
SAFER-HRC:
Safety Analysis through Formal vERification

in Human-Robot Collaboration

Mehrnoosh Askarpour1, Dino Mandrioli1,
Matteo Rossi1, and Federico Vicentini2

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milan, Italy

{mehrnoosh.askarpour,dino.mandrioli,matteo.rossi}@polimi.it
2 Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Industriali e Automazione,

via Bassini 15, 20133 Milan, Italy
federico.vicentini@cnr.itia.it

Abstract. Whereas in classic robotic applications there is a clear seg-
regation between robots and operators, novel robotic and cyber-physical
systems have evolved in size and functionality to include the collabo-
ration with human operators within common workspaces. This new ap-
plication field, often referred to as Human-Robot Collaboration (HRC),
raises new challenges to guarantee system safety, due to the presence of
operators. We present an innovative methodology, called SAFER-HRC,
centered around our logic language TRIO and the companion bounded
satisfiability checker Zot, to assess the safety risks in an HRC application.
The methodology starts from a generic modular model and customizes
it for the target system; it then analyses hazards according to known
standards, to study the safety of the collaborative environment.

Keywords: Safety Analysis, Formal Verification, Safety Rules, Human-
Robot Collaboration.

1 Introduction

In Human-Robot Collaboration (HRC) applications, close proximity and direct
interaction between robot and operator are unavoidable, so providing safety
for the operator requires more effort and a more rigorous approach. Thus, the
safety of machinery community has published several standards [11,15], which
include a list of significant hazards in HRC applications, potential sources of
harms for the operator, their likely origins, and safety regulations for guiding the
design and deployment of robotic solutions. In particular, ISO standard 10218-2
[11] identifies four possible collaborative modes between humans and industrial
robots. Of these, Power and Force Limitation (PFL) is the one involving actual
physical contact, and it is associated with strict safety requirements in terms of
pressure and force thresholds, in order to limit the effects on the human body.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/74313377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

Our focus in this work is on collaborative robots that are considered in the PFL
category.

HRC applications must be evaluated through the analysis laid out in ISO
standard 12100 [12], to identify existing hazards and unwanted situations due to
intentional misuses or unconscious errors of the operator; and to prevent their
consequences, which are measured in terms of quantified risk values.

Figure 1(a) shows the stages of a standard iterative risk analysis (resulting
in the CE marking in the case of European directives).
(i) Limits of Machinery: The desired tasks of the robot and its machinery
regulations and constraints are determined.
(ii) Hazards Identification: The existence of hazards (and combinations thereof)
listed in product-specific standards such as ISO 10218-2 is identified.
(iii) Risk Estimation: The risk values associated with hazards identified in the
previous step are measured. Many risk-scoring methods are introduced in [14],
all of which combine the severity of a harm with its likelihood.
(iv) Risk Evaluation: The significance of each hazard is evaluated. The meth-
ods reported in [14] help determine the range of acceptability for the risk scores.
(v) Risk Reduction: If the risk value is not negligible, appropriate measures
are (iteratively) introduced to reduce each risk, either by redesigning the sys-
tem to eliminate the hazard , or through the introduction of a safety function
(e.g. ”full stop in case of a signal from a protection sensor”), which needs to be
verified against suitable requirements of reliability and availability. We refer the
reader to [13] for a complete discussion about functional safety.
The process continues iteratively until no new risk is identified and the residual
risk value is acceptable. New risks may appear due to hazards related to risk re-
duction measures, or to operator behaviors in reaction to such measures. Devices
and protection measures can alter the course of actions (use and misuse).

In this paper we introduce the SAFER-HRC (Safety Analysis through For-
mal vERification in HRC applications) methodology, which provides a technique
to comprehensively identify hazards through the exhaustive exploration, rooted
in formal methods, of the behavior of the target system. Among the different
types of hazards (e.g., electrical, ergonomic, ...), this work addresses operational
hazards with a specific focus on those that are caused by human-robot interac-
tions. Although we do not claim that SAFER-HRC guarantees that all possible
hazards in a system are found, we argue that the exhaustive exploration on
which the methodology is based helps increase the confidence that no significant
hazardous situations are left unconsidered. To achieve an exhaustive analysis
of the system model, we rely on the state-space exploration capabilities of for-
mal verification techniques. Due to the impossibility of foreseeing all possible
behaviors of the operator, it cannot be claimed that all possible interactions of
operator and system are taken into account; nevertheless, an iterative method-
ology based on formal verification techniques can eventually provide a thorough
analysis of all significant ones. At each iteration, if the design fails to satisfy the
desired safety requirements, it is improved by adding new risk reduction mea-
sures. This methodology relies on a“human-in-the-loop” approach [6] and it does



SAFER-HRC 3

Fig. 1: Overview of the safety analysis methodology: (a) standard procedure; (b)
principal model of SAFER-HRC; (c) scenario refinement.

not automatically select risk reduction measures. As shown in Figure 1(b), the
safety strategy is designed and acknowledged by a pool of experts and users of
the application under assessment (the safety assessment team). The essential as-
pect of the proposed methodology is the systematic validation of the constraints
and their possible violations at all steps of the application. The thoroughness
of the validation ensures that the selected safety strategy is failsafe. SAFER-
HRC starts from informal, goal-oriented descriptions of collaborative tasks, and
converts them into formal models built upon logical formulae, on which formal
verification techniques are applied to check whether the safety requirements are
satisfied or not. The model includes separate formalizations for operator and
robot; hence, the verification phase also checks their interactions, taking into
account how they are affected by the physical environment. After the principal
model has been thoroughly analyzed, it can be modified and re-used to study
different scenarios for the HRC application (e.g., combinations of different safety
functions, uncommon actions by the operator).

The main contributions of the methodology presented in this paper are:

1. Applying formal methods to the safety assessment of HRC applications,
where the presence of the operator negatively impacts on the predictability
of the system behavior, but also imposes demanding safety standards that
must be rigorously studied.



4 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

2. Providing a flexible approach that supports the safety assessment team in
throughly exploring different design assumptions, thus complementing the
human insight with the power of formal verification.

The paper is structured as follows: Section 2 discusses related works, and
Section 3 gives a brief formal background. Section 4 introduces the essential
aspects of the SAFER-HRC methodology. Section 5 illustrates our approach
through an example of a collaborative assembling task. Section 6 concludes.

2 Related Works

Classic hazard identification approaches such as FTA and FMECA [4] are not
well-suited for HRC applications, as they cannot deal with unpredictable human
interactions with robots. We use formal verification methods as a means to
improve hazard identification in robotic applications. These methods can be
applied to complement informal techniques such as Hazop [10], which consists of
a set of meetings and brainstorming sessions to identify and evaluate potential
hazards concerning operators, equipment or efficiency. Its aim is to exploit as
much information as possible from expert users and experienced safety engineers.
Another informal hazard analysis technique is STPA [16], which builds a model
of the control structure of the system to identify control-related flaws.

There are recent works tackling safety issues in robotic applications with
human intervention using semi-formal solutions, or a combination of semi-formal
and formal solutions. For example, in [9,19] State-charts are first used to describe
the behavior of the robot, and then HAZOP is employed using UML models to
identify potential hazards, their causes and their severity. In [17] hazards are
identified by a combination of UML and HAZOP, then they are formalized in
CTL (Computation Tree Logic). The same authors in a later work [18] compute
a set of if-then-else safety constraints, and then add them to the logical model
of the system to avoid predicted hazards. However, their application domain
consists of assistive, rather than collaborative robots, and so the operator is
a passive element whose on-the-fly decisions or errors are not considered as a
determinative fact. A recent work [8] systematizes the pairing of HAZOP and
UML, and presents results also for collaborative scenarios, excluding the formal
point of view and focusing on an informal solution. As we aim at combining the
two aspects, this approach could be used to define the first informal description
of the system from which to derive the principal model discussed in Section 4.

In building our logical model, we use a contract-based approach similar to the
one in [2]. Such an approach allows us to break down the overall task description
into small components, to specify the requirements of each component separately,
and to have a modular, clean formal description of collaborative tasks.

3 Preliminaries

Our approach is rooted in TRIO, a logical language which assumes an underlying
linear temporal structure and features a quantitative notion of time [7].



SAFER-HRC 5

Operator Definition Meaning

Futr(φ, d) d > 0 ∧Dist(φ, d)
φ occurs exactly at d time units
in the future

Past(φ, d) d > 0 ∧Dist(φ,−d)
φ occurred exactly at d time units
in the past

AlwF(φ) ∀t(t > 0⇒ Dist(φ, t)) φ holds always in the future

Until(φ, ψ)
∃t(Futr({)ψ, t}∧
∀t′(0 < t′ < t⇒ Dist(φ, t′)))

ψ will occur in the future and φ
will hold until then

SomF(φ) ∃t(t > 0 ∧Dist(φ, t)) φ occurs sometimes in the future

SomP(φ) ∃t(t > 0 ∧Dist(φ,−t)) φ occurred sometimes in the past

Table 1: List of derived TRIO operators.

TRIO formulae are built out of the usual first-order connectives, operators,
and quantifiers, as well as a single basic modal operator, called Dist, that relates
the current time, which is left implicit in the formula, to another time instant:
given a time-dependent formula φ (i.e., a term representing a mapping from the
time domain to truth values) and a (arithmetic) term t indicating a time distance
(either positive or negative), formula Dist(φ, t) specifies that φ holds at a time
instant at a distance of exactly t time units from the current one.

While TRIO can exploit both discrete and dense sets as time domains, in this
work we assume the standard model of the nonnegative integers N as discrete
time domain. For convenience in the writing of specification formulae, TRIO
defines a number of derived temporal operators from the basic Dist, through
propositional composition and first-order logic quantification. Table 1 defines
some of the most significant ones, including those used in this work.

The satisfiability of TRIO formulae is in general undecidable. However, in
this paper we consider a decidable subset of the language, that can be handled
by automated tools, to build the system model and to express its properties.
In particular, Zot [1] is a bounded satisfiability checker for TRIO formulae [20].
We use Zot in this work to check the model of the system against desired safety
properties. In case the property is not satisfied, Zot provides a counterexample
witnessing a system execution that violates the property.

4 Overview of the SAFER-HRC Methodology

This section introduces SAFER-HRC, a semi-automated verification methodol-
ogy which benefits from formal verification techniques to extract the violation
of safety requirements mentioned in ISO10218 [11] during the design of collabo-
rative robotic systems. As depicted in Figure 1(b), at the core of SAFER-HRC
lies a safety assessment team (SATeam). SATeam, which includes robotic and
formal methods experts, studies the limitations of the machinery and the tasks
of the target robot, and predicts possible human-robot interactions. They also
determine which of the hazards listed in ISO 12100 can occur, and evaluate the
risk level based techniques defined in ISO standard 14121 [14]. In SAFER-HRC,
SATeam relies on a formal model of the HRC application to support and system-



6 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

atize these activities. More precisely, SATeam starts from the informal, textual
definitions of the tasks, and then builds UML diagrams as a bridge towards the
formal representation.

General O-R-L Model. The formal model captures the dynamics of the
interactions occurring in the system in terms of the relationships among three
main elements, O, R and L, which formally describe, respectively, operator, robot
and layout through logic formulae. O is a formal model of the operator’s body
parts, each with critical safety requirements as described in standard ISO/TC
184/SC. R models the robot by describing the edges that have some degree of
freedom in their movements; the nature of this model depends heavily on robot
type and shape. O and R contain constraints to avoid considering unrealistic
body shapes or robot structures (e.g., the head of the operator is in one corner
of the workspace, while her hand is in the opposite one). L provides a represen-
tation of the layout of the system that allows us to describe the position of the
physical features of O and R at any time instant. The O-R-L model contains
some elements and constraints that are common to all HRC applications (e.g.,
the description of body parts); other parts of it (e.g., the features of the robot)
are instead instantiated depending on the specific HRC application.

The O-R-L Model includes also a part related to the pool of tasks that the
robot modeled in R is supposed to perform. Each task and its requirements and
regulations are modeled in an element called T. The definition of each task T de-
termines the type and frequency of interactions among O-R-L elements. The exe-
cution of a task involves a functional relationship between each pair of O-R-L el-
ements. These relationships can be physical ones (e.g., contact between the robot
arm and the operator, presence of the operator and robot in a common area in
the layout) or informational (e.g., inputs given to the robot by the operator). For
example, consider the following safety requirement: “operator’s head should not
be close to the robot end-effector while it is drilling”. The model defines a value
(Ldrill) corresponding to the area in the layout where drilling is done, a variable
(EF ) capturing the position of the end-effector, and another one (OpHead) for
the operator’s head position; then, T contains the following constraint associated
with the drilling task, stating that OPHead cannot be in Ldrill while drilling is
executing: Drillingstate = exe⇒ ¬(OPHead = Ldrill) ∧ (EF = Ldrill).

Usually the definition of a task has a goal-oriented view and contains multi-
ple smaller units of execution. Breaking down a task into the smallest possible
functional units, i.e., into elementary actions[5], enables SATeam to extract the
previously mentioned relationships among O-R-L elements and also helps to
identify the hazards that might otherwise be overlooked if one only stayed at a
higher level of analysis. Another benefit of distinguishing single actions is that,
in case it is possible to achieve the same goal with different sequences of actions,
and the operator has the ability to decide on-the-fly what sequence to use, differ-
ent sets of hazards caused by each sequence are identified. Further, the human
body parts that are in contact with or close to the robot end-effector can differ
for separate actions within a task, and this in turn can affect the possibility
and criticality of hazards. SAFER-HRC characterizes each of the elementary



SAFER-HRC 7

actions within model T of the corresponding task by three main features: its
pre-conditions, post-conditions, and safety properties (Fig.1 (b)). These features
are formalized as TRIO formulae that have to hold respectively before, after
and during execution of each action. In addition, each action has a property
called priority, which defines its execution preference over other actions. More
precisely, if at a time instant the pre-conditions of both actioni and actionj are
satisfied, the one with higher priority starts to execute. The current model con-
siders that systems operate at their maximum level of parallelism; that is, all
actions that have the highest priority among those that are enabled start exe-
cuting in parallel. Each action can also have additional constraints and timing
requirements that are included in its formalization. At each instant, an action is
in one of the following states:

1. ns (not started): pre-conditions are not yet satisfied.

2. wait : pre-conditions are satisfied, but there is another action with higher
priority in execution or waiting mode.

3. exe (executing): under execution (solo, or concurrently with other actions).

4. pause (ps): at some point in the execution, safety properties are violated and
execution is paused.

5. dn(done): the execution is terminated.

Model Tailoring. When applying SAFER-HRC to perform the safety anal-
ysis for a system, SATeam first needs to tailor the O-R-L model to the target
HRC application, by selecting the appropriate robot model and application pa-
rameters, which corresponds to carrying out the following activities (see Fig.1):

– Choose the tasks that the robot will be executing.
– Set the number of operators and robots. In case the application requires more

than one element for each category, SAFER-HRC creates multiple, separate
instances of elements R and O.

– Define the configuration of the layout, in terms of the number of regions,
reachability of each region for robot(s) and operator(s), and specification of
obstacles or other physical features.

At this point, SAFER-HRC checks through the Zot formal verification tool
whether the model so tailored satisfies the desired safety requirements. If a safety
property is violated, Zot produces a counterexample, signaling the presence of
one or more hazards in the system. A violation can be due to: (i) the system
still includes hazardous situations, or allows for operator errors or on-purpose
misuses; or (ii) the system does not have proper reduction measures for identi-
fied hazards. Then, the designer should improve the system model: by adding
proper risk reduction measures, which correspond to TRIO formulae that should
avoid the violation; or by including new formulae to capture hazards that were
undetected in the previous analysis. Next, a new validation is carried out on the
improved model. The model is refined iteratively until no more violations occur.

The next section shows an example of using SAFER-HRC to design an as-
sembly application for a KUKA Light Weight Robot (LWR).



8 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

5 Applying SAFER-HRC in practice

In this section we illustrate how SAFER-HRC works in practice. We used a test-
case with a KUKA robot, performing an assembly task with one operator in the
layout depicted in Fig.2. The scenario is the following:

The operator fetches a workpiece from a bin and moves to the assem-
bly position, where the robot screw-drives the workpiece to the pallet
using N fixtures. Before the robot starts screw-driving each fixture, the
operator must prepare it and put it in the right position. As soon as
the screw-driving of all of the fixtures for the workpiece is finished, the
operator can release the workpiece and leave the assembly position.

The execution of this task has a loop whose index spans the number of fixtures
N to be screw-driven. It means that for example, if N = 2, then SAFER-HRC
defines 2 instances of each action in the loop. For brevity, we provide only a
simplified formalization of the test-case. Fig. 3 shows the complete list of ac-
tions of the task. As explained in Section 4, each action is formalized through
its pre/post-conditions and safety properties according to a contract-based ap-
proach. We present as an example a snippet of the formalization of action9
“screwing the workpiece”.

Fig. 2: Layout of the test system with
nine areas. The assembly pallet board is
in L6 and the area blocked by the work-
piece bin is L4.

Pre-condition: There should be at
least a prepared fixture. This prop-
erty is captured by a Boolean pred-
icate preparedFixture, which is set by
data coming from visual sensors con-
figured in the layout.

Safety property 1 : Only the hands
of the operator are allowed on the
pallet. Since the O-R-L model in-
cludes in O an array to capture the
position of the various body parts,
and its seventh element refers to the
hands, this corresponds to condition
Bodypart7 = pallet.

Safety property 2 : The robot end-
effector should be on the pallet. Model
R captures the position of the end-
effector through predicate EF , so this
property simply corresponds to for-
mula EF = pallet.

Safety property 3 : The workpiece
must be held. This simply corresponds to predicate wpHeld being true.

Post-condition: end-effector and operator hands are still on the pallet:
Bodypart7 = pallet ∧ EF = pallet.

Other formulae in T are dedicated to formalizing different allowed sequences
of actions to execute in order to achieve the goal of the task. One way to achieve



SAFER-HRC 9

O
p

er
at

o
r

R
o

b
o

t
2. Grasp a wp

1. Move to the bin 
(L_4)

3. Move to the 
pallet (l_6)

4. Put the wp on 
the pallet (L_6)

5. Hold the 
wp

6. Move to the pallet 
(L_6)

Is there a prepared fixture?

7+(i-1). Prepare fixtures

8+(i-1). Move end_effforward to 
the pallet

9+(i-1). Screw_driving the wp

10+(i-1). Move Backward from 
the pallet

11+(i-1). Compare fixturesNum 
with N

FixturesNum=N

7+5N. Release the wp

8+5N. MoveBackward 
from the pallet

9+5N. Move to 
startpoint (L_2)

N

Y

Y

N

Fig. 3: Activity Diagram of the example task. The names of the actions in the
loop are indexed by the current loop iteration i. There are 14 actions for N = 1.

this is by setting suitable values for the priority property of different actions.
For example, action5 “hold the workpiece” has higher priority than action7
“prepare fixtures” in the definition of the task, since the operator must choose
to give precedence to the former, even if he is ready to execute the latter. On the
other hand, the robot must execute action6 “move to the pallet” strictly before
action8 “move end-effector forward to the pallet”, independent of the operator’s
choices; then, action6 = dn is defined as a pre-condition of action8. Let us now
provide some examples of formulae that are defined in T for this task. They are
defined for each element actioni of the set AT of actions of the task.
(i) If an action has not started, it was never executing or done in the past:

actioni,state = ns⇒ ¬SomP(actioni,state = exe ∨ actioni = dn)

(ii) If an action is waiting, it was never executing or done in the past, and it was
in the “not started” state previously:

actioni,state = wait⇒ SomP(actioni,state = ns)∧
¬SomP(actioni,state = exe ∨ actioni = dn)

(iii) If an action is executing (solo or concurrently with other actions), it has
started in the past, it will never be starting or waiting again in the future, and
it has not been done previously:

actioni,state = exe⇒ SomP(actioni,state = ns ∧ actioni = wait) ∧
¬SomF(actioni,state = ns ∨ actioni = wait) ∧ ¬SomP(actioni,state = dn)

(iv) If an action is paused, it was executing before that, and at some point it
will restart its execution:

actioni,state = ps⇒ SomP(actioni,state = exe) ∧ SomF(actioni,state = exe)∧
¬SomF(actioni,state = ns ∧ actioni = wait)



10 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

(v) If an action is waiting, the next time unit it will start executing if there is
no other waiting or executing action with higher priority:

actioni,state = wait ∧
∧

j∈AT ,j 6=i

(
actionj,state = wait ∨ actionj,state = exe

⇒ actioni,priority ≥ actionj,priority

)
⇒ Futr(actioni,state = exe, 1)

(vi) If multiple actions are waiting, those with higher priority will start to execute
at the next time unit, whereas the others will remain waiting or go back to “not
started” status (this can happen if their pre-condition stops holding):

actioni,state = wait ∧
∨

j∈AT ,j 6=i

(
actionj,state = wait ∧
actioni,priority < actionj,priority

)
⇒ Futr(actioni,state = ns ∨ actioni = wait, 1)

(vii) When execution of an action is done, it means that it was being executed
in the past, and its state will not change in the future:

actioni,state = dn⇒ AlwF(actioni,state = dn) ∧ SomP(actioni,state = exe)

(viii) Each action must eventually terminate:
∧

i∈AT
Som(actioni,state = dn)

Model Tailoring. At this step, SATeam provides the details to instantiate
the O-R-L model with the information specific to the target application, such
as the actual layout of the common workspace. In the case study it is enough
to introduce one instance each of O and R. Also, L is customized as follows. As
Figure 3(a) shows, the layout of the cell is divided in nine regions. The positions
of the pallet and of the workpiece bin are L6 and L4, respectively. Regions L1 to
L6 are reachable by the operator, except for region L4, where the bin is located.
The adjacency of areas is defined through a matrix given by SATeam. After these
configurations are carried out for the model, safety properties 2 and 3 mentioned
above for action9 become Bodypart[7] = L6 and EF = L6, respectively.3

Safety Analysis of the tailored O-R-L Model. In this step of the
SAFER-HRC methodology, the SATeam carries out an iterative analysis, to
find the operator errors that can cause serious problems (if they have not been
taken into account in the initial model), or possible incompatibilities between
layout and task execution. The analysis is done by formally verifying the O-
R-L model described above against the safety properties of each action. The
execution time for the verification activities is not a concern in this case study,
since verification is completed in a few seconds using a modified plug-in [3] of the
Zot bounded satisfiability checker. The verification bound (i.e., the maximum
length of analyzed traces) was 100, which is over the completeness bound.

The following are examples of problems that SAFER-HRC found in the O-
R-L model of the case study.

3 The complete O-R-L Model can be found at github.com/Askarpour/ORL-Model.

https://github.com/Askarpour/ORL-Model


SAFER-HRC 11

(a) While action9 is executing, the operator mistakenly gets close to the
pallet with her face (for example, she might want to see the screw-driving action
better) and when action10 starts to execute the robot hits her face. This can
cause serious injuries in the face and eye area, so we modified the safety property
package of action9. More precisely, we added the following formula, which states
that no other body part other than the hand is allowed in the area close to the
pallet, and in case the operator makes such mistake the execution is paused (in
fact, whenever a safety property of an action is violated, the execution of that
action is paused):

∧
i∈BodyIndexes∧i6=7 ¬(Bodypart[i] = pallet).

(b) As mentioned above, the concurrency of actions depends on the values of
their priorities. In some cases, the inconsistencies that might happen during the
concurrent execution of actions have been avoided by design, through the defini-
tion of suitable pre/post-conditions. However, this issue has not been addressed
in the initial model between action9 and action5. In fact, the safety property of
action5 is not satisfied, and according to the counterexample returned by Zot,
there are system configurations where action9 is executing, but the workpiece is
not held by the operator. This highlights two issues: (i) the operator could make
an error and release the workpiece before the screw-driving action terminates;
(ii) action9 should always execute concurrently with action5. To circumvent this,
the safety properties of action9 are updated by adding formula action5 = exe to
them. The modification is applied also to action8, action10, and action11.

6 Conclusions

This paper introduced the SAFER-HRC methodology for the semi-automated
safety analysis of HRC applications. The methodology is based on formal verifica-
tion techniques to explore foreseeable wanted and unwanted interactions (errors
and misuses) between operators and robots. We have applied the methodology
to a realistic case study consisting of a KUKA robot performing an assembly
task. Our approach allows a team of system safety experts to: (i) create formal
models of HRC applications that can be flexibly modified to take into account
different layout configurations and safety requirements; (ii) identify operational
hazards caused by the relations and interactions among operators, robots, lay-
outs and tasks; and (iii) introduce and validate suitable reduction measures to
counter them. Unlike other approaches, our methodology emphasizes the effects
of the presence of operators in the system and their choices in the execution
order of the actions within a task.

As future work, we will include risk estimation techniques into the method-
ology to evaluate the level of risk associated with different possible execution
orders of actions within a task. This will allow us to compare the criticality of
each ordering and to help the operator to choose the one with the lowest risk
value. We also aim to develop a framework based on the presented methodol-
ogy to support safety engineers from the early design phases—e.g., semi-formal
descriptions of tasks—to the introduction of risk reduction measures mitigating
identified hazards.



12 Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi, and Federico Vicentini

References

1. The Zot bounded satisfiability checker. Available from github.com/fm-polimi/zot
2. Baracchi, L., Cimatti, A., Garcia, G., Mazzini, S., Puri, S., Tonetta, S.: Require-

ments refinement and component reuse: The FoReVer contract-based approach.
Handbook of Research on Embedded Systems Design (2014)

3. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: How bit-vector logic can help improve
the verification of LTL specifications over infinite domains. In: Proc. of SAC. pp.
1666–1673 (2016)

4. Dhillon, B.S., Fashandi, A.R.M.: Safety and reliability assessment techniques in
robotics. Robotica 15(6), 701–708 (1997)

5. Espiau, B., Kapellos, K., Jourdan, M.: Formal verification in robotics: Why and
how? In: Robotics Research, pp. 225–236. Springer (1996)

6. Fung, P., Norgate, G., Dilts, T., Jones, A., Ravindran, R.: Human-in-the-loop
machine control loop (1992), Patent nr. US 5116180 A

7. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Monographs in Theoretical Computer Science. An EATCS Series, Springer (2012)

8. Guiochet, J.: Hazard analysis of human-robot interactions with HAZOP-UML.
Safety Science 84, 225–237 (2016)

9. Guiochet, J., Do Hoang, Q.A., Kaaniche, M., Powell, D.: Model-based safety anal-
ysis of human-robot interactions: The MIRAS walking assistance robot. In: Proc.
of the Int. Conf. on Rehabilitation Robotics (ICORR). pp. 1–7 (2013)

10. International Electrotechnical Commission: IEC 61882, Hazard and operability
studies (HAZOP studies)-Application guide (2001)

11. International Standard Organisation: ISO10218-2:2011, Robots and robotic devices
- Safety requirements for industrial robots - Part 2: Robot Systems and Integration

12. International Standard Organisation: ISO12100:2010, Safety of machinery - Gen-
eral principles for design - Risk assessment and risk reduction

13. International Standard Organisation: ISO13849-1:2015, Safety of machinery –
Safety-related parts of control systems – Part 1: General principles for design

14. International Standard Organisation: ISO14121-2:2007, Safety of machinery - Risk
assessment - Part 2

15. International Standard Organisation: ISO/TS15066:2015, Robots and robotic de-
vices – Collaborative robots

16. Leveson, N.: Engineering a safer world: Systems thinking applied to safety. MIT
Press (2011)

17. Machin, M., Dufossé, F., Blanquart, J., Guiochet, J., Powell, D., Waeselynck, H.:
Specifying safety monitors for autonomous systems using model-checking. In: Proc.
of SAFECOMP. pp. 262–277 (2014)

18. Machin, M., Dufossé, F., Guiochet, J., Powell, D., Roy, M., Waeselynck, H.: Model-
checking and game theory for synthesis of safety rules. In: Proc. of HASE (2015)

19. Martin-Guillerez, D., Guiochet, J., Powell, D., Zanon, C.: A UML-based method
for risk analysis of human-robot interactions. In: Proc. of SERENE. pp. 32–41.
ACM (2010)

20. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric
temporal logic specifications. ACM TOSEM 22(3), 20:1–20:54 (2013)

http://github.com/fm-polimi/zot

	SAFER-HRC:Safety Analysis through Formal vERification in Human-Robot Collaboration
	Introduction
	Related Works
	Preliminaries
	Overview of the SAFER-HRC Methodology
	Applying SAFER-HRC in practice
	Conclusions


