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ABSTRACT
Propositional Linear Temporal Logic (LTL) is well-suited for
describing properties of timed systems in which data belong
to finite domains. However, when one needs to capture infi-
nite domains, as is typically the case in software systems, ex-
tensions of LTL are better suited to be used as specification
languages. Constraint LTL (CLTL) and its variant CLTL-
over-clocks (CLTLoc) are examples of such extensions; both
logics are decidable, and so-called bounded decision proce-
dures based on Satisfiability Modulo Theories (SMT) solv-
ing techniques have been implemented for them. In this
paper we adapt a previously-introduced bounded decision
procedure for LTL based on Bit-Vector Logic to deal with
the infinite domains that are typical of CLTL and CLTLoc.
We report on a thorough experimental comparison, which
was carried out between the existing tool and the new, Bit-
Vector Logic-based one, and we show how the latter outper-
forms the former in the vast majority of cases.

CCS Concepts
•Software and its engineering → Model checking;

Keywords
Formal Verification; Constraint LTL; Bounded Satisfiability
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1. INTRODUCTION
Propositional Linear Temporal Logic (LTL) has been a sta-
ple in computer science for decades [20]. Its uses include,
among others, the specification of system properties [22],
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test case generation [24], run-time verification [6], and the
formalization and verification of UML diagrams [4].

Two of the most important factors that still hamper the
applicability of LTL-based approaches in practice are the
limited efficiency and scalability of the corresponding ver-
ification tools, and the lack of expressiveness of the logic,
which does not allow one to express, for example, variables
with infinite domains (e.g., unbounded integers or reals).
Recent work [5] on using Bit-Vector Logic as target formal-
ism in a so-called bounded satisfiability approach for the
formal verification of LTL specifications addresses the first
issue. To address the second concern, LTL can be extended
with infinite-domain variables so that the resulting logic is
still decidable, hence verifiable in a fully automated way.

Let us introduce a first motivating example for the need
for infinite domains in LTL. Consider the classic leader elec-
tion protocol introduced in [17]. The goal of the protocol is
to elect a leader in a ring of processes that exchange mes-
sages. Each process in the ring chooses a number, and com-
municates it to its immediate neighbor on one side. The
processes then engage in a sequence of actions (receiving and
sending numbers, comparing received numbers with stored
ones) until the leader is elected. The selected leader is the
one that had initially chosen the highest number among
those in the ring. The protocol is guaranteed to elect a
unique leader when the initially chosen numbers are all dis-
tinct. The protocol is rather simple, and it can be formally
verified, for example, through the Spin model checker1. How-
ever, the Promela2 model analyzed by Spin can only deal
with finite ranges of integer values, so all we can verify
through the tool is that, if the numbers assigned to pro-
cesses are taken from a certain finite domain, the protocol
will work correctly. Then, generalizing the result to any
combination of integer numbers requires a manual step.

Constraint LTL (CLTL) [16] is a first-order extension of LTL
that allows variables to take values from infinite domains
such as integers or reals; the values assigned to variables
at a time instant can be compared against each other (i.e.,
one can write constraints such as x < y), and against their
future values (e.g., the value of a variable in the next in-
stant). Recently, we have developed an effective decision
procedure based on a bounded satisfiability approach for

1The protocol is one of the basic examples included in
the tool distribution [23].

2Promela is the input language of the Spin model checker.
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the automated verification of CLTL specifications [7]. To
the best of our knowledge, this decision procedure is the
first one to be implemented for CLTL; it is available as part
of the Zot tool [25]. Through CLTL it is possible to create
a model of the leader election protocol that allows for num-
bers assigned to processes in the ring to take values in an
infinite domain such as the set of integers.

When variables can be real-valued, it becomes natural to in-
troduce the possibility that they behave as clocks that mea-
sure the passing of time, as in Timed Automata [1]; that
is, the value of each variable (i.e., clock) does not change
through assignment, but it increases with the passing of
time. In fact, real-valued clocks are a typical mechanism for
quantitatively modeling the passing of time in systems that
combine both software components and physical ones, such
as embedded and cyber-physical systems. LTL-like temporal
logics that include a notion similar to that of time-measuring
clocks have been studied for several decades. Timed Propo-
sitional Temporal Logic (TPTL) [2] is a classic example of
such logics, but it becomes undecidable when clocks are
real-valued. Then, as a second motivating example, we
would like to have a decidable, real-time, extension of LTL
that allows us to capture the passing of time in a quantita-
tive way, where time quantities are real-valued.

CLTL-over-clocks (CLTLoc) [9, 12] is the variant of CLTL
where variables behave as real-valued clocks. It is decidable,
expressively equivalent to Timed Automata [10], and a deci-
sion procedure for solving it is implemented in the Zot tool.
Also, CLTLoc is the basis for the first implemented decision
procedure that solves the satisfiability of continuous-time
Metric Interval Temporal Logic (MITL) [8, 11].

The goal of this work is to bring the gains in time and mem-
ory efficiency provided by the bit-vector-based bounded en-
coding for LTL [5] to the decision procedures implemented
for CLTL and CLTLoc. To this end, we introduce a novel
Zot plugin that, like the previous tool, is built upon SMT
solvers such as Z3 [18], and which exploits a combination of
Bit-Vector Logic and Linear Integer/Real Arithmetic. The
performance of the new tool is compared against that of the
existing one, showing in many cases marked improvements
in time and memory consumption.

The rest of this paper is organized as follows: Section 2 intro-
duces CLTL, CLTLoc, and briefly describes the bit-vector-
based bounded encoding for LTL; Section 3 introduces the
new tool for deciding CLTL and CLTLoc; Section 4 presents
and discusses the experimental results; Section 5 concludes
the paper.

2. BACKGROUND
In this section we first introduce the CLTL logic and its ex-
tension where variables behave as clocks (CLTL-over-clocks).
Then, we briefly introduce the Bit-Vector Logic-based en-
coding of LTL formulae that can be used to efficiently solve
bounded satisfiability problems for LTL.

2.1 Constraint LTL (over clocks)
Constraint LTL (CLTL [16, 7]) is a decidable fragment of
First-Order LTL. CLTL formulae are defined with respect to

(π, σ), i |= p⇔ p ∈ π(i) for p ∈ AP
(π, σ), i |= R(α1, . . . , αn)⇔ (σ(i+ |α1|, xα1),

. . . , σ(i+ |αn|, xαn)) ∈ R
(π, σ), i |= ¬φ⇔ (π, σ), i 6|= φ

(π, σ), i |= φ ∧ ψ ⇔ (π, σ), i |= φ and (π, σ), i |= ψ

(π, σ), i |= Xφ⇔ (π, σ), i+ 1 |= φ

(π, σ), i |= Yφ⇔ (π, σ), i− 1 |= φ ∧ i > 0

(π, σ), i |= φUψ ⇔ ∃ j ≥ i : (π, σ), j |= ψ ∧ (π, σ),

n |= φ ∀ i ≤ n < j

(π, σ), i |= φSψ ⇔ ∃ 0 ≤ j ≤ i : (π, σ), j |= ψ ∧
(π, σ), n |= φ ∀ j < n ≤ i

Figure 1: Semantics of CLTL.

a finite set V of variables and a constraint system D, which
is a pair (D,R) with D being a specific domain of interpre-
tation for variables and constants and R being a family of
relations on D, such that the set AP of atomic propositions
coincides with set R0 of 0-ary relations. An atomic con-
straint is a term of the form R(x1, . . . , xn), where R is an n-
ary relation of R on domain D and x1, . . . , xn are variables.
A valuation is a mapping v : V → D, i.e., an assignment
of a value in D to each variable. A constraint is satisfied
by v, written v |=D R(x1, . . . , xn), if (v(x1), . . . , v(xn)) ∈ R.
Given a variable x ∈ V over domain D, temporal terms are
defined by the syntax: α := c | x | Xα, where c is a constant
in D and x denotes a variable over D. Operator X is very
similar to the classic “next” operator X of LTL, but it only
applies to temporal terms, with the meaning that Xα is the
value of temporal term α in the next time instant. Notice
that, to differentiate the “next” operator that is applied to
formulae from the one that is applied to terms we write the
former in bold, and the latter in plain font. Well-formed
CLTL formulae are defined as follows:

φ := R(α1, . . . , αn) | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where αi’s are temporal terms, R ∈ R, X, Y, U and S are
the usual “next”, “previous”, “until” and “since” operators of
LTL, with the same meaning. Operators“eventually”F, and
“globally” G are defined as usual, i.e., Fψ is >Uψ and Gψ
is ¬F(¬ψ).

The semantics of CLTL formulae is defined with respect to a
strict linear order representing time (N, <). The truth values
of propositions in AP , and values of variables belonging to
V are defined by a pair (π, σ) where σ : N × V → D is a
function that defines the value of variables at each position
in N and π : N → ℘(AP ) is a function associating a subset
of the set of propositions with each element of N. The value
of terms is defined with respect to σ as follows:

σ(i, α) = σ(i+ |α|, xα)

where xα is the variable in V occurring in term α and |α|
is the depth of a temporal term, namely the total amount
of temporal shift needed in evaluating α: |x| = 0 when x is
a variable, and |Xα| = |α| + 1. The semantics of a CLTL
formula φ at instant i ≥ 0 over a linear structure (π, σ) is
recursively defined as in Figure 1. A formula φ ∈ CLTL is



satisfiable if there exists a pair (π, σ) such that (π, σ), 0 |= φ.

We are particularly interested in the cases where D = (Z, {<
,=}) and D = (R, {<,=}), which are known to be decidable
[16], and a decision procedure based on bounded satisfiabil-
ity checking mechanisms has been defined in [7]. This deci-
sion procedure has been implemented in the ae2zot plugin
of the Zot tool [25]. To illustrate the features of the lan-
guage, the next CLTL formula states that, each time predi-
cate swap a and b holds, the values of variables a and b are
swapped, that is, the next value of variable a is equal to the
current value of variable b, and vice-versa:

G(swap a and b⇒ (Xa = b ∧Xb = a)) . (1)

CLTL-over-clocks (CLTLoc for short) is a variant of CLTL,
whereD = (R, {<,=}), arithmetic variables are evaluated as
clocks, and the arithmetic “next” operator X is not allowed.
A clock “measures” the time elapsed since the last time the
clock was “reset” (i.e., the variable was equal to 0). By
definition, in CLTLoc each i ∈ N is associated with a “time
delay” δ(i), where δ(i) > 0 for all i, which corresponds to
the “time elapsed” between i and the next state i+ 1. More
precisely, for all clocks x ∈ V , σ(i + 1, x) = σ(i, x) + δ(i),
unless it is “reset” (i.e., σ(i + 1, x) = 0). It is shown in
[12] that CLTLoc is decidable. In addition, [10] shows that
CLTLoc is equivalent to Timed Automata, so it is well suited
for capturing timed specifications.

For example, the following CLTLoc formula states that,
when predicate turn on holds, a clock x is reset (i.e., it is
equal to 0), and then predicate on holds until x hits value 5
(i.e., the light stays on for at least 5 time units):

G(turn on ⇒ (x = 0 ∧X( (x > 0 ∧ on)U(x = 5 ∧ on) ))) .
(2)

2.2 LTL Bounded Satisfiability Checking
through Bit-Vector Logic

Let us briefly recall the bounded encoding of LTL formulae
into Bit-Vector Logic formulae that was introduced in [5].

A bit-vector is an array of bits (Booleans). In Bit-Vector
Logic, the size of a bit-vector (number of bits) is finite, and
can be any nonzero number in N. We denote by←−x [n] the bit-
vector x with size n; we simply write←−x when the size is not

important or can be inferred from the context. ←−x [i]

[n] denotes

the ith bit in ←−x , where bits are indexed from right to left.

Accordingly,←−x [n−1]

[n] is the leftmost and most significant bit,

and ←−x [0]

[n] is the rightmost and least significant bit.

Similarly to the classic Boolean encoding of [13], given an
LTL formula φ, the goal is to capture models of φ that are
ultimately periodic, i.e., of the form α(sβ)ω, where the length
of αsβ is k + 1. To this end, since to capture the periodic
nature of the model we look for bounded models of the form
αsβs, we use a bit-vector of size k+ 2 to represent the truth
values of each subformula of φ at positions [0, k + 1]. How-
ever, we only introduce as many bit-vectors as the number of
atomic propositions in the formula, and describe the values
of the non-atomic subformulae as transformations on the for-
mer vectors. More precisely, for each p ∈ AP , we introduce

a bit-vector, ←−p [k+2], such that ←−p [i]

[k+2], with i ∈ [0, k + 1],

captures the value of proposition p at instant i. In addition,

we introduce a bit-vector,
←−−
loop[k+2], that contains (encoded

in binary) the position of the loop in interval [0, k+ 1] (i.e.,

the position of the first state s in αsβs). The
←−−
loop bit-vector

appears as an integer in the encoding with the notation of l.

In the bit-vector-based encoding of LTL, the bit-vector cap-
turing the value of a formula φ in [0, k + 1] is obtained by
recursively performing operations on the bit-vectors corre-
sponding to the subformulae of φ. The operations performed
depend on the structure of φ.

If the main connective in φ is a Boolean one, then we simply
apply the corresponding bitwise operation to the bit-vectors
of the subformulae of φ. For example, if φ = ¬ψ, then←−
φ =!

←−
ψ , and if φ = ψ1 ∧ ψ2, then

←−
φ =

←−
ψ 1&

←−
ψ 2 (where !

and & denote, respectively, the bitwise “not” and “and”).

The next table shows the transformations in the case of both
future (X, U) and past (Y, S) temporal operators, where
:: and � are, respectively, the concatenation and the “shift
left” operators, | is the bitwise “or”, and + represents the
bitwise sum.

φ bit-vector encoding

Xψ
←−
ψ [l+1] ::

←−
ψ [k+1:1]

ψ1Uψ2
←−
ψ 1Unl((

←−
ψ 1Unl

←−
ψ 2)[l] ::

←−
ψ

[k:0]
2 )

Yψ �
←−
ψ

ψ1Sψ2
←−
ψ 2 | (

←−
ψ 1 & !((

←−
ψ 1|
←−
ψ 2) +

←−
ψ 2))

The encoding of the U operator uses the Unl operation on
bit-vectors that is defined as:
←−xUnl

←−y = ←−y |(←−x & !Rev(Rev(←−x |←−y ) + Rev←−y )), where
Rev←−x is the operation that reverses the bit-vector ←−x .

To complete the encoding, we need to introduce, for each
past subformula and for each propositional letter, the so-
called “last state constraints”, and for each propositional
letter the “loop constraints” (see also [13]). More precisely,

for each formula Yψ, we add the constraint (�
←−
ψ )[l] =

(�
←−
ψ )[k+1], and similarly, mutatis mutandis, for each for-

mula ψ1Sψ2. Also, for each p ∈ AP we include the con-
straint ←−p [l] = ←−p [k+1]. Notice that “last state constraints”
are built-in in the encoding of Boolean connectives and of
temporal operators X and U. Finally, to impose the “loop
constraints” we simply add, for each p ∈ AP , the constraint
←−p [l−1] =←−p [k].

We refer the reader to [5] for all details of the encoding and
the proof of its correctness.

3. COMBINING BIT-VECTORS
AND ARITHMETIC TO SOLVE CLTL

The Zot tool [25] includes a plugin, called ae2zot (which
stands for “arithmetic enhanced zot”), which is capable of
deciding the satisfiability of both CLTL and CLTLoc for-
mulae. To achieve this, the plugin implements the bounded
approach described in [7, 12, 9]. To solve the satisfiabil-
ity problem for a formula φ that belongs to either CLTL or



CLTLoc, the ae2zot plugin unfolds φ over a finite model of
length k+ 2, where the last state of the model is the repeti-
tion of a previous one, and translates the unfolded formula
into a formula of a suitable decidable logic. The target logic
depends on the nature of φ. If φ is a CLTL formula where
the domain of the variables is N (i.e., D = (N, {<,=}))
or Z, then the target logic is Quantifier-Free Linear Inte-
ger Arithmetic with Uninterpreted Functions (QFUFLIA);
if φ is either a CLTL formula where the values of variables
are in R, or it is a CLTLoc formula, then the target logic
is QFUFLRA (i.e., the arithmetic part is over the reals).
The resulting QFUFLIA/QFUFLRA formula is fed to an
off-the-shelf SMT solver such as Z3 [18].

To improve with respect to the ae2zot plugin, we have sep-
arated the encoding of the temporal operators, which is now
done through the bit-vector-based approach presented in
Section 2.2, from the representation of the arithmetic vari-
ables. We have called the resulting plugin, which mixes
Quantifier-Free Bit-Vector Logic (QFBV) with QFUFLIA/Q-
FUFLRA, ae2bvzot3. Let us briefly illustrate how the sep-
aration is carried out through some examples.

To separate the arithmetic layer from the temporal one,
each arithmetic constraint is expressed through linear in-
teger/real arithmetic logic formulae at each time instant;
each constraint is then replaced by a fresh atomic propo-
sition (essentially, a Boolean abstraction of the arithmetic
constraint), which acts as placeholder in the temporal for-
mula. As a result, we obtain a temporal logic formula that
is free from any arithmetic constraints, which is conjoined
with the assertions capturing these constraints in the corre-
sponding logic (i.e., the concrete representation of the con-
straints). For example, consider formula (Xx > x)S(v = 1)
— where x and v are integer-valued, time-dependent vari-
ables — that states that the value of x strictly increased
since an instant in the past when the value of v was equal
to 1. To encode it, according to [7] we introduce two sets of
integer variables: k + 2 integer variables v0, . . . vk+1, which
capture the value of v at every time instant in [0..k + 1],
and k + 3 integer variables x0, . . . xk+2, which capture the
value of x and Xx at each position in [0..k + 1] (for exam-
ple, the value of Xx at position k + 1 is given by xk+2).
These variables are used to impose the constraints that are
necessary to capture the semantics of arithmetic variables/-
clocks in CLTL and CLTLoc, as defined in [7, 12, 9]. For
example, for clocks in CLTLoc, we need to introduce con-
straints that state that all clocks advance of the same quan-
tity, unless they are reset. In addition, we introduce two

bit-vectors,
←−
bvXx>x and

←−
bvv=1, which represent the value

of the corresponding atomic formulae in [0..k + 1]. Then,∧k+1
i=0 (
←−
bv

[i]
Xx>x ⇔ xi+1 > xi) and

∧k+1
i=0 (
←−
bv

[i]
v=1 ⇔ vi = 1) are

asserted, and the value of formula (Xx > x)S(v = 1) is given

by bit-vector
←−
bvv=1 | (

←−
bvXx>x & !((

←−
bvXx>x|

←−
bvv=1)+

←−
bvv=1)),

as defined in Section 2.2.

The efficiency of our encoding mainly owes to the word-level
simplification of the Bit-Vector Logic formulae that capture
the temporal operators of the original CLTL formula. In
fact, in the classic Boolean-based encodings there are groups

3The ae2bvzot plugin is also available as part of the Zot
distribution [25].

of Boolean variables capturing the value of atomic proposi-
tions, much like our bit-vectors, but the solver is blind to
their interrelations, because constraints are asserted at the
bit-level. Therefore, in Boolean-based encodings there are
no simplifications attempted at the level of the whole word,
whereas SMT solvers efficiently handle such simplifications
when atomic propositions are introduced as bit-vectors. For
example, in the case of the S and U operators, we use binary
additions and bitwise operations to provide a very concise
encoding of the temporal operators.

To maximize the efficiency of an SMT solver, one needs to
configure it properly by indicating what tactics should be
used to solve the given problem. Some preliminary experi-
ments we carried out, and discussed below, showed that this
is especially true when the problem to be solved is expressed
through the combination of different logics. There are nu-
merous configuration parameters in SMT solvers, which in
many cases are documented rather briefly, and trying all of
them is almost infeasible. Choosing the most efficient config-
uration out of the many possible ones was a trial-and-error
process guided by our intuition of what reasonable tactics
could be. We do not claim that this process led us to the
absolute best possible configuration of the SMT solver for
checking CLTL/CLTLoc specifications. It is possible that
even better configurations can be found by further study-
ing the shape of the SMT problems that are produced by
the bounded decision procedure for CLTL/CLTLoc, but we
leave this for future work.

In the set-up phase of our experiments, then, we tried many
combinations of different tactics to be used by the ae2zot

and ae2bvzot plugins when invoking the SMT solver (3 in
our case), to find the best ones in the two cases. The re-
sult was that we could hardly improve on the default con-
figuration of Z3 when a single logic was involved (i.e., in
the ae2zot case), but that the efficiency of the verification
could be increased significantly with respect to the default
configuration when multiple logics were used (i.e., for the
ae2bvzot plugin).

Finally, we configured the ae2bvzot plugin so that, when
Z3 is invoked, the tactics are applied in the following or-
der: first we perform simplification and elimination of vari-
ables through the solving of equations; then, the solver per-
forms bit-blasting to reduce the bit-vector expression into a
Boolean satisfiability problem; and finally the solver uses a
SAT-based tactic on this problem.

4. EXPERIMENTAL RESULTS
In this section we first briefly present the CLTL and CLT-
Loc case studies over which we compared the performance
of the ae2zot and ae2bvzot plugins; then, we show the ex-
perimental results, and finally we draw some considerations
on the results of the comparison.

4.1 Case Studies
We performed our comparison over four groups of exam-
ples, two concerning CLTL, and two concerning CLTLoc.
For both CLTL and CLTLoc the corresponding two groups
of examples differ in the way the CLTL/CLTLoc models
have been produced: in one group, the models have been



produced by hand from an informal description; in the sec-
ond group, the temporal logic model has been automatically
generated from another, formal or semi-formal, description.

More precisely, in the case of CLTL, we built by hand the
models for two well-known examples, a bubblesort-style sort-
ing algorithm, and the leader election protocol introduced
in Section 1. We have also used specifications automati-
cally generated from multi-diagram UML models using the
approach described in [3].

In the case of CLTLoc, the model built by hand is a standard
timed lamp which has been used many times for testing the
performance of verification tools (see, e.g., [21]), and which
has been given a CLTLoc description in [9]. The bulk of
the CLTLoc experiments, however, used models that have
been created using the transformation from continuous-time
MITL specifications that has been defined in [8, 11]. In
effect, these are experiments in verification of continuous-
time MITL models, which exploit CLTLoc as intermediate
language and use the corresponding decision procedure.

We remark that in all experiments the approach is entirely
logic-based, and the verification is always an instance of the
bounded satisfiability checking problem. That is, in all our
examples both the system being analyzed and the property
to be checked (if any) are expressed in temporal logic. This
differs from so-called bounded model checking mechanisms,
where the system is expressed in some kind of operational
formalism, typically labeled transition systems.

In general, we perform two kinds of experiments: consis-
tency checking ones (SAT), where we feed the verification
tool with only the system model, without any property to
be verified, and ask for an execution trace that witnesses the
feasibility of the model (i.e., we check that the system has
at least one admissible execution, hence it is not inconsis-
tent); and classic property verification experiments, where
we feed the tool with the system and the property to be ver-
ified (both described through temporal logic formulae), and
we check whether the latter holds for the former or not (in
which case the tool returns a trace witnessing the violation).

Let us briefly introduce the case studies we used in our ex-
periments.

Sorting. This model specifies a sorting process of an array
of fixed size N, using CLTL over D = (Z, {<,=}). This
model is introduced in [7]. We indicate by b, a ∈ ZN the
array we want to sort and the array during each step of the
sorting process, respectively, and by bi the i-th element in
b (similarly for ai). The model consists in a sorting process
that nondeterministically chooses an index 1 ≤ s ≤ N − 1
such that as > as+1 and swaps as with as+1. The sorting
process keeps swapping unsorted adjacent elements until the
whole array is sorted (Formula (1) is an example of CLTL
formula capturing the swapping mechanism). The following
is a sample property to be checked that says that eventually
the array gets sorted:

F

(
N−1∧
i=1

(ai ≤ ai+1) ∧
N∧
i=1

N∨
j=1

ai = bj

)
. (3)

In addition to the model in which the elements to be sorted
are arbitrary integer numbers, we also performed experi-

ments on a model which is built upon the same CLTL formu-
lae, but where elements are real-valued; that is, in this sec-
ond case we have that that b, a ∈ RN , and D = (R, {<,=}).

We also use a generalized version of this sorting process,
in which instead of swapping only adjacent values as, as+1,
the algorithm swaps as with possibly any az, provided that
z > s and as > az. In other words, any pair of unsorted
elements can be nondeterministically selected for swapping.

Leader Election Protocol. This case study consists in the
CLTL model (with D = (Z, {<,=})) of the leader election
protocol described in Section 1. It is a CLTL version of the
Promela model included in the Spin distribution [23].

Car Collision Avoidance System (CCAS). This exam-
ple is taken from [3]. It is originally described in UML, then
translated into CLTL through the technique presented in [3].
The example concerns a system that detects the distance of
the vehicle on which it is installed, with respect to other ob-
jects such as cars and pedestrians. The distance between the
car and the external objects is read by a sensor, which sends
the data to the CCAS main module every 100 ms through
the system bus. When the distance between the car and
the external objects is greater than or equal to 2 meters the
CCAS should perform no action. When the distance be-
comes strictly less than 2 meters the CCAS switches to the
warning state. If the CCAS remains in the warning state for
more than 300 ms and the distance is still less than 2 meters,
the CCAS must brake the car. In this case, we use CLTL
with D = (Z, {<,=}) to capture the data that is sent by
the sensor to the main module, and that triggers the action.
On this system, we want to prove the property that “if the
distance remained less than 2 meters for T time units, then
the system would brake within those same T time units”,
where T is a fixed positive integer, and each (discrete) time
unit corresponds to 10 ms.

Leader Election Protocol - UML version. This is again
the leader election protocol of Section 1, but first modeled
in UML, then translated into CLTL.

Timed Lamp - CLTLoc version. This example is taken
from [9, 12]. It consists of a lamp that is controlled by two
buttons, ON and OFF, which cannot be pressed simultane-
ously. The lamp can be either on or off. When ON (resp.
OFF ) is pressed, the lamp is immediately turned on (resp.
off). After ON is pressed, if no more buttons are pressed,
it will automatically turn off with a delay ∆, a positive real
constant. If the ON button is pressed again before the time-
out expires, then the timeout is extended by a new delay ∆.
Formula (2) is an example of CLTLoc formula for the timed
lamp, where ∆ = 5. In this case, we check properties such
as “the light never stays on for longer than ∆ time units”
and “if at some point the light stays on for longer than ∆
time units, then ON is eventually pressed, and it is pressed
again before ∆ time units”.

Timed Lamp - Continuous time MITL specification.
This example is also taken from [9, 12]. It is a pure MITL
specification of the previously described behavior of the timed
lamp over so-called continuous time signals. In this example,



we exploit the MITL-to-CLTLoc satisfiability-preserving trans-
lation described in [8, 11] to carry out the verification.

Continuous time MITL specifications. These examples
from [8, 11] exploit the aforementioned MITL-to-CLTLoc
satisfiability-preserving translation. They consider “events”
occurring in single instants over the real line (for example,
predicate p occurring exactly when the current instant is a
multiple of 100). We impose constraints such as “q must
occur within 1 time unit (in the future or in the past) of p,
then check properties such as “after each q there is another
q within 100 time units”. The examples include also the
so-called “counting” operators, which allow users to state
properties such as “q will hold at least n times in the next
interval of length 1” (with n a constant, for example 2).

4.2 Experimental Setup and Results
Tables 1 and 2 show the result (R) of the verification, which
can be satisfiable (S) or unsatisfiable (U), the time (T) in
seconds and memory (M) in MBs consumed in each of the
experiments we performed4. Table 1 shows the results for
the experiments carried out with CLTL, whereas Table 2
presents those where the logic used was CLTLoc.

To help the reader get a quick overview of the results, we
formatted the cells related to the ae2bvzot tool according to
the following scheme. If tr (resp., mr) is the ratio between
the time taken (resp., memory used) by ae2zot and that
taken by ae2bvzot, then the format of the corresponding
cell is the following:

• tr ≥ 2 or mr ≥ 1.5 (i.e., ae2bvzot is at least twice as
fast as ae2zot, or occupies less than 2/3 of the mem-

ory): good ;

• 1.1 ≤ tr < 2 or 1.1 ≤ mr < 1.5: moderately good ;

• 0.91 < tr < 1.1 or 0.91 < mr < 1.1: comparable ;

• 0.5 < tr ≤ 0.91 or 0.66 < mr < 0.91: moderately bad ;

• tr < 0.5 or mr ≤ 0.66: bad .

Let us briefly explain the meaning of the identifiers used
in the tables.5In Table 1, S* rows capture the experiments
with the model of the sorting algorithm where the elements
are 5 integers (b, a ∈ Z5) and the bound (K) is 25, whereas
in S1-R-* rows the elements are real-valued (b, a ∈ R5) and
K=30. The S2-N-* identifier, instead, stands for the gen-
eralized version of the algorithm that can swap arbitrary
numbers, where K=25. In all cases the postfix (*) is a num-
ber that identifies the check that was performed (e.g., pure
SAT checking to see if the model is feasible, or checking of
a specific property), whereas N (with N ∈ {5, 6, 7, 8}) is

4The code for all the experiments is available at http://
home.deib.polimi.it/pourhashem.kallehbasti/sac-2016.php

5An extended, informal, description of each model –
and of the verification performed – used in the tables
can be found at http://home.deib.polimi.it/pourhashem.
kallehbasti/ModelDescriptions.pdf

the length of the array. Similarly, LN-* and ULN-* iden-
tify the experiments performed using the model of leader
election protocol described, respectively, “natively” in CLTL
and through UML diagrams first; N corresponds to the num-
ber of elements in the ring, the postfix identifies the check
performed, and K=70. Finally, rows labeled CCN-* con-
tain the results (pure satisfiability, verification of property
p1 and p2) for the experiments with the CCAS example
(K=200). There are 5 versions of this model, identified by
number N , that differ from one another in the values of
some temporal bounds, such as the maximum duration that
the system stays in the warning state, the delay with which
the brakes are activated, and the time constants T in the
property checked.

Table 1: Comparison between ae2zot and ae2bvzot on
CLTL specifications.

T(s) M(MB) T(s) M(MB) T(s) M(MB) T(s) M(MB)

S1-1 S 2 155 1 167 CC5-sat S 16 463 32 590
S1-2 U 99 181 48 199 CC5-p1 S 29 539 18 641
S1-3 S 10 175 3 191 CC5-p2 U 34 503 41 650
S1-R-1 S 6 180 1 177 L5-sat S 28 381 2 254
S1-R-2 U 90 209 6 162 L5-p1 U 59 309 2 237
S1-R-3 S 13 209 2 183 L5-p2 U 19 333 5 257
S2-5-1 S 13 196 5 225 L10-sat S 4997 2882 7 412
S2-5-2 U 34 184 4 203 L10-p1 U 1016 1084 67 612
S2-5-3 S 67 220 19 228 L10-p2 U 19837 1650 161 667
S2-5-4 S 38 208 21 235 L12-sat S 15776 5535 51 792
S2-5-5 S 11 193 15 217 L12-p1 U 3686 1660 400 1025
S2-5-6 U TO TO 1233 270 L12-p2 U TO TO 938 1131
S2-6-1 S 46 227 20 253 L14-sat S TO TO 45 789
S2-6-2 U 1219 227 342 253 L14-p1 U 18830 3128 2183 1910
S2-6-3 S 160 262 51 292 L14-p2 U TO TO 7395 2930
S2-6-4 S 204 250 44 275 L15-sat S TO TO 85 1282
S2-6-5 S 47 223 23 245 L15-p1 U TO TO 6797 3636
S2-6-6 - TO TO TO TO L15-p2 U TO TO 18526 4679
S2-7-1 S 51 264 42 312 L16-sat S TO TO 135 1450
S2-7-2 - TO TO TO TO L16-p1 U TO TO 14558 4143
S2-7-3 S 448 334 61 326 L16-p2 - TO TO TO TO
S2-7-4 S 253 301 61 331 UL5-sat S 96 728 10 434
S2-7-5 S 270 272 49 298 UL5-p1 U 272 822 11 446
S2-7-6 - TO TO TO TO UL5-p2 U 223 798 11 428
S2-8-1 S 1041 399 104 451 UL7-sat S 559 1233 51 803
S2-8-2 - TO TO TO TO UL7-p1 U 897 1381 76 713
S2-8-3 S 1338 467 257 539 UL7-p2 U 929 1417 38 636
S2-8-4 S 247 425 171 508 UL9-sat S 2175 2384 395 1304
S2-8-5 S 1203 372 131 420 UL9-p1 U 4390 2736 162 954
S2-8-6 - TO TO TO TO UL9-p2 U 4933 2900 76 797
CC1-sat S 15 461 17 574 UL10-sat S 5370 2974 117 1228
CC1-p1 S 30 565 23 635 UL10-p1 U 9918 3822 452 1298
CC1-p2 U 42 485 60 638 UL10-p2 U 12656 3871 232 987
CC2-sat S 14 463 16 591 UL12-sat S TO TO 1465 3398
CC2-p1 S 39 538 19 639 UL12-p1 U TO TO 4049 2852
CC2-p2 U 42 499 57 644 UL12-p2 U TO TO 4264 3215
CC3-sat S 16 466 17 593 UL13-sat S TO TO 124 1949
CC3-p1 S 32 548 19 649 UL13-p1 U TO TO 7012 3643
CC3-p2 U 41 511 55 660 UL13-p2 U TO TO 8467 4008
CC4-sat S 14 460 30 572 UL14-sat S TO TO 2651 4936
CC4-p1 S 39 535 20 638 UL14-p1 U TO TO 12066 4305
CC4-p2 U 41 492 36 638 UL14-p2 U TO TO 25674 5952

R
ae2zot ae2bvzot

R
ae2zot ae2bvzotTool

Model

Tool

Model

In the case of the CLTLoc experiments of Table 2, rows

http://home.deib.polimi.it/pourhashem.kallehbasti/sac-2016.php
http://home.deib.polimi.it/pourhashem.kallehbasti/sac-2016.php
http://home.deib.polimi.it/pourhashem.kallehbasti/ModelDescriptions.pdf
http://home.deib.polimi.it/pourhashem.kallehbasti/ModelDescriptions.pdf


labeled LC* correspond to the experiments carried out using
the native CLTLoc specification of the timed lamp (K=70),
while LM* (K=200) are those where the model of the timed
lamp is originally described through continuous-time MITL
formulae translated into equisatisfiable CLTLoc formulae.

Rows labeled with Sp* (K=30) and W* (K=30) are ver-
ification experiments of MITL models capturing particular
behaviors where phenomena behave as events (”spikes”) or as
rectangular waves. Labels CX-* (K=30), withX ∈ {1, 2, 3},
identify experiments starting from MITL specifications that
also include the“counting”operator. Finally, models labeled
with F* (K=60) and Sq* (K=20) are experiments that test
the assumptions under which the MITL-to-CLTLoc encod-
ing is defined. In particular, the former tests whether it is
possible to produce traces in which a signal is not finitely
variable (i.e., it can change an infinite number of times over
a finite interval); and the latter whether it is possible to pro-
duce a square wave in which the intervals are left-open and
right-closed, when the encoding assumes that intervals are
left-closed and right-open.

Table 2: Comparison between ae2zot and ae2bvzot on
CLTLoc specifications.

T(s) M(MB) T(s) M(MB) T(s) M(MB) T(s) M(MB)

LC1 S 1 156 1 148 C3-1 U 65 315 89 309
LC2 U 1 159 2 151 C3-2 U 577 379 1035 356
LC3 S 2 157 0 149 Sp1 S 1 180 1 157
LC4 U 19 167 25 157 Sp2 S 13 311 5 293
LC5 U 18 160 17 154 Sp3 S 384 424 117 337
LM1 S 1 187 1 145 Sp4 U 554 479 654 403
LM2 S 1 185 0 156 Sp5 U 644 500 711 420
LM3 S 3 245 2 187 Sp6 U 983 520 757 420
LM4 U 98 282 55 223 Sp7 U 2920 498 1984 375
LM5 S 49 669 26 663 Sp8 U 3132 517 TO TO
LM6 S TO TO 594 1427 Sp9 S 614 477 1120 384
LM7 U 246 308 235 244 Sp10 S 702 439 393 349
C1-1 S 142 347 78 284 Sp11 S 16 318 5 289
C1-2 U 249 406 646 377 W1 S 22 249 12 195
C1-3 U 1222 487 1582 416 W2 S 47 297 18 229
C1-4 S 204 363 66 312 W3 S 45 283 1 201
C1-5 U 849 395 1145 371 W4 S 323 290 259 221
C2-1 S 8 271 1 210 W5 S 20 246 14 198
C2-2 U 1487 291 1890 236 W6 S 145 329 47 247
C2-3 S 22 283 5 218 W7 S 267 406 10 267
C2-4 S 4 258 2 199 W8 S 141 350 15 250
C2-5 U 959 287 940 231 W9 S 681 368 332 267
C2-6 S 3 247 3 198 W10 S 137 330 46 248
C2-7 S 46 305 3 226 Sq1 U 6 197 4 172
C2-8 - TO TO TO TO Sq2 U 251 289 481 226
C2-9 S 31 306 5 230 F1 U 4 242 1 183
C2-10 S 9 274 3 209 F2 U 32 381 8 308
C2-11 - TO TO TO TO F3 U 120 467 22 422
C2-12 S 23 276 2 206

ae2zot ae2bvzot
R

ae2zot ae2bvzot
R

Tool

Model

Tool

Model

All the experiments were carried out on a Linux desktop
machine with a 3.4 GHz Intel R© CoreTM i7-4770 CPU and 8
GB RAM. All the reported runs had a timeout of 1 hour, i.e.,
if the verification took longer than 1 hour, it was aborted
(TO). The models for the leader election protocol, however,
are more time consuming as the number of nodes in the ring
increases. Hence in this case, to make the comparison more

meaningful, the time limit was set to 10 hours.

4.3 Lessons Learned
From the experimental results shown in Section 4.2 we can
draw some considerations on the effectiveness of the new
verification tool, and of the kinds of problems for which
ae2bvzot seems particularly well suited.

First of all, we remark that the main feature of the ae2bvzot
plugin is that it combines two different logics, Bit-Vector
Logic for capturing the behavior of the temporal operators
and arithmetic constraints for the first-order variables. Since
SMT solvers do not support a logic that combines both the
theory of bit-vectors and that of integer/real numbers, they
do not have tactics that are specific for the combination of
the two logics, so the solver needs to be guided in what
tactics to apply to the problem to obtain the best results.
This, in turn, suggests that in some cases the interplay be-
tween logics makes the solving less efficient than when us-
ing one single logic to capture all aspects, both arithmetic
and temporal (as it is the case in ae2zot, which uses either
only QFUFLIA or only QFUFLRA as target logic). For ex-
ample, the position of the loop back is frequently used in
the encoding and acts like a bottleneck in combining dif-
ferent layers/logics, since it appears as an integer variable
in the arithmetic layer, and as a bit-vector in the temporal
one. This emerges also from our experiments, where it seems
that, when the arithmetic part of the model becomes more
and more significant, the gains obtained with the ae2bvzot

plugin decrease, or disappear entirely.

For example, the comparison between ae2zot and ae2bvzot

becomes in general less favorable for the latter in the CLT-
Loc examples that have been derived by translation from
continuous-time MITL specifications, as evidenced in Table
2 with respect to Table 1. In these cases, in fact, the num-
ber of arithmetic variables becomes considerable (multiple
clocks, i.e., arithmetic variables, are introduced for each sub-
formula of the original MITL formula); in addition, to man-
age the advancement of time the solver needs to take into
account not only comparisons between values, but also more
complicated operations such as addition of delays.

When the temporal, propositional part is predominant, in-
stead, as in most of the CLTL case studies shown in Table 1,
the gains that have been obtained by the purely bit-vector-
based encoding presented in [5] manifest themselves also in
the ae2bvzot plugin. In these models, especially the sorting
and leader election cases, the arithmetic part is simpler, as it
is essentially confined to establishing comparisons between
values and to perform value assignments.

The CCAS case study requires a separate discussion. In
fact, on this example the ae2zot plugin consistently out-
performs ae2bvzot. We remark however that, unlike the
sorting and the leader election examples, where the nature
of the models is such that the various instances differ in
their structures (the size of the array and the size of the
ring of processes change, hence the number of arithmetic
variables also changes), the various versions of the CCAS
all have the same components and variables, and they differ
only in the values of the temporal constants involved in the
model. Hence, it is natural that, if ae2zot is more efficient



in one case (say, CC-1-* ), so is for the other cases. As for
the reason why ae2zot is the best plugin for this case, we
conjecture that it depends on the fact that the behavior of
the arithmetic variables in the CCAS is rather rigid, as they
are constrained to be piecewise constant, which in turn in-
creases the interplay between the arithmetic and temporal
parts of the model.

Finally, we remark that the ae2bvzot is, in many CLTL
tests, slightly more memory consuming than ae2zot. How-
ever, the difference is, especially in the sorting case, still
rather limited (mostly around 10%), with a steep increase
in efficiency.

5. CONCLUSIONS
The ability of handling infinite-domain variables is more and
more important in modern verification techniques to be able
to express and check, from the early design phases, proper-
ties about components exchanging data. In this paper we
have combined an efficient mechanism, based on bit-vectors,
for handling propositional LTL — a logic suitable for ex-
pressing and verifying specifications over finite domains —
with arithmetic constraints typical of first-order fragments of
LTL, and in particular of CLTL and its extension CLTLoc.
Our experimental results show that the resulting plugin of
the Zot tool, ae2bvzot, is in many cases an improvement
over the previously available decision procedure, which did
not exploit bit-vectors. This will allow us to increase the
range and size of problems that can be tackled through the
CLTL- and CLTLoc-based specification and verification ap-
proaches. In particular, the gains obtained through the novel
tool will be exploited to bring verification techniques into
the domain of so-called data-intensive applications [14], to
analyze safety and security properties thereof.

Finally, we plan to investigate the possibility of exploiting a
recent evolution of the NuSMV model checker, called nuXmv
[15, 19] as the basis to implement the decision procedures for
CLTL and CLTLoc. In fact, although nuXmv per se cannot
handle precisely CLTL and CLTLoc models because it does
not natively introduce certain conditions that are necessary
for the decision procedures developed in [7, 12], we aim to
use it as an engine to develop further, novel techniques for
solving such models.
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