, affected by this operation. 

The solution found under the perturbed setting is expected to have higher expected travel times, in 

comparison with expected travel times in the original setting (otherwise it would have been the 

same), however the solution under the perturbed setting is expected to perform much better with 

regards to uncertainty. For the data set used the solution found by the Tabu search, without any 

perturbations denoted as TT(initial), has the value of 138.5. Table 2 depicts the travel times, for the 

deterministic perturbation, the travel times of the best found solution in a perturbed setting is denoted 

by TT(pert), this solution's associated expected travel is denoted by TT(pert no pert). The last column 

TT(initial pert) shows the result of the initial solution (1308.5) when subjected to the set of 

perturbations that led the Tabu search to its chosen solution. 



Table 2 : Deterministic perturbation size 

 

n Total iteration 

number 

TT(pert) TT(Pert no 

per) 

TT(initial) TT(initial of 

perturbed) 

10 1840 1332.2 1309.3 1308.5 1341.9 

20 1232 1335.2 1309.9 1308.5 1340.0 

30 1310 1336.7 1309.0 1308.5 1340.7 

40 1074 1336.3 1308.9 1308.5 1340.4 

50 1744 1338.0 1308.9 1308.5 1341.7 

60 1627 1337.1 1309.7 1308.5 1340.7 

80 1507 1337.7 1308.9 1308.5 1340.4 

 

We can observe from tables 2 and 3 that there is a significant difference between the initial perturbed  

solution TT(initial pert)  and the perturbed solution found by the Tabu search TT(pert), p=4.1858E-5 

and (p=0.001) for tables 2 and respectively. 

 

Table 3 : Normally distributed perturbation sizes 

 

n Total iteration 

number 

TT(pert) TT(Pert no 

per) 

TT(initial) TT(initial of 

perturbed) 

10 892 1330.4 1309.7 1308.5 1342.1 

20 1529 1336.6 1310.8 1308.5 1339.3 

30 2081 1335.6 1309.0 1308.5 1340.1 

40 1319 1338.3 1309.3 1308.5 1339.0 

50 1726 1337.1 1309.2 1308.5 1340.8 

60 1517 1337.5 1309.6 1308.5 1340.4 

80 1746 1339.0 1309.3 1308.5 1342.3 

 

In order to illustrate the potential benefits of using the method, we plot the added expect travel time 

(without perturbations) i.e. the added planning time, along with the difference  of both solutions when 

subjected to perturbations, i.e. the saved travel time when subjected to perturbations by using 

TT(pert). 

 



Figure 1 : Tradeoff between solutions with and without perturbations (Det) 
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It can be observed that the generated solutions on expectation are longer than the initial one, 

however their potential saving under perturbations is more than this difference. In other words the 

addition of time on the expected travel times is far less than the potential savings when subjected to 

perturbations. 

 

 

Figure 3 : Tradeoff between solutions with and without perturbations (Norm) 
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Conclusions and further research 

 

We conducted a preliminary  analysis on a time dependent VRP subject to perturbations, we managed 

to find more robust solutions that are immune to perturbations. We showed that there is a tradeoff 

between the expected travel and the realization of perturbations under such a solution. Furthermore, 



we note that while a perturbation with an average of size 36.36 was added the resulted solutions, for 

both experiments, have an average of 27 minutes more than the initial solution (138.5). This means 

that the resulting travel time is smaller than the added perturbation.  

There is room for conducting further research first on more data sets, with a number of perturbations 

and distributions, furthermore there is a need to identify common characteristics for the solutions, 

more properties should be explored such the length of each sub route. 
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