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Abstract

Many real-world control applications, from economics to robotics, are characterized by
the presence of multiple conflicting objectives. In these problems, the standard concept
of optimality is replaced by Pareto–optimality and the goal is to find the Pareto frontier,
a set of solutions representing different compromises among the objectives. Despite re-
cent advances in multi–objective optimization, achieving an accurate representation of the
Pareto frontier is still an important challenge. In this paper, we propose a reinforcement
learning policy gradient approach to learn a continuous approximation of the Pareto fron-
tier in multi–objective Markov Decision Problems (MOMDPs). Differently from previous
policy gradient algorithms, where n optimization routines are executed to have n solutions,
our approach performs a single gradient ascent run, generating at each step an improved
continuous approximation of the Pareto frontier. The idea is to optimize the parameters
of a function defining a manifold in the policy parameters space, so that the corresponding
image in the objectives space gets as close as possible to the true Pareto frontier. Besides
deriving how to compute and estimate such gradient, we will also discuss the non–trivial
issue of defining a metric to assess the quality of the candidate Pareto frontiers. Finally,
the properties of the proposed approach are empirically evaluated on two problems, a
linear-quadratic Gaussian regulator and a water reservoir control task.

1. Introduction

Multi–objective sequential decision problems are characterized by the presence of multiple
conflicting objectives and can be found in many real-world scenarios, such as economic
systems (Shelton, 2001), medical treatment (Lizotte, Bowling, & Murphy, 2012), control of
water reservoirs (Castelletti, Pianosi, & Restelli, 2013), elevators (Crites & Barto, 1998) and
robots (Nojima, Kojima, & Kubota, 2003; Ahmadzadeh, Kormushev, & Caldwell, 2014),
just to mention a few. Such problems are often modeled as Multi–objective Markov Decision
Processes (MOMDPs), where the concept of optimality typical of MDPs is replaced by the
one of Pareto optimality, that defines a compromise among the different objectives.

In the last decades, Reinforcement Learning (RL) (Sutton & Barto, 1998) has established
as an effective and theoretically grounded framework that allows to solve single–objective
MDPs whenever either no (or little) prior knowledge is available about system dynamics or
the dimensionality of the system to be controlled is too high for classical optimal control

©2016 AI Access Foundation. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/74313357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Parisi, Pirotta, & Restelli

methods. Multi–objective Reinforcement Learning (MORL), instead, concerns MOMDPs
and tries to solve sequential decision problems with two or more conflicting objectives.
Despite the successful development in RL theory and a high demand for multi–objective
control applications, MORL is still a relatively young and unexplored research topic.

MORL approaches can be divided in two categories, based on the number of policies
they learn (Vamplew, Dazeley, Berry, Issabekov, & Dekker, 2011): single– and multiple–
policy. Although most of MORL approaches belong to the former category, here we present
a multiple–policy approach, able to learn a set of policies approximating the Pareto frontier.
A representation of the complete Pareto frontier, in fact, allows a posteriori selection of a
solution and encapsulates all the trade-offs among the objectives, giving better insights into
the relationships among the objectives. Among multiple–policy algorithms it is possible to
identify two classes: value–based (Lizotte et al., 2012; Castelletti et al., 2013; Van Moffaert
& Nowé, 2014), that search for optimal solutions in value functions space, and policy gradi-
ent approaches (Shelton, 2001; Parisi, Pirotta, Smacchia, Bascetta, & Restelli, 2014), that
search through policy space. In practice, each approach has different advantages. Value–
based methods usually have stronger guarantees of convergence, but are preferred in do-
mains with low–dimensional state-action spaces as they are prone to suffer from the curse
of dimensionality (Sutton & Barto, 1998). On the other hand, policy gradient methods
have been very favorable in many domains such as robotics as they allow task–appropriate
pre–structured policies to be integrated straightforwardly (Deisenroth, Neumann, & Peters,
2013) and expert’s knowledge can be incorporated with ease. By selecting a suitable policy
parametrization, the learning problem can be simplified and stability as well as robustness
can frequently be ensured (Bertsekas, 2005). Nonetheless, both approaches lack of guar-
antees of uniform covering of the true Pareto frontier and the quality of the approximate
frontier, in terms of accuracy (distance from the true frontier) and covering (its extent),
is related to the metric used to measure the discrepancy from the true Pareto frontier.
However, nowadays the definition of such metric is an open problem in MOO literature.

In this paper, we overcome these limitations proposing a novel gradient–based MORL
approach and alternative quality measures for approximate frontiers. The algorithm, namely
Pareto–Manifold Gradient Algorithm (PMGA), exploiting a continuous approximation of
the locally Pareto–optimal manifold in the policy space, is able to generate an arbitrarily
dense approximate frontier. This article is an extension of a preliminary work presented
by Pirotta, Parisi, and Restelli (2015) and its main contributions are: the derivation of the
gradient approach in the general case, i.e., independent from the metric used to measure
the quality of the current solution (Section 3), how to estimate such gradient from samples
(Section 4), a discussion about frontier quality measures that can be effectively integrated
in the proposed approach (Section 5), a thorough empirical evaluation of the proposed
algorithm and metrics performance in a multi–objective discrete-time Linear-Quadratic
Gaussian regulator and in a water reservoir management domain (Sections 6 and 7).

2. Preliminaries

In this section, we first briefly summarize the terminology as used in the paper and discuss
about state-of-the-art approaches in MORL. Subsequently, we focus on describing policy
gradient techniques and we introduce the notation used in the remainder of the paper.
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2.1 Problem Formulation

A discrete–time continuous Markov Decision Process (MDP) is a mathematical framework
for modeling decision making. It is described by a tuple 〈S,A,P, R, γ,D〉, where S ⊆ Rn
is the continuous state space, A ⊆ Rm is the continuous action space, P is a Markovian
transition model where P(s′|s, a) defines the transition density between state s and s′ under
action a, R : S ×A×S → R is the reward function, γ ∈ [0, 1) is the discount factor, and D
is a distribution from which the initial state is drawn. In this context, the behavior of an
agent is defined by a policy, i.e., a density distribution π(a|s) that specifies the probability
of taking action a in state s. Given the initial state distribution D, it is possible to define
the expected return Jπ associated to a policy π as

Jπ = E
st∼P,at∼π

[
T−1∑
t=0

γtR(st, at, st+1)|s0 ∼ D

]
,

being R(st, at, st+1) the immediate reward obtained when state st+1 is reached executing
action at from state st, and T the finite or infinite time horizon. The goal of the agent is
to maximize such a return.

Multi–objective Markov Decision Processes (MOMDPs) are an extension of MDPs in
which several pairs of reward functions and discount factors are defined, one for each
objective. Formally, a MOMDP is described by a tuple 〈S,A,P,R,γ, D〉, where R =
[R1, . . . ,Rq]T and γ = [γ1, . . . , γq]

T are q–dimensional column vectors of reward functions
Ri : S ×A× S → R and discount factors γi ∈ [0, 1), respectively. In MOMDPs, any policy
π is associated to q expected returns Jπ =

[
Jπ1 , . . . , J

π
q

]
, where

Jπi = E
st∼P,at∼π

[
T−1∑
t=0

γtiRi(st, at, st+1)|s0 ∼ D

]
.

Unlike what happens in MDPs, in MOMDPs a single policy dominating all the others
usually does not exist, as when conflicting objectives are considered, no policy can simul-
taneously maximize all of them. For this reason, in Multi–objective Optimization (MOO)
the concept of Pareto dominance is used. Policy π strongly dominates policy π′, denoted
by π � π′, if it is superior on all objectives, i.e.,

π � π′ ⇐⇒ ∀i ∈ {1, . . . , q} , Jπi > Jπ
′

i .

Similarly, policy π weakly dominates policy π′, denoted by π � π′, if it is not worse on all
objectives, i.e.,

π � π′ ⇐⇒ ∀i ∈ {1, . . . , q} , Jπi ≥ Jπ
′

i ∧ ∃i ∈ {1, . . . , q} , Jπi = Jπ
′

i .

If there is no policy π′ such that π′ � π, the policy π is Pareto–optimal. We can also speak
of locally Pareto–optimal policies, for which the definition is the same as above, except
that we restrict the dominance to a neighborhood of π. In general, there are multiple
(locally) Pareto–optimal policies. Solving a MOMDP is equivalent to determine the set
of all Pareto–optimal policies Π∗ =

{
π |@π′, π′ � π

}
, which maps to the so–called Pareto

frontier F =
{
Jπ
∗ |π∗ ∈ Π∗

}
.1

1. As done by Harada, Sakuma, and Kobayashi (2006), we assume that locally Pareto–optimal solutions
that are not Pareto–optimal do not exist.
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2.2 Related Work

In Multi–objective Optimization (MOO) field, there are two common solution concepts:
multi–objective to single–objective strategy and Pareto strategy. The former approach
derives a scalar objective from the multiple objectives and, then, uses the standard Single–
objective Optimization (SOO) techniques: weighted sum (Athan & Papalambros, 1996),
norm–based (Yu & Leitmann, 1974; Koski & Silvennoinen, 1987), sequential (Romero,
2001), constrained (Waltz, 1967), physical programming (Messac & Ismail-Yahaya, 2002)
and min-max methods (Steuer & Choo, 1983). The latter strategy is based on the concept of
Pareto dominance and considers Pareto–optimal solutions as non-inferior solutions among
the candidate solutions. The main exponent of this class is the convex hull method (Das &
Dennis, 1998; Messac, Ismail-Yahaya, & Mattson, 2003).

Similar to MOO, current MORL approaches can be divided into two categories based
on the number of policies they learn (Vamplew et al., 2011). Single–policy methods aim
at finding the best policy that satisfies a preference among the objectives. The majority
of MORL approaches belong to this category and differ for the way in which preferences
are expressed. They are easy to implement, but require a priori decision about the type
of the solution and suffer of instability, as small changes on the preferences may result
in significant variations in the solution (Vamplew et al., 2011). The most straightforward
and common single–policy approach is the scalarization where a function is applied to the
reward vector in order to produce a scalar signal. Usually, a linear combination —weighted
sum— of the rewards is performed and the weights are used to express the preferences over
multiple objective (Castelletti, Corani, Rizzolli, Soncinie-Sessa, & Weber, 2002; Natarajan
& Tadepalli, 2005; Van Moffaert, Drugan, & Nowé, 2013). Less common is the use of non
linear mappings (Tesauro, Das, Chan, Kephart, Levine, Rawson, & Lefurgy, 2008). The
main advantage of scalarization is its simplicity. However, linear scalarization presents some
limitations: it is not able to find solutions that lie in the concave or linear region of the
Pareto frontier (Athan & Papalambros, 1996) and a uniform distribution of the weights may
not produce accurate and evenly distributed points on the Pareto frontier (Das & Dennis,
1997). In addition, even if the frontier is convex, some solutions cannot be achieved through
scalarization because a loss in one objective may not be compensated by an increment
in another one (Perny & Weng, 2010). Different single–policy approaches are based on
thresholds and lexicographic ordering (Gábor, Kalmár, & Szepesvári, 1998) or different
kinds of preferences over the objective space (Mannor & Shimkin, 2002, 2004).

Multiple–policy approaches, on the contrary, aim at learning multiple policies in order
to approximate the Pareto frontier. Building the exact frontier is generally impractical in
real-world problems, thus, the goal is to build an approximation of the frontier that contains
solutions that are accurate, evenly distributed along the frontier and have a range similar
to Pareto one (Zitzler, Thiele, Laumanns, Fonseca, & da Fonseca, 2003). There are many
reasons behind the superiority of the multiple–policy methods: they permit a posteriori
selection of the solution and encapsulate all the trade-offs among the multiple objectives.
In addition, a graphical representation of the frontier can give better insights into the rela-
tionships among the objectives that can be useful for understanding the problem and the
choice of the solution. However, all these benefits come at a higher computational cost,
that can prevent learning in online scenarios. The most common approach to approximate
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the Pareto frontier is to perform multiple runs of a single–policy algorithm by varying the
preferences among the objectives (Castelletti et al., 2002; Van Moffaert et al., 2013). It
is a simple approach but suffers from the disadvantages of the single–policy method used.
Besides this, few other examples of multiple–policy algorithms can be found in literature.
Barrett and Narayanan (2008) proposed an algorithm that learns all the deterministic poli-
cies defining the convex hull of the Pareto frontier in a single learning process. Recent
works have focused on the extension of fitted Q-iteration to the multi–objective scenario.
While Lizotte, Bowling, and Murphy (2010), and Lizotte et al. (2012) have focused on a
linear approximation of the value function, Castelletti, Pianosi, and Restelli (2012) are able
to learn the control policy for all the linear combinations of preferences among the objec-
tives in a single learning process. Finally, Wang and Sebag (2013) proposed a Monte–Carlo
Tree Search algorithm able to learn solutions lying in the concave region of the frontier.

Nevertheless, these classic approaches exploit only deterministic policies that result in
scattered Pareto frontiers, while stochastic policies give a continuous range of compromises
among objectives (Roijers, Vamplew, Whiteson, & Dazeley, 2013; Parisi et al., 2014). Shel-
ton (2001, Section 4.2.1) was the pioneer both for the use of stochastic mixture policies and
gradient ascent in MORL. He achieved two well known goals in MORL: simultaneous and
conditional objectives maximization. In the former, the agent must maintain all goals at the
same time. The algorithm starts with a mixture of policies obtained by applying standard
RL techniques to each independent objective. The policy is subsequently improved following
a convex combination of the gradients in the policy space that are non–negative w.r.t. all
the objectives. For each objective i, the gradient gi of the expected return w.r.t. the policy
is computed and the vector vi having the highest dot product with gi and simultaneously
satisfying the non–negativity condition for all the returns is used as improving direction
for the i-th reward. The vectors vi are combined in a convex form to obtain the direction
of the parameter improvement. The result is a policy that belongs to the Pareto frontier.
An approximation of the Pareto frontier is obtained by performing repeated searches with
different weights of the reward gradients vi. On the other hand, conditional optimization
consists in maximizing an objective while maintaining a certain level of performance over
the others. The resulting algorithm is a gradient search in a reduced policy space in which
the value of constrained objectives are greater than the desired performance.

Only a few studies followed the work of Shelton (2001) in regard to policy gradient
algorithms applied to MOMDPs. Recently Parisi et al. (2014) proposed two policy gradient
based MORL approaches that, starting from some initial policies, perform gradient ascent
in the policy parameters space in order to determine a set of non–dominated policies. In
the first approach (called Radial), given the number p of Pareto solutions that are required
for approximating the Pareto frontier, p gradient ascent searches are performed, each one
following a different (uniformly spaced) direction within the ascent simplex defined by the
convex combination of single–objective gradients. The second approach (called Pareto–
Following) starts by performing a single–objective optimization and then it moves along the
Pareto frontier using a two-step iterative process: updating the policy parameters following
some other gradient ascent direction, and then applying a correction procedure to move the
new solution onto the Pareto frontier. Although such methods exploit stochastic policies and
proved to be effective in several scenarios, they still return scattered solutions and are not
guaranteed to uniformly cover the Pareto frontier. To the best of our knowledge, nowadays
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there is no MORL algorithm returning a continuous approximation of the Pareto frontier2.
In the following sections we present the first approach able to do that: the Pareto–Manifold
Gradient Algorithm (PMGA).

2.3 Policy Parametrization in Policy–Gradient Approaches

In single–objective MDPs, policy–gradient approaches consider parameterized policies π ∈
Πθ =

{
πθ : θ ∈ Θ ⊆ Rd

}
, where πθ is a compact notation for π(a|s,θ) and Θ is the policy

parameters space. Given a policy parametrization θ, we assume the policy performance
J : Θ→ F ⊆ Rq to be at least of class C2.3 F is called objectives space and J is defined as
the expected reward over the space of all possible trajectories T

J (θ) =

∫
T
p (τ |θ) r(τ)dτ,

where τ ∈ T is a trajectory drawn from density distribution p(τ |θ) with reward vector
r(τ) that represents the accumulated expected discounted reward over trajectory τ , i.e.,
ri(τ) =

∑T−1
t=0 γtiRi(st, at, st+1). Examples of parametrized policies used in this context are

Guassian policies and Gibbs policies. In MOMDPs, q gradient directions are defined for
each policy parameter θ (Peters & Schaal, 2008b), i.e.,

∇θJi(θ) =

∫
T
∇θp (τ |θ) ri(τ)dτ = Eτ∈T

[
∇θ ln p (τ |θ) ri(τ)

]
≈ Eτ∈T

[
ri(τ)

T−1∑
t=0

∇θ lnπ (aτt |sτt ,θ)

]
= ∇̂θJi(θ), (1)

where each direction ∇θJi is associated to a particular discount factor–reward function
pair < γi,Ri > and ∇̂θJi(θ) is its sample-based estimate. As shown by Equation (1), the
differentiability of the expected return is connected to the differentiability of the policy by

∇θ ln p (τ |θ) =
T−1∑
t=0

∇θ lnπ(at|st,θ).

A remark on notation. In the following we will use the symbol DXF to denote the
derivative of a generic function F : Rm×n → Rp×q w.r.t. matrix X.4 Notice that the
following relationship holds for scalar functions of vector variable: ∇xf = (Dxf)T. Finally,
the symbol Ix will be used to denote an x× x identity matrix.

3. Gradient Ascent on Policy Manifold for Continuous Pareto Frontier
Approximation

In this section we first provide a general definition of the optimization problem that we want
to solve and then we explain how we can solve it in the MOMDP scenario using a gradient–
based approach. The novel contributes of this section are summarized in Lemma 3.1 where

2. A notable exception is the MOO approach by Calandra, Peters, and Deisenrothy (2014) where Gaussian
Processes are used to obtain a continuous approximation of the Pareto frontier.

3. A function is of class C2 when it is continuous, twice differentiable and the derivatives are continuous.
4. The derivative operator is well defined for matrices, vectors and scalar functions. Refer to the work

of Magnus and Neudecker (1999) for details.
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the objective function and its gradient are described. In particular, we provide a solution
to the problem of evaluating the performance of a continuous approximation of the Pareto
frontier w.r.t. to an indicator function. This problem is non trivial in MORL because we
do not have direct access to the Pareto frontier and we can only manipulate the policy
parameters. We provide a step-by-step derivation of these results leveraging on manifold
theory and matrix calculus.

3.1 Continuous Pareto Frontier Approximation in Multi–objective
Optimization

It has been shown that locally Pareto–optimal solutions locally forms a (q−1)–dimensional
manifold, assuming d > q (Harada, Sakuma, Kobayashi, & Ono, 2007). It follows that in
2–objective problems, Pareto–optimal solutions can be described by curves both in policy
parameters and objective spaces. The idea behind this work is to parametrize the locally
Pareto–optimal solution curve in the objectives space, in order to produce a continuous
representation of the Pareto frontier.

Let the generative space T be an open set in Rb with b ≤ q. The analogous high–
dimensional function of a parameterized curve is a smooth map ψρ : T → Rq of class
C l (l ≥ 1), where t ∈ T and ρ ∈ P ⊆ Rk are the free variables and the parameters,
respectively. The set F = ψρ(T ) together with the map ψρ constitute a parametrized
manifold of dimension b, denoted by Fρ(T ) (Munkres, 1997). This manifold represents our
approximation of the Pareto frontier. The goal is to find the best approximation, i.e., the
parameters ρ that minimize the distance from the real frontier

ρ∗ = arg max
ρ∈P

I∗ (Fρ (T )) , (2)

where I∗ : Rq → R is some indicator function measuring the quality of Fρ (T ) w.r.t. the
true Pareto frontier. Notice that Equation (2) can be interpreted as a special projection
operator (refer to Figure 1a for a graphical representation). However, since I∗ requires
the knowledge of the true Pareto frontier, a different indicator function is needed. The
definition of such metric is an open problem in literature. Recently, several metrics have
been defined, but each candidate presents some intrinsic flaws that prevent the definition
of a unique superior metric (Vamplew et al., 2011). Furthermore, as we will see in the
remainder of the section, the proposed approach needs a metric that is differentiable w.r.t.
policy parameters. We will investigate this topic in Section 5.

In general, MOO algorithms compute the value of the frontier as the sum of the value
of the points composing the discrete approximation. In our scenario, where a continuous
approximate frontier is available, it maps to an integration on the Pareto manifold

L (ρ) =

∫
Fρ(T )

IdV, (3)

where L (ρ) is the manifold value, dV denotes the integral w.r.t. the volume of the manifold
and I : Fρ (T )→ R is an indicator function measuring the Pareto optimality of each point
of Fρ (T ). Assuming I to be continuous, the above integral is given by (Munkres, 1997)

L (ρ) =

∫
Fρ(T )

IdV ≡
∫
T

(I ◦ ψρ)V ol (Dtψρ(t)) dt,
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(a) (b)

Figure 1: Transformation maps in a generic MOO setting (Figure (a)) and in MORL (Fig-
ure (b)). While in MOO it is also possible to consider parametrized solutions as in Fig-
ure (b), in MORL this is necessary, as the mapping between θi and Fi is not known in
closed form but determined by the (discounted) sum of the rewards.

provided this integral exists and V ol (X) =
(
det
(
XT ·X

)) 1
2 . A standard way to maximize

the previous equation is by performing gradient ascent, updating the parameters according
to the gradient of the manifold value w.r.t. the parameters ρ, i.e., ρ← ρ+ α ∇ρL (ρ) .

3.2 Continuous Pareto Frontier Approximation in Multi–objective
Reinforcement Learning

While in standard multi–objective optimization the function ψρ is free to be designed, in
MORL it must satisfy some conditions. The first thing to notice is that the direct map
between the parameters space T and the objective space is unknown, but can be easily
defined through a reparameterization involving the policy space Θ, as shown in Figure 1b. In
the previous section we have mentioned that there is a tight relationship between the (local)
manifold in the objective space and the (local) manifold in the policy parameters space.
This mapping is well known and it is defined by the performance function J(θ) defining the
utility of a policy πθ. This means that, given a set of policy parameterizations, we can define
the associated points in the objective space. As a consequence, the optimization problem
can be reformulated as the search for the best approximation of the Pareto manifold in the
policy parameter space, i.e., to the search of the manifold in the policy parameter space
that best describes the optimal Pareto frontier.

Formally, let φρ : T → Θ be a smooth map of class C l (l ≥ 1) defined on the same
domain of ψρ. We think of the map φρ as a parameterization of the subset φρ(T ) of Θ:
each choice of a point t ∈ T gives rise to a point φρ(t) in φρ(T ) ⊆ Θ. This means that only
a subset Θρ(T ) of the space Θ can be spanned by map φρ, i.e., Θρ(T ) is a b–dimensional
parametrized manifold in the policy parameters space, i.e.,

Θρ(T ) = {θ : θ = φρ(t), ∀t ∈ T } ,

and, as a consequence, the associated parameterized Pareto frontier is the b–dimensional
open set defined as

Fρ (T ) = {J (θ) : θ ∈ Θρ(T )} .
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3.3 Gradient Ascent in the Manifold Space

At this point we have introduced all the notation needed to derive the gradient ∇ρL (ρ).

Lemma 3.1. (Pirotta et al., 2015) Let T be an open set in Rb, let Fρ (T ) be a manifold
parametrized by a smooth map ψρ expressed as composition of maps J and φρ, (i.e., ψρ =
J ◦ φρ : T → Rq). Given a continuous function I defined at each point of Fρ(T ), the
integral w.r.t. the volume is given by

L (ρ) =

∫
Fρ(T )

IdV =

∫
T

(I ◦ (J ◦ φρ))V ol (DθJ(θ)Dtφρ(t)) dt,

provided this integral exists. The associated gradient w.r.t. the parameters ρi is given by

∂L (ρ)

∂ρi
=

∫
T

∂

∂ρi
(I ◦ (J ◦ φρ))V ol (T) dt

+

∫
T

(I ◦ (J ◦ φρ))V ol (T)

(
vec

(
TTT

)−T)T

Nb

(
Ib ⊗TT

)
DρiTdt, (4)

where T = DθJ(θ)Dtφρ(t), ⊗ is the Kronecker product, Nb = 1
2 (Ib2 +Kbb) is a symmetric

(b2 × b2) idempotent matrix with rank 1
2b(b+ 1) and Kbb is a permutation matrix (Magnus

& Neudecker, 1999). Finally,

DρiT =
(
Dtφρ(t)T ⊗ Iq

)
Dθ (Dθ J(θ))Dρiφρ(t) + (Ib ⊗DθJ(θ))Dρi (Dtφρ(t)) .

Proof. The equation of the manifold value L (ρ) follows directly from the definition of
volume integral of a manifold (Munkres, 1997) and the definition of function composition.
In the following, we provide a detailed derivation of the i-th component of the gradient.
Let T = DθJ(θt)Dtφρ(t), then

∂L (ρ)

∂ρi
=

∫
T

∂

∂ρi
(I ◦ (J ◦ φρ))V ol (T) dt

+

∫
T

(I ◦ (J ◦ φρ))
1

2V ol (T)

∂det
(
TTT

)
∂ρi

dt.

The indicator derivative and the determinant derivative can be respectively expanded as

∂

∂ρi
(I ◦ (J ◦ φρ)) = DJI(Jt) ·DθJ(θt) ·Dρiφρ(t),

∂det
(
TTT

)
∂ρi︸ ︷︷ ︸
1×1

=
∂det

(
TTT

)
∂(vec T)T︸ ︷︷ ︸

1×b2

∂vec TTT

∂(vec T)T︸ ︷︷ ︸
b2×qb

∂T

∂ρi︸︷︷︸
qb×1

,

where

∂det
(
TTT

)
∂(vec T)T

= det
(
TTT

)(
vec

(
TTT

)−T)T

,

∂TTT

∂(vec T)T
= 2Nb

(
Ib ⊗TT

)
,
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and ⊗ is the Kronecker product, Nb = 1
2 (Ib2 +Kbb) is a symmetric (b2 × b2) idempotent

matrix with rank 1
2b(b+ 1) and Kbb is a permutation matrix (Magnus & Neudecker, 1999).

The last term to be expanded is DρiT ≡
∂vec (T)
∂ρi

. We start from a basic property of the
differential, i.e.,

d (DθJ(θ)Dtφρ(t)) = d(DθJ(θ))Dtφρ(t) +DθJ(θ) d(Dtφρ(t))

then, applying the vector operator,

dvec (DθJ(θ)Dtφρ(t)) = vec (d(DθJ(θ))Dtφρ(t)) + vec (DθJ(θ) d(Dtφρ(t)))

=
(
Dtφρ(t)T ⊗ Iq

)
︸ ︷︷ ︸

bq×dq

dvec (DθJ(θ))︸ ︷︷ ︸
dq×1

+ (Ib ⊗DθJ(θ))︸ ︷︷ ︸
bq×bd

dvec (Dtφρ(t))︸ ︷︷ ︸
bd×1

.

Finally, the derivative is given by

DρiT =
(
Dtφρ(t)T ⊗ Iq

) ∂vec DθJ(θ)

∂θT︸ ︷︷ ︸
dq×d

∂φρ(t)

∂ρi︸ ︷︷ ︸
d×1

+ (Ib ⊗DθJ(θ))
∂vec Dtφρ(t)

∂ρi︸ ︷︷ ︸
bd×1

=
(
Dtφρ(t)T ⊗ Iq

)
Dθ (Dθ J(θ))Dρiφρ(t) + (Ib ⊗DθJ(θ))Dρi (Dtφρ(t)) .

It is interesting to notice that the gradient of the manifold value L (ρ) requires to
compute the second derivatives of the policy performance J(θ). However, Dθ (Dθ J(θ)) =
∂vec Dθ J(θ)

∂θT does not denote the Hessian matrix but a transformation of it

H
(m,n)
θ Ji = D2

n,mJi(θ) =
∂

∂θn

(
∂Ji
∂θm

)
= Dp,n

θ (Dθ J(θ)) ,

where p = i+ q(m− 1) and q (number of objectives) is the number of rows of the Jacobian
matrix. Recall that the Hessian matrix is defined as the derivative of the transpose of the

Jacobian, i.e., HθJ(θ) = Dθ

(
Dθ J(θ)T

)
.

Up to now, little research has been done on second-order methods5 and in particular
on Hessian formulations. A first analysis was performed by Kakade (2001), who provided a
formulation based on the policy gradient theorem (Sutton, McAllester, Singh, & Mansour,
2000). Recently, an extended comparison between Newton method, EM algorithm and
natural gradient was presented by Furmston and Barber (2012). For the sake of clarity, we
report the Hessian formulation provided by Furmston and Barber (2012) using our notation
and we introduce the optimal baseline (in terms of variance reduction) for such formulation.

Lemma 3.2. For any MOMDP, the Hessian HθJ(θ) of the expected discounted reward J
w.r.t. the policy parameters θ is a qd × d matrix obtained by stacking the Hessian of each

5. Notable exceptions are the natural gradient approaches that, although they do not explicitly require to
compute second-order derivatives, are usually considered second-order methods.
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component

HθJ(θ) =
∂

∂θT
vec

(
∂Ji(θ)

∂θT

)T

=

HθJ1(θ)
...

HθJq(θ)

 ,
where

HθJi(θ) =

∫
T
p (τ |θ) (ri(τ)− bi)

(
∇θ ln p (τ |θ)∇θ ln p (τ |θ)T +Hθ ln p (τ |θ)

)
dτ, (5)

and

∇θ ln p (τ |θ) =
T−1∑
t=0

∇θ lnπ(at|st,θ), Hθ ln p (τ |θ) =
T−1∑
t=0

Hθ lnπ(at|st,θ).

The optimal baseline of the Hessian estimate H
(m,n)
θ Ji provided in Equation (5) can

be computed as done by Greensmith, Bartlett, and Baxter (2004) in order to reduce the
variance of the gradient estimate. It is given component-wise by

b
(m,n)
i =

Eτ∼p(·|θ)

[
Ri(τ)

(
G

(m,n)
θ (τ)

)2
]

Eτ∼p(·|θ)

[(
G

(m,n)
θ (τ)

)2
] ,

where G
(m,n)
θ (τ) = ∇mθ ln p (τ |θ)∇nθ ln p (τ |θ)+H

(m,n)
θ ln p (τ |θ). For its derivation, we refer

to Appendix A.

4. Manifold Gradient Estimation from Sample Trajectories

In MORL, having no prior knowledge about the reward function and the state transition
model, we need to estimate the gradient ∇ρL (ρ) from trajectory samples. This section
aims to provide a guide to the estimation of the manifold gradient. In particular, we review
results related to the estimation of standard RL components (expected discounted return
and its gradient) and we provide a finite-sample analysis of the Hessian estimate.

The formulation of the gradient ∇ρL (ρ) provided in Lemma 3.1 is composed by terms
related to the parameterization of the manifold in the policy space and terms related to
the MDP. Since the map φρ is free to be designed, the associated terms (e.g., Dtφρ(t)) can
be computed exactly. On the other hand, the terms related to the MDP (J (θ), DθJ(θ)
and HθJ(θ)) need to be estimated. While the estimate of the expected discounted reward
and the associated gradient is an old topic in RL literature and several results have been
proposed (Kakade, 2001; Pirotta, Restelli, & Bascetta, 2013), literature lacks of an explicit
analysis of the Hessian estimate. Recently, the simultaneous perturbation stochastic approx-
imation technique was exploited to estimate the Hessian (Fonteneau & Prashanth, 2014).
However, we rely on the formulation provided by Furmston and Barber (2012) where the
Hessian is estimated from trajectory samples obtained through the current policy, removing
the necessity of generating policy perturbations.
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Algorithm 1 Pareto–Manifold Gradient Algorithm

Define policy π, parametric function φρ, indicator I and learning rate α

Initialize parameters ρ

Repeat until terminal condition is reached

Collect n = 1 . . . N trajectories

Sample free variable t[n] from the generative space

Sample policy parameters θ[n] = φρ
(
t[n]
)

Execute trajectory and collect data
{
s

[n]
t , a

[n]
t , r

[n]
t,·

}T
t=1

Compute gradients ∇̂θJi(θ) according to Equation (1)

Compute Hessians ĤθJi(θ) according to Equation (6)

Compute manifold value derivative ∇ρL (ρ) according to Equation (4)

Update parameters ρ← ρ+ α ∇ρL (ρ)

Since p (τ |θ) is unknown, the expectation is approximated by the empirical average.
Assuming to have access to N trajectories, the Hessian estimate is

ĤθJi(θ) =
1

N

N∑
n=1

(
T−1∑
t=0

γtir
n
t,i − b

)

·

(
T−1∑
t=0

∇θ lnπθant ,snt

(
T−1∑
t=0

∇θ lnπθant ,snt

)T

+
T−1∑
t=0

H lnπθant ,snt

)
, (6)

where
{
s

[n]
t , a

[n]
t , r

[n]
t,·

}T
t=1

denotes the n-th trajectory. This formulation resembles the def-

inition of REINFORCE estimate given by Williams (1992) for the gradient ∇θJ(θ). Such
estimates, known as likelihood ratio methods, overcome the problem of determining the per-
turbation of the parameters occurring in finite-difference methods. Algorithm 1 describes
the complete PMGA procedure.

In order to simplify the theoretical analysis of the Hessian estimate, we make the fol-
lowing assumptions.

Assumption 4.1 (Uniform boundedness). The reward function, the log-Jacobian and the
log-Hessian of the policy are uniformly bounded: ∀i = 1, . . . , q, ∀m = 1, . . . , d, ∀n =
1, . . . , d, (s, a, s′) ∈ S ×A× S ,θ ∈ Θ∣∣∣Ri(s, a, s′)∣∣∣ ≤ Ri, ∣∣∣D(m)

θ lnπ(a|s,θ)
∣∣∣ ≤ D, ∣∣∣H(m,n)

θ lnπ(a|s,θ)
∣∣∣ ≤ G.

Lemma 4.2. Given a parametrized policy π(a|s,θ), under Assumption 4.1, the i-th com-
ponent of the log-Hessian of the expected return can be bounded by

‖HθJi(θ)‖max ≤
RiTγ

T

1− γ

(
TD

2
+G

)
,

where the max norm of a matrix is defined as ‖A‖max = maxi,j {aij}.
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Proof. Consider the definition of the Hessian in Equation (5). Under assumption 4.1, the
Hessian components can be bounded by (∀m,n)∣∣∣H(m,n)Ji(θ)

∣∣∣ =

∣∣∣∣∣
∫
T
p (τ |θ) ri(τ)

T−1∑
t=0

[
∂

∂θm
lnπ(at|st,θ)

T−1∑
j=0

∂

∂θn
lnπ(aj |sj ,θ)

+
∂2

∂θm∂θn
lnπ(at|st,θ)

]∣∣∣∣∣
≤ Ri

T−1∑
l=0

γl−1 ·
T−1∑
t=0

D T−1∑
j=0

D +G

 =
RiTγ

T

1− γ

(
TD

2
+G

)
.

The previous result can be used to derive a bound on the sample complexity of the
Hessian estimate.

Theorem 4.3. Given a parametrized policy π(a|s,θ), under Assumption 4.1, using the
following number of T -step trajectories

N ≥ 1

2ε2i

(
RiTγ

T

(1− γ)

(
TD

2
+G

))2

ln
2

δ

the gradient estimate ĤθJi(θ) generated by Equation (6) is such that with probability 1− δ∥∥∥ĤθJi(θ)−HθJi(θ)
∥∥∥

max
≤ εi.

Proof. Hoeffding’s inequality implies that ∀m,n

P
(∣∣∣Ĥ(m,n)

θ Ji(θ)−H(m,n)
θ Ji(θ) ≥ εi

∣∣∣) ≤ 2e
− N2ε2i∑N

i=1
(bi−ai)2 = δ .

Solving the equation for N and noticing that Lemma 4.2 provides a bound on each sample,
we obtain

N =
1

2ε2i

(
RiTγ

T

(1− γ)

(
TD

2
+G

))2

ln
2

δ
.

The integral estimate can be computed using standard Monte–Carlo techniques. Several
statistical bounds have been proposed in literature, we refer to Robert and Casella (2004)
for a survey on Monte–Carlo methods.

At this point of the paper, the reader may expect an analysis of the convergence (or
convergence rate) to the optimal parametrization. Although we consider this analysis the-
oretically challenging and interesting, we will not provide any result related to this topic.
This analysis is hard (or even impossible) to provide in general settings since the objective
function is nonlinear and nonconcave. Moreover, an analysis of a simplified scenario (if
possible) will be almost useless in real applications.
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5. Metrics for Multi–objective Optimization

In this section, we review some indicator functions proposed in literature, underlining ad-
vantages and drawbacks, and propose some alternatives. Recently, MOO has focused on
the use of indicators to turn a multi–objective optimization problem into a single–objective
one by optimizing the indicator itself. The indicator function is used to assign to every
point of a given frontier a scalar measure that gives a rough idea of the discrepancy be-
tween the candidate frontier and the Pareto one. Since instead of optimizing the objective
functions directly indicator–based algorithms aim at finding a solution set that maximizes
the indicator metric, a natural question arises about the correctness of this change in the
optimization procedure and on the properties the indicator functions enjoy. For instance,
the hypervolume indicator and its weighted version are among the most widespread metrics
in literature. These metrics have gained popularity because they are refinements of the
Pareto dominance relation (Zitzler, Thiele, & Bader, 2010). Recently, several works have
been proposed in order to theoretically investigate the properties of the hypervolume indi-
cator (e.g., Friedrich, Horoba, & Neumann, 2009). Nevertheless, it has been argued that the
hypervolume indicator may introduce a bias in the search. Furthermore another important
issue when dealing with the hypervolume indicator is the choice of the reference point. From
our perspective, the main issues of this metric are the high computational complexity (the
computation of the hypervolume indicator is a #P–hard problem, see Friedrich et al., 2009)
and, above all, the non differentiability. Several other metrics have been defined in the field
of MOO, we refer to the work by Okabe, Jin, and Sendhoff (2003) for a survey. However, the
MOO literature has not been able to provide a superior metric and among the candidates
no one is suited for our scenario. Again, the main issues are the non differentiability, the
capability of evaluating only discrete representations of the Pareto frontier and the intrinsic
nature of the metrics. For example, the generational distance, another widespread measure
based on the minimum distance from a reference frontier, is not available in our settings.

To overcome these issues, we mixed different indicator concepts into novel differentiable
metrics. The insights that have guided our metrics definition are related to the MOO
desiderata. Recall that the goal of MOO is to compute an approximation of the frontier
including solutions that are accurate, evenly distributed and covering a range similar to the
actual one (Zitzler et al., 2003). Note that the uniformity of the frontier is intrinsically guar-
anteed by the continuity of the approximation we have introduced. Having these concepts
in mind, we need to induce accuracy and extension through the indicator function.

We have not stressed —but it is clear from the definition— that we want the indicator to
be maximized by the real Pareto frontier. We also must ensure that the indicator function
induces a partial ordering over frontiers: manifold F2 solutions are all (weakly) dominated
by manifold F1 ones, then F1 manifold value must be better than F2 one.

Definition 5.1 (Consistent Indicator Function). Let F be the set of all (q−1)–dimensional
manifolds associated to a MOMDP with q objectives. Let Θk ∈ Θ be the manifold in the
policy parameters space mapping to Fk ∈ F and F∗ be the true Pareto frontier. Let
LI(F) =

∫
F IdV be the manifold value. An indicator function I is consistent if

∀Fk 6= Fh, LI(Fh) > LI(Fk) ⇐⇒ Fh ≡ F∗, and

∀Θh,Θk, ∀θi ∈ Θk, ∃θj ∈ Θh, πθj � πθi =⇒ LI(Fh) > LI(Fk).
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5.1 Accuracy Metrics

Given a reference point p, a simple indicator can be obtained by computing the distance
between every point of a frontier F and the reference point, i.e.,

I = ‖J− p‖22 .

As mentioned for the hypervolume indicator, the choice of the reference point may be
critical. However, a natural choice is the utopia (ideal) point (pU), i.e., the point that
optimizes all the objectives. In this case the goal is the minimization of such indicator
function, denoted by IU (utopia indicator). Since any dominated policy is farther from the
utopia than at least one Pareto–optimal solution, the accuracy can be easily guaranteed. On
the other hand, since it has to be minimized, this measure forces the solution to collapse
into a single point, thus it is not consistent. Note that this problem can be mitigated
(but not solved) by forcing the transformation φρ to pass through the single–objective
optima. Although this trick can be helpful, as we will discuss in Section 6, it requires to
find the single–objective optimal policies in order to constrain the parameters. However,
this information is also required to properly set the utopia.

Concerning the accuracy of the frontier, from a theoretical perspective, it is possible to
define another metric using the definition of Pareto optimality. A point θ is Pareto–optimal
when (Brown & Smith, 2005)

l(θ,α) =

q∑
i=1

αi∇θJi(θ) = 0,

q∑
i=1

αi = 1, αi ≥ 0,

that is, it is not possible to identify an ascent direction that simultaneously improves all
the objectives. As a consequence, the Pareto–ascent direction l of any point on the Pareto
frontier is null. Formally, a metric that respects the Pareto–optimality can be defined as
follows:

I = min
α∈Rq

‖l(θ,α)‖22 ,
q∑
i=1

αi = 1, αi ≥ 0.

We denote this indicator with IPN (Pareto norm indicator). As for the utopia–based metric,
the extent of the frontier is not taken into account and without any constraint the optimal
solution collapses into a single point on the frontier.

5.2 Covering Metrics

If the extension of the frontier is the primary concern, maximizing the distance from the
antiutopia (pAU) results in a metric that grows with the frontier dimension. However,
on the contrary of the utopia point, the antiutopia is located in the half space that can
be reached by the solutions of the MOO problems. This means that by considering the
antiutopia–based metric the maximization problem could become unbounded by moving
solutions arbitrary far from both the Pareto frontier and the antiutopia point. Therefore
this measure, denoted by IAU (antiutopia indicator), does not provide any guarantee about
accuracy.
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5.3 Mixed Metrics

All the mentioned indicators provide only one of the desiderata. As a consequence, the
resulting approximate frontier might be arbitrary far from the actual one. In order to
consider both the desiderata we can mix the previous concepts into the following indicator:

I = IAU · w

where w is a penalization function, i.e., it is a monotonic function that decreases as the
accuracy of the input increases, e.g., w = 1− λIPN or w = 1− λIU. These metrics, denoted
respectively by Iλ,PN and Iλ,U, take advantage of the expansive behavior of the antiutopia–
based indicator and the accuracy of some optimality–based indicator. In this way all the
desiderata can be met by a single scalar measure, that is also C l (l ≥ 1) differentiable.

Another solution is to mix utopia– and antiutopia–based indicators in a different way.
As we want solutions that are simultaneously far from the antiutopia and close to the utopia,
we consider the following metric Iβ (to be maximized):

I = β1
IAU

IU
− β2,

where β1 and β2 are free parameters.
In the next section, we will show that the proposed mixed metrics are effective in driving

PMGA close to the Pareto frontier both in exact and approximate scenarios. However, we
want to make clear that their consistency is not guaranteed as it strongly depends on the
free parameters λ, β1 and β2. More insights are discussed in Section 7.

6. Experiments

In this section, we evaluate our algorithm on two problems, a Linear-Quadratic Gaussian
regulator and a water reservoir control task. PMGA is compared to state-of-the-art methods
(Peters, Mülling, & Altün, 2010; Castelletti et al., 2013; Parisi et al., 2014; Beume, Naujoks,
& Emmerich, 2007) using the hypervolume (Vamplew et al., 2011) and an extension of a
previously defined performance index (Pianosi, Castelletti, & Restelli, 2013), named loss,
measuring the distance of an approximate Pareto front from a reference one. For 2–objective
problems, the hypervolume is exactly computed. For 3–objective problems, given its high
computational complexity, the hypervolume is approximated with a Monte–Carlo estimate
as the percentage of points dominated by the frontier in the cube defined by the utopia and
antiutopia points. For the estimate one million points were used.
The idea of the loss index is to compare the true Pareto frontier FW = {J∗w}w∈W over a

space of weights W to the frontier JMW = {Ĵw}w∈W returned by an algorithm M over the
same weights (Jw denotes the discounted return of a new single–objective MDP defined by
the linear combination of the objectives over w). Formally the loss function l is defined as

l(JM ,F ,W, p) =

∫
w∈W

J∗w −maxπ∈ΠMJ
Ĵπw

∆J∗w
p(dw), (7)

where p(·) is a probability density over the simplex W and ∆J∗w = w ·∆J∗ is the normal-
ization factor, where the i-th component of ∆J∗ is the difference between the best and the
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worst value of the i-th objective of the Pareto frontier, i.e., ∆J∗i = max(J∗i )−min(J∗i ). This
means that, for each weight, the policy that minimizes the loss function is chosen in JMW .
If the true Pareto frontier F is not known, a reference one is used.

Since PMGA returns continuous frontiers and the two scores are designed for discrete
ones, for the evaluation all the frontiers have been discretized. Also, figures presented in
this section show discretized frontiers in order to allow a better representation. Besides the
hypervolume and the loss function, we report also the number of solutions returned by an
algorithm and the number of rollouts (i.e., the total number of episodes simulated during
the learning process). All data have been collected in simulation and results are averaged
over ten trials6. In all the experiments, PMGA learning rate is

α =

√
ε

∇ρL (ρ)TM−1∇ρL (ρ)
, (8)

where M is a positive definite, symmetric matrix and ε is a user–defined parameter. This
stepsize rule comes from the formulation of the gradient ascent as a constrained problem
with a predefined distance metric M (Peters, 2007) and underlies the derivation of natural
gradient approaches. However, since our algorithm exploits the vanilla gradient (i.e., we
consider the Euclidean space) the metric M is the identity matrix I.

The remainder of the section is organized as follows. We start by studying the behavior
of the metrics proposed in Section 5 and the effects of the parametrization φρ(t) on the LQG.
Subsequently, we focus our attention on sample complexity, meant as the number of rollouts
needed to approximate the Pareto front. Finally, we analyze the quality of our algorithm
on the water reservoir control task, a more complex real world scenario, and compare it
to some state-of-the-art multi–objective techniques. For each case study, domains are first
presented and then results are reported and discussed.

6.1 Linear-Quadratic Gaussian Regulator (LQG)

The first case of study is a discrete-time Linear-Quadratic Gaussian regulator (LQG) with
multi-dimensional and continuous state and action spaces (Peters & Schaal, 2008b). The
LQG problem is defined by the following dynamics

st+1 = Ast +Bat, at ∼ N (K · st,Σ)

R(st, at) = −stTQst − atTRat

where st and at are n-dimensional column vectors, A,B,Q,R ∈ Rn×n, Q is a symmetric
semidefinite matrix, and R is a symmetric positive definite matrix. Dynamics are not
coupled, i.e., A and B are identity matrices. The policy is Gaussian with parameters
θ = vec(K), where K ∈ Rn×n. Finally, a constant covariance matrix Σ = I is used.

The LQG can be easily extended to account for multiple conflicting objectives. In
particular, the problem of minimizing the distance from the origin w.r.t. the i-th axis has
been taken into account, considering the cost of the action over the other axes

Ri (st, at) = −s2
t,i −

∑
i 6=j

a2
t,j .

6. Source code available at https://github.com/sparisi/mips.
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Since the maximization of the i-th objective requires to have null action on the other axes,
objectives are conflicting. As this reward formulation violates the positiveness of matrix
Ri, we change it adding a sufficiently small ξ-perturbation

Ri(st, at) = −(1− ξ)

s2
t,i +

∑
i 6=j

a2
t,j

− ξ
∑
j 6=i

s2
t,j + a2

t,i

 .

The parameters used for all the experiments are the following: γ = 0.9, ξ = 0.1 and initial
state s0 = [10, 10]T and s0 = [10, 10, 10]T for the 2– and 3–objective case, respectively. The
following sections compare the performance of the proposed metrics under several settings.
We will made use of tables to summarize the results at the end of each set of experiments.

6.1.1 2–objective Case Results

The LQG scenario is particular instructive since all terms involved in the definition of re-
turns, gradients and Hessians can be computed exactly. We can therefore focus on studying
different policy manifold parametrizations φρ(t) and metrics I.

Unconstrained Parametrization. The domain is problematic since it is defined only
for control actions in the range [−1, 0] and controls outside this range lead to divergence of
the system. Our primary concern was therefore related to the boundedness of the control
actions, leading to the following parametrization of the manifold in the policy space:

θ = φρ(t) =

[
−(1 + exp(ρ1 + ρ2t))

−1

−(1 + exp(ρ3 + ρ4t))
−1

]
, t ∈ [0, 1].

Utopia and antiutopia points are [150, 150] and [310, 310], respectively, and metrics IAU and
IU are normalized in order to have 1 as reference point.7 The learning step parameter ε in
Equation (8) is ε = 1.

In this case, exploiting non–mixed metrics, PMGA was not able to learn a good ap-
proximation of the Pareto frontier in terms of accuracy and covering. Using utopia–based
indicator, the learned frontier collapses in one point on the knee of the front. The same
behavior occurs using IPN. Using antiutopia point as reference point the solutions are
dominated and the approximate frontier gets wider, diverging from the true frontier and
expanding on the opposite half space. These behaviors are not surprising, considering the
definition of these indicator functions, as explained in Section 5.

On the contrary, as shown in Figure 2, all mixed metrics are able to achieve both
accuracy and covering. The starting ρ0 was set to [1, 2, 0, 3]T, but the algorithm was also
able to learn even starting from different random parameters. The free metric parameters
were set to λ = 1.5 for Iλ,PN, λ = 1 for Iλ,U and to β1 = 3, β2 = 1 for Iβ.8 Although not
shown in the figure, Iλ,U behaved very similarly to Iλ,PN. We can notice that in both cases
first accuracy is obtained by pushing the parametrization onto the Pareto frontier, then the
frontier is expanded toward the extrema in order to attain covering.

7. Recall that we have initially defined I = ‖J− p‖22. Here we slightly modify it by normalizing the policy
performance w.r.t. the reference point: I = ‖J/p− 1‖22, where / is a component-wise operator.

8. In Section 7 we will study the sensitivity of the proposed metrics to their parameters λ and β.
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Table 1: Summary of 2–dimensional LQG (unconstrained)

Metrics Accuracy Covering

Non–mixed 7 7

Issues: IU, IPN: frontier collapses in one point
IAU: diverging behavior and dominated solutions found

Mixed 3 3
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(a) Learning process with mixed metric Iλ,PN.
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(b) Learning process with mixed metric Iβ.

Figure 2: Learning processes for the 2–objective LQG without any constraint on the
parametrization. Numbers denote the iteration, end denotes the frontier obtained when
the terminal condition is reached. On the left, the approximated Pareto frontiers, on the
right the corresponding L (ρ). Using both Iλ,PN (Figure (a)) and Iβ (Figure (b)) the ap-
proximated frontier overlaps with the true one. However, using Iβ, PMGA converges faster.
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Constrained Parametrization. An alternative approach consists in forcing the policy
manifold to pass through the extreme points of the true front by knowing the param-
eterizations of the single–objective optimal policies. In general, this requires additional
optimizations and the collection of additional trajectories that must be accounted for in the
results. However, the extreme points are required to set the utopia and antiutopia. More-
over, in our case the optimal single–objective policies were available in literature. For these
reasons, we do not count additional samples when we report the total number of rollouts.

Using a constrained parameterization, two improvements can be easily obtained. First,
the number of free parameters decreases and, as a consequence, the learning process is
simplified. Second, the approximate frontier is forced to have a sufficiently large area to
cover all the extrema. Thus, the problem of covering shown by non–mixed indicators can
be alleviated or, in some cases, completely eliminated. For the 2–dimensional LQG, a
parametrization forced to pass through the extrema of the frontier is the following:

θ = φρ(t) =

[
−(1 + exp(−2.18708− ρ1t

2 + (3.33837 + ρ1)t))−1

−(1 + exp(1.15129− ρ2t
2 + (−3.33837 + ρ2)t))−1

]
, t ∈ [0, 1].

The initial parameter vector is ρ0 = [2, 2]T. The constraint was able to correct the diverging
behavior of IU and IPN, which returned an accurate and wide approximation of the Pareto
frontier, as shown in Figure 2a. We also notice a much faster convergence, since the algo-
rithm is required to learn fewer parameters (two instead of four). However, IAU still shows
the same diverging behavior for some initial parameters ρ0 (in Figure 2b, ρ0 = [6, 6]T). On
the contrary, solutions obtained with the other metrics are independent from the initial ρ0,
as the algorithm converges close to the true frontier even starting from a parametrization
generating an initial frontier far away from the true one.

6.1.2 3–objective Case Results

Unconstrained Parametrization.

θ = φρ(t) =

−(1 + exp(ρ1 + ρ2t1 + ρ3t2))−1

−(1 + exp(ρ4 + ρ5t1 + ρ6t2))−1

−(1 + exp(ρ7 + ρ8t1 + ρ9t2))−1

 , t ∈ simplex([0, 1]2).

Utopia and antiutopia points are [195, 195, 195] and [360, 360, 360], respectively, and metrics
IAU, IU are normalized. The initial parameters are drawn from a uniform distribution ρ0 ∼
Unif((0,0.001)) (ρ0 = 0 causes numerical issues) and the learning rate parameter is ε = 1.

As in the 2–objective scenario, frontiers learned with IU and IPN collapse in a single
point, while IAU has a divergent trend (Figure 3a). However, unlike the 2–objective LQR,
Iλ,PN also failed in correctly approximate the Pareto frontier. The reason is that the tuning
of λ is difficult, given the difference in magnitude between IPN and IAU On the contrary,
Iλ,U with λ = 1.5 and Iβ with β1 = 3, β2 = 1 returned a high quality approximate frontier.
The latter is shown in Figure 3b. Although some small areas of the true Pareto frontier
are not covered by the approximate one, we stress the fact that all the policies found were
Pareto–optimal. The strength of these metrics is to be found in the normalization of both
utopia– and antiutopia–based indicators. This expedient, indeed, allows for an easier tuning
of the free metric parameters, as the magnitude of the single components is very similar.
More insights into the tuning of mixed metrics parameters are discussed in Section 7.
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Table 2: Summary of 2–dimensional LQG (constrained)

Metrics Accuracy Covering

Non–mixed: IU, IPN 3 3

Non–mixed: IAU 7 7

Issues: IAU: diverging behavior and dominated solutions found

Mixed 3 3
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(a) Learning process with utopia–based metric IU.
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(b) Learning process with antiutopia–based metric IAU.

Figure 3: Learning process for the 2–objective LQG with a parametrization forced to pass
through the extreme points of the frontier. The constraints are able to correct the behavior
of IU (Figure (a)) and the convergence is faster than the previous parametrization. However,
IAU still diverges (Figure (b)) and the returned frontier includes dominated solutions, since
the metric considers only the covering of the frontier and not the accuracy.
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Table 3: Summary of 3–dimensional LQG (unconstrained)

Metrics Accuracy Covering

Non–mixed 7 7

Issues: IU, IPN: frontier collapses in one point
IAU: diverging behavior and dominated solutions found

Mixed: Iλ,PN 7 7

Issues: Iλ,PN: difficult tuning of λ

Mixed: Iλ,U, Iβ 3 3
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(a) Frontier approximated with antiutopia–based metric IAU.
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(b) Frontier approximated with mixed metric Iβ.

Figure 4: Resulting frontiers for the 3–objective LQG using an unconstrained parametriza-
tion. Frontiers have been discretized for better representation. With IAU the learning
diverges (Figure (a)) while Iβ correctly approximates the Pareto frontier (Figure (b)).
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Constrained Parametrization.

θ = φρ(t) =

 −(1 + exp(a+ ρ1t1 − (b− ρ2)t2 − ρ1t
2
1 − ρ2t

2
2 − ρ3t2t1))−1

−(1 + exp(a− (b− ρ4)t1 + ρ5t2 − ρ4t
2
1 − ρ5t

2
2 − ρ6t1t2))−1

−(1 + exp(−c+ (ρ7 + b)t1 + (ρ8 + b)t2 − ρ7t
2
1 − ρ8t

2
2 − ρ9t1t2))−1

 ,
a = 1.151035476, b = 3.338299811, c = 2.187264336, t ∈ simplex([0, 1]2).

The initial parameters are ρ0 = 0. Numerical results are reported in Table 4, where the
hypervolume has been computed normalizing the objective w.r.t. the antiutopia. Figure 5
shows the frontiers obtained using utopia– and antiutopia–based indicators. We can clearly
see that, unlike the 2–objective case, even with a constrained parametrization these metrics
lead to poor solutions, failing in providing all MO desiderata. In Figure 5a, using IU the
frontier still tends to collapse towards the center of the true one, in order to minimize the
distance from the utopia point (only the constraint on ρ prevents that). Although not shown
in the figures, a similar but slightly broader frontier is returned using IPN. However, we
stress that all solutions belong to the Pareto frontier, i.e., only non–dominated solutions are
found. Figure 5b shows the frontier obtained with IAU. As expected, the algorithm tries to
produce a frontier as wide as possible, in order to increase the distance from the antiutopia
point. This behavior leads to dominated solutions and the learning process diverges.

On the contrary, using mixed metrics Iλ,PN (λ = 30), Iλ,U (λ = 1.4) and Iβ (β1 =
2.5, β2 = 1) PMGA is able to completely and accurately cover the Pareto frontier, as shown
in Figures 6a and 6b. It is worth to notice the different magnitude of the free parameter λ in
Iλ,PN compared to the 2–objective case, for which λ was 1.5. As already discussed, this is due
to the substantial difference in magnitude between IAU and IPN. On the contrary, the tuning
for the other mixed metrics was easier, as similar parameters used for the unconstrained
parametrization proved to be effective. We will come back to this topic in Section 7.

Finally, as shown in Table 4, Iλ,U and Iβ achieve the best numerical results, as the first
attains the highest hypervolume and the lowest loss, while the latter attains the fastest
convergence. Their superiority also resides in their easy differentiability and tuning, espe-
cially compared to Iλ,PN. For these reasons, we have chosen them for an empirical analysis
on sample complexity and for a comparison against some state-of-the-art algorithms on a
real-world MO problem, which will be discussed in the next sections.

Table 4: Performance comparison between different metrics on the 3–objective LQG with
constrained parametrization. The reference frontier has a hypervolume of 0.7297.

Metric Hypervolume Loss #Iterations

IU 0.6252 2.9012e-02 59

IAU 0 ∞ ∞
IPN 0.7167 1.9012e-02 133

Iλ,PN 0.7187 5.2720e-04 47

Iλ,U 0.7212 4.9656e-04 33

Iβ 0.7204 5.0679e-04 15
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Table 5: Summary of 3–dimensional LQG (constrained)

Metrics Accuracy Covering

Non–mixed 7 7

Issues: IU, IPN: frontier collapses in one point
IAU: diverging behavior and dominated solutions found

Mixed 3 3
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(a) Frontier approximated with utopia–based metric IU.
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(b) Frontier approximated with antiutopia–based metric IAU.

Figure 5: Results with a parametrization forced to pass through the extreme points of the
frontier. Using IU (Figure (a)) the frontier shrinks as much as allowed by the parametriza-
tion. The constraint is therefore not able to solve the issues of the metric as in the 2–
objective scenario. On the contrary, using IAU the frontier gets wider and diverges from the
true one (in Figure (b) an intermediate frontier is shown).
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Figure 6: Results using Iβ and a constrained parametrization. As shown in Figure (a),
the approximate frontier perfectly overlaps the true one, despite small discrepancies in the
policy parameters space between the learned parameters and the optimal ones (Figure (b)).
Similar frontiers are obtainable with Iλ,PN and Iλ,U.

6.1.3 Empirical Sample Complexity Analysis

In this section, we provide an empirical analysis of the sample complexity of PMGA, meant
as the number of rollouts needed to approximate the Pareto frontier. The goal is to identify
the most relevant parameter in the estimate of MDP terms J(θ), DθJ(θ) and HJ(θ).
The analysis is performed on the 2–dimensional LQG domain by varying the number of
policies used to estimate the integral per iteration of PMGA and the number of episodes
for each policy evaluation. The steps of each episode are fixed to 50. We first used the
parametrization forced to pass through the extreme points of the frontier with ρ0 = [3, 7]T,
that produces an initial approximate frontier far from the true one. The parameter of the
learning rate in Equation (8) was set to ε = 0.5 and the parameter of Iλ,U was set to
λ = 1. As performance criterion, we choose the total number of rollouts required to reach
a loss smaller than 5 · 10−4 and a hypervolume larger than 99.5% of the reference one.
These criteria are also used as conditions for convergence (both have to be satisfied). For
the evaluation, MDP terms are computed in closed form. The terminal condition must be
reached in 100, 000 episodes otherwise the algorithm is forced to end. The symbol ⊥ is used
to represent the latter case.

From Table 6a it results that the most relevant parameter is the number of episodes
used to estimate the MDP terms. This parameter controls the variance in the estimate,
i.e., the accuracy of the estimate of ∇ρL (ρ). By increasing the number of episodes, the
estimation process is less prone to generate misleading directions, as happens, for instance,
in the one–episode case where parameters move towards a wrong direction. On the contrary,
the number of points used to estimate the integral (denoted in the table by #t) seems to
have no significant impact on the final performance of the algorithm, but it influences the
number of model evaluations needed to reach the prescribed accuracy. The best behavior,

211



Parisi, Pirotta, & Restelli

Table 6: Total number of episodes needed to converge on varying the number of points #t
to approximate the integral and the number of episodes #ep per point. The symbol ⊥ is
used when the terminal condition is not reached.

(a) If the parametrization is constrained to pass through the extreme points of the frontier, only one
point t is sufficient to move the whole frontier towards the right direction.

#t
#ep 1 5 10 25 50

1 ⊥ 695± 578 560± 172 1, 850± 757 1, 790± 673

5 ⊥ 2, 550± 1, 509 3, 440± 2, 060 5, 175± 3, 432 8, 250± 2, 479

10 ⊥ 4, 780± 4, 623 6, 820± 3, 083 10, 500± 3, 365 11, 800± 1, 503

25 ⊥ 7, 525± 2, 980 15, 100± 9, 500 18, 375± 6, 028 24, 250± 7, 097

50 ⊥ 8, 700± 5, 719 18, 000± 6, 978 26, 750± 7, 483 50, 000± 1, 474

(b) On the contrary, using an unconstrained parametrization, PMGA needs both a sufficient number
of episodes and enough points t for a correct update step.

#t
#ep 1 5 10 25 50

1 ⊥ ⊥ ⊥ ⊥ ⊥

5 ⊥ ⊥ ⊥ ⊥ 29,350± 7,310

10 ⊥ ⊥ ⊥ 44, 100± 9, 466 64, 500± 1, 359

25 ⊥ ⊥ ⊥ 60, 500± 1, 000 83, 500± 8, 923

50 ⊥ ⊥ 47, 875± 18, 558 84, 250± 1, 457 ⊥

from a sample–based perspective, has been obtained by exploiting only one point for the
integral estimate. Although it can be surprising, a simple explanation exists. By forcing
the parameterization to pass through the single–objective optima, a correct estimation of
the gradient direction of a single point t is enough to move the entire frontier toward the
true one, i.e., to move the parameters towards the optimal ones.

On the contrary, if the unconstrained parametrization is used, one point is not sufficient
anymore, as shown in Table 6b. In this case, the initial parameter vector was set to ρ0 =
[1, 1, 0, 0]T, the learning rate parameter to ε = 0.1 and the terminal condition requires a
frontier with loss smaller than 10−3 and hypervolume larger than 99% of the reference
frontier. Without any constraint, the algorithm needs both accuracy in the evaluation of
single points —i.e., a sufficient number of episodes— and enough points t to move the whole
frontier towards the right direction. The accuracy of the gradient estimate∇ρL (ρ) therefore
depends on both the number of points t and the number of episodes, and PMGA requires
much more rollouts to converge. The best behavior, from a sample–based perspective, has
been obtained by exploiting five points for the integral estimate and 50 episodes for the
policy evaluation.
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6.2 Water Reservoir

A water reservoir can be modeled as a MOMDP with a continuous state variable s rep-
resenting the water volume stored in the reservoir, a continuous action a controlling the
water release, a state-transition model depending also on the stochastic reservoir inflow ε,
and a set of conflicting objectives. This domain was proposed by Pianosi et al. (2013).
Formally, the state-transition function can be described by the mass balance equation
st+1 = st + εt+1−max(at,min(āt, at)) where st is the reservoir storage at time t; εt+1 is the
reservoir inflow from time t to t + 1, generated by a white noise with normal distribution
εt+1 ∼ N (40, 100); at is the release decision; at and āt are the minimum and the maximum
releases associated to storage st according to the relations āt = st and at = max(st−100, 0).

In this work we consider three objectives: flooding along the lake shores, irrigation
supply and hydro-power supply. The immediate rewards are defined by

R1(st, at, st+1) = −max(ht+1 − h̄, 0),

R2(st, at, st+1) = −max(ρ̄− ρt, 0),

R3(st, at, st+1) = −max(ē− et+1, 0),

where ht+1 = st+1/S is the reservoir level (in the following experiments S = 1), h̄ is the
flooding threshold (h̄ = 50), ρt = max(at,min(āt, at)) is the release from the reservoir, ρ̄ is
the water demand (ρ̄ = 50), ē is the electricity demand (ē = 4.36) and et+1 is the electricity
production

et+1 = ψ g η γH20 ρt ht+1,

where ψ = 10−6/3.6 is a dimensional conversion coefficient, g = 9.81 the gravitational
acceleration, η = 1 the turbine efficiency and γH20 = 1, 000 the water density. R1 denotes
the negative of the cost due to the flooding excess level, R2 is the negative of the deficit in
water supply and R3 is the negative of the deficit in hydro-power production.

Like in the original work, the discount factor is set to 1 for all the objectives and the
initial state is drawn from a finite set. However, different settings are used for the learning
and evaluation phases. Given the intrinsic stochasticity of the problem, all policies are
evaluated over 1,000 episodes of 100 steps, while the learning phase requires a different
number of episodes over 30 steps, depending on the algorithm. We will discuss the details
in the results section.

Since the problem is continuous we exploit a Gaussian policy model

π(a|s,θ) = N
(
µ+ ν(s)Tκ, σ2

)
,

where ν : S → Rd are the basis functions, d = |θ| and θ = {µ, κ, σ}. As the optimal policies
for the objectives are not linear in the state variable, we use a radial basis approximation

νi(s) = e
−‖

s−ci‖2
wi .

We used four centers ci uniformly placed in the interval [−20, 190] and widths wi of 60, for
a total of six policy parameters.
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6.2.1 Results

To evaluate the effectiveness of our algorithm we have analyzed its performance against the
frontiers found by a weighted sum Stochastic Dynamic Programming (Pianosi et al., 2013),
Multi-objective FQI (Pianosi et al., 2013), the episodic version of Relative Entropy Policy
Search (Peters et al., 2010; Deisenroth et al., 2013), SMS-EMOA (Beume et al., 2007),
and two recent policy gradient approaches, i.e., Radial Algorithm and Pareto–Following
Algorithm (Parisi et al., 2014). Since the optimal Pareto front is not available, the one
found by SDP is chosen as reference one for the loss computation. MOFQI learns only
deterministic policies (i.e., the standard deviation σ of the Gaussian is set to zero) and
has been trained using 10, 000 samples with a dataset of 50, 000 tuples for the 2–objective
problem and 20, 000 samples with a dataset of 500, 000 tuples for the 3–objective problem.
The remaining competing algorithms all learn stochastic policies. The number of episodes
required for a policy update step is 25 for REPS, 100 for PFA and RA, 50 for SMS-EMOA.
Given its episodic formulation, REPS draws the parameters κ from an upper distribution

π(κ|ω) = N (µ,Σ) ,

where Σ is a diagonal covariance matrix, while σ is set to zero. However, since the algorithm
learns the parameters ω = {µ,Σ}, the overall learned policy is still stochastic. SMS-EMOA
has a maximum population size of 100 and 500 for the 2– and 3–objective case, respectively.
The crossover is uniform and the mutation, which has a chance of 80% to occur, adds a white
noise to random chromosomes. At each iteration, the top 10% individuals are kept in the
next generation to guarantee that the solution quality will not decrease. Finally, MOFQI
scalarizes the objectives using the same weights as SDP, i.e., 11 and 25 weights for the 2– and
3–objective case, respectively. REPS uses instead 50 and 500 linearly spaced weights. RA
also follows 50 and 500 linearly spaced directions and, along with PFA, exploits the natural
gradient (Peters & Schaal, 2008a) and the adaptive learning step in Equation (8), with ε = 4
and M = F , where F is the Fisher information matrix. Concerning the parametrization of
PMGA, we used a complete first degree polynomial for the 2–objective case

θ = φρ(t) =



66− ρ1t
2 + (ρ1 − 16)t

−105− ρ2t
2 + (ρ2 + 20)t

18− ρ3t
2 + (ρ3 − 16)t

−23− ρ4t
2 + (ρ4 + 53)t

39− ρ5t
2 + (ρ5 + 121)t

0.01− ρ6t
2 + (ρ6 + 0.1)t

 , t ∈ [0, 1].

Similarly, for the 3–objective case a complete second degree polynomial is used

θ = φρ(t) =



36 + (15− ρ1)t2 + (ρ1 + 1)t1t2 + 30t21 + (ρ1 − 1)t22
−57− (27 + ρ2)t2 + (ρ2 + 1)t1t2 − 48t21 + (ρ2 − 1)t22
13 + (7− 2ρ3)t1 + (ρ3 + 1)t1t2 + (2ρ3 − 2)t21 − 11t22
−30 + (9− 2ρ4)t1 + (ρ4 + 1)t1t2 + (2ρ4 − 2)t21 + 60t22
104 + (57− ρ5)t2 + (ρ5 + 1)t1t2 − 65t21 + (ρ5 − 1)t22

0.05 + (1− ρ6)t2 + (ρ6 + 1)t1t2 + (ρ6 − 1)t22

 , t ∈ simplex([0, 1]2).

Both parameterizations are forced to pass near the extreme points of the Pareto frontier,
computed through single–objective policy search. In both cases the starting parameter
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Figure 7: Results for the 2–objective water reservoir. Even starting from an arbitrary poor
initial parametrization, PMGA is able to approach the true Pareto frontier (Figure (b)). In
Figure (a), the trend of the manifold metric L (ρ) averaged over ten trials.

vector is ρ0 = [0, 0, 0, 0, 0, 50]T. The last parameter is set to 50 in order to guarantee
the generation of sufficiently explorative policies, as θ6 is responsible for the variance of
the Gaussian distribution. However, for a fair comparison, also all competing algorithms
take advantage of such information, as the mean of their initial policies is calculated ac-
cordingly to the behavior of the optimal ones described by Castelletti et al. (2012), i.e.,
κ = [50,−50, 0, 0, 50]T. The initial standard deviation is set to σ = 20 to guarantee suffi-
cient exploration. This parametrization avoids completely random and poor quality initial
policies. Utopia and antiutopia points were set to [−0.5,−9] and [−2.5,−11] for the 2–
objective case, [−0.5,−9,−0.001] and [−65,−12,−0.7] for the 3–objective one.

According to the results presented in Section 6.1.3, the integral estimate in PMGA is
performed using a Monte–Carlo algorithm fed with only one random point. For each in-
stance of variable t, 50 trajectories by 30 steps are used to estimate the gradient and the
Hessian of the policy. Regarding the learning rate, the adaptive one described in Equa-
tion (8) was used with ε = 2. For the evaluation, 1,000 and 2,000 points are used for the
integral estimate in the 2– and 3–objective case, respectively. As already discussed, given
the results obtained for the LQG problem and in order to show the capability of the approx-
imate algorithm, we have decided to consider only the indicator Iβ (β1 = 1 and β2 = 1).
The main reasons are its efficiency (in Table 4 it attained the fastest convergence) and its
easy differentiability. Finally, we recall that all the results are averaged over ten trials.

Figure 7b reports the initial and final frontiers when only the first two objectives are
considered. Even starting very far from the true Pareto frontier, PMGA is able to approach
it, increasing covering and accuracy of the approximate frontier. Also, as shown in Fig-
ure 7a, despite the very low number of exploited samples, the algorithm presents an almost
monotonic trend during the learning process, which converges in a few iterations.
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Figure 8: Visual comparison for the 2–objective water reservoir. PMGA frontier is compa-
rable to the ones obtained by state-of-the-art algorithms in terms of accuracy and covering.
However, it is the only continuous one, as the others are scattered.

Table 7: Numerical algorithm comparison for the 2–objective water reservoir. The SDP
reference frontier has a hypervolume of 0.0721 and nine solutions.

Algorithm Hypervolume Loss #Rollouts #Solutions

PMGA 0.0620± 0.0010 0.0772± 0.0045 16, 250± 1, 072 ∞
PFA 0.0601± 0.0012 0.0861± 0.0083 27, 761± 4, 849 51.1± 10.9

RA 0.0480± 0.0005 0.1214± 0.0043 59, 253± 3, 542 16.1± 2.9

MOFQI - 0.1870± 0.0090 10,000 -

REPS 0.0540± 0.0009 0.1181± 0.0030 37, 525± 2, 235 17.0± 4.1

SMS-EMOA 0.0581± 0.0022 0.0884± 0.0019 149, 825± 35, 460 14.2± 2.4

Figure 8 offers a visual comparison of the Pareto points and Tables 7 and 8 report a
numerical evaluation, including the hypervolume and the loss achieved by the algorithms
w.r.t. the SDP approximation9. PMGA attains the best performance both in the 2– and 3–
objective cases, followed by PFA. SMS-EMOA also returns a good approximation, but is the
slowest, requiring more than ten times the amount of samples used by PMGA. Only MOFQI
outperforms PMGA on sample complexity, but its loss is the highest. Finally, Figure 9
shows the hypervolume trend for PMGA and a comparison on sample complexity for the
2–objective case. PMGA is substantially more sample efficient than the other algorithms,
attaining a larger hypervolume with much fewer rollouts. For example, it is capable of
generating a frontier with the same hypervolume of RA with only one tenth of the rollouts,
or it outperforms PFA with only half of the samples needed by the latter.

9. Results regarding MOFQI include only the loss and the number of rollouts as the hypervolume and the
number of solutions are not available from the original paper.
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Figure 9: Comparison of sample complexity on the 2–objective case using the hypervolume
as evaluation score. In brackets the number of rollouts needed by an algorithm to produce
its best frontier. PMGA clearly outperforms all the competing algorithms, as it requires
much fewer samples to generate frontiers with better hypervolume.

Table 8: Numerical algorithm comparison for the 3–objective water reservoir. The SDP
reference frontier has a hypervolume of 0.7192 and 25 solutions.

Algorithm Hypervolume Loss #Rollouts #Solutions

PMGA 0.6701± 0.0036 0.0116± 0.0022 62, 640± 7, 963 ∞
PFA 0.6521± 0.0029 0.0210± 0.0012 343, 742± 12, 749 595± 32.3

RA 0.6510± 0.0047 0.0207± 0.0016 626, 441± 35, 852 137.3± 25.4

MOFQI - 0.0540± 0.0061 20,000 -

REPS 0.6139± 0.0003 0.0235± 0.0014 187, 565± 8, 642 86± 9.7

SMS-EMOA 0.6534± 0.0007 0.0235± 0.0020 507, 211± 56, 823 355.6± 13.9

7. Metrics Tuning

In this section we want to examine more deeply the tuning of mixed metric parameters, in
order to provide the reader with better insights for a correct use of such metrics. The per-
formance of PMGA strongly depends on the indicator used and, thereby, their configuration
is critical. To be more precise, mixed metrics, which obtained the best approximate Pareto
frontiers in the experiments conducted in Section 6, include a trade-off between accuracy
and covering, expressed by some parameters. In the following, we analyze the fundamental
concepts behind these metrics and study how their performance is influenced by changes in
the parameters.
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Figure 10: Approximate frontiers for the 2–objective LQG learned by PMGA using Iλ,PN
on varying λ. In Figure (a) the indicator does not penalize enough for dominated solutions,
while in Figure (c) the frontier is not wide enough. On the contrary, in Figure (b) the
algorithm achieves both accuracy and covering.

7.1 Iλ Tuning

The first indicator (to be maximized) that we analyze is

Iλ = IAU · w,

where w is a penalization term. In the previous sections we proposed w = 1 − λIPN and
w = 1− λIU, in order to take advantage of the expansive behavior of the antiutopia–based
indicator and the accuracy of an optimality–based indicator. In this section we study the
performance of this mixed metric by changing λ, proposing a simple tuning process. The
idea is to set λ to an initial value and then increase (or decrease) it if the approximate
frontier contains dominated solutions (or is not wide enough). Figure 10 shows different
approximate frontiers obtained with different values of λ in the exact 2–objective LQG after
50 iterations and using w = 1 − λIPN. Starting with λ = 1 the indicator behaves mostly
like IAU, meaning that λ was too small (Figure 10a). Increasing λ to 2 (Figure 10c) the
algorithm converges, but the approximate frontier does not completely cover the true one,
i.e., IPN mostly condition the behavior of the metric. Finally, with λ = 1.5 (Figure 10b) the
approximate frontier perfectly matches the true one and the metric correctly mixes the two
single indicators.

However, as already discussed in Section 6, the use of w = 1− λIPN can be problematic
as the difference in magnitude between IAU and IPN can make the tuning of λ hard up to
the point the metric becomes ineffective. Such a drawback can be solved using w = 1−λIU
and normalizing the reference point indicators (i.e., IU and IAU) by I(J,p) = ‖J/p− 1‖22,
as the normalization bounds the utopia– and antiutopia–based metrics in similar intervals,
i.e., (0,∞) and [0,∞), respectively.10

10. The ratio between two vectors a/b is a component-wise operation.
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Figure 11: Examples of Pareto frontiers. In Figures (a) and (b) the frontiers are convex,
but in the latter objectives are not normalized. In Figure (c) the frontier is concave.

7.2 Iβ Tuning

The second mixed indicator (to be maximized) also takes advantage of the expansive be-
havior of the antiutopia–based indicator and the accuracy of the utopia–based one. It is
defined as

Iβ = β1
IAU

IU
− β2,

where β1 and β2 are free parameters.

To better understand the insights that have guided our metric definition, we can consider
different scenarios according to the shape of the Pareto frontier. In Figure 11a the frontier
is convex and we normalized the objectives. In this case any point that is closer to the
antiutopia than the utopia is, for sure, a dominated solution. The ratio IAU/IU of any
point on the frontier will always be greater than 1 and hence it is reasonable to set β1

and β2 both to 1. Therefore, we do not need to know exactly the antiutopia point and the
drawback of the antiutopia–based metric IAU disappears, since we also take into account the
distance from the utopia point. Nevertheless, the setting of these points is critical, as their
magnitude can strongly affect PMGA performance. An example is shown in Figure 11b,
where the frontier is not normalized and the objectives have different magnitude. In this
case, setting both β1 and β2 to 1, the indicator Iβ evaluated at the extrema of the frontier

(J∗1 = [1, 0]T and J∗2 = [0, 10]T) is equal to −0.99 and 99, respectively. As the first value
is negative, an approximate frontier that includes all the points of the true Pareto frontier,
but J∗1 would perform better than the true Pareto frontier.

On the contrary, if the frontier is concave (Figure 11c) it is not true that any point that
is closer to the antiutopia than the utopia is a dominated solution, and the ratio IAU/IU
of any point on the frontier (with the exception, eventually, of its ends) will always be
smaller than one. Keeping β1 = 1 and β2 = 1, PMGA would try to collapse the frontier
into a single point, in order to maximize the indicator. Therefore, the parameters need to
be changed accordingly by trial-and-error. For instance, if the returned frontier does not
achieve accuracy, a possible solution is to decrease β1 or to increase β2.
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8. Conclusion

In this paper we have proposed a novel gradient–based approach, namely Pareto–Manifold
Gradient Algorithm (PMGA), to learn a continuous approximation of the Pareto frontier in
MOMDPs. The idea is to define a parametric function φρ that describes a manifold in the
policy parameters space, that maps to a manifold in the objectives space. Given a metric
measuring the quality of the manifold in the objectives space (i.e., the candidate frontier),
we have shown how to compute (and estimate from trajectory samples) its gradient w.r.t.
the parameters of φρ. Updating the parameters along the gradient direction generates a new
policy manifold associated to an improved (w.r.t. the chosen metric) continuous frontier
in the objectives space. Although we have provided a derivation independent from the
parametric function and the metric used to measure the quality of the candidate solutions,
both these terms strongly influence the final result. Regarding the former, we achieved
high quality results by forcing the parameterization to pass through the single–objective
optima. However, this trick might require domain expertise and additional samples and
therefore could not always be applicable. Regarding the latter, we have presented different
alternative metrics, examined pros and cons of each one, shown their properties through
an empirical analysis and discussed a general tuning process for the most promising ones.
The evaluation also included a sample complexity analysis to investigate the performance
of PMGA, and a comparison to state-of-the-art algorithms in MORL. From the results, our
approach outperforms the competing algorithms both in quality of the frontier and sample
complexity. It would be interesting to study these properties from a theoretical perspective
in order to provide support to the empirical evidence. We leave as open problems the
investigation of the convergence rate and of the approximation error of the true Pareto
frontier. However, we think it will be hard to provide this analysis in the general setting.

Future research will further address the study of metrics and parametric functions that
can produce good results in the general case. In particular, we will investigate problems
with many objectives (i.e., more than three) and high–dimensional policies. Since the com-
plexity of the manifold parameterization grows with the number of objectives and policy
parameters, a polynomial parameterization could not be effective in more complex prob-
lems and alternative parameterizations have to be found. Another interesting direction of
research concerns importance sampling techniques for reducing the sample complexity in
the gradient estimate. Since the frontier is composed of a continuum of policies, it is likely
that a trajectory generated by a specific policy can be partially used also for the estimation
of quantities related to similar policies, thus decreasing the number of samples needed for
the Monte–Carlo estimate of the integral. Moreover, it would be interesting to investi-
gate automatic techniques for the tuning of the metric parameters and the applicability of
PMGA to the multi-agent scenario (e.g., Roijers, Whiteson, & Oliehoek, 2015).
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Appendix A. Optimal Baseline

Theorem A.1 (Component–dependent baseline). The optimal baseline for the (i, j)-component

of the Hessian estimate H
(i,j)
RF,θJD (θ) given in Equation (6) is

b
(i,j)
H,∗ =

Eτ∼T
[
R(τ)

(
G

(i,j)
θ (τ)

)2
]

Eτ
[(

G
(i,j)
θ (τ)

)2
] ,

where

G
(i,j)
θ (τ) = ∇iθ ln p (τ |θ)∇jθ ln p (τ |θ) +H

(i,j)
θ ln p (τ |θ) .

Given a baseline b, the variance reduction obtained through the optimal baseline bH,∗ is

Var (HRF,θJD (θ, b))−Var (HRF,θJ (θ, bH,∗)) =(
b(i,j) − b(i,j)H,∗

)2

N
E
τ∼T

[(
G

(i,j)
θ (τ)

)2
]
.

Proof. Let G
(i,j)
θ (τ) be the (i, j)-th component of Gθ(τ)

G
(i,j)
θ (τ) = ∇iθ ln p (τ |θ)∇jθ ln p (τ |θ) +H

(i,j)
θ ln p (τ |θ) .

The variance of H
(i,j)
RF,θJD (θ) is given by11

Var
(
H

(i,j)
RF,θJD (θ)

)
= E

τ

[(
R(τ)− b(i,j)

)2 (
G

(i,j)
θ (τ)

)2
]
−
(
E
τ

[(
R(τ)− b(i,j)

)
G

(i,j)
θ (τ)

])2

= E
τ

[
R(τ)2

(
G

(i,j)
θ (τ)

)2
]

+ E
τ

[
b(i,j)

2
(
G

(i,j)
θ (τ)

)2
]

− 2b(i,j) E
τ

[
R(τ)

(
G

(i,j)
θ (τ)

)2
]
−
(
E
τ

[
R(τ)G

(i,j)
θ (τ)

])2
.

Minimizing the previous equation w.r.t. b(i,j) we get

b
(i,j)
H,∗ =

Eτ
[
R(τ)

(
G

(i,j)
θ (τ)

)2
]

Eτ
[(

G
(i,j)
θ (τ)

)2
] .

11. We use the compact notation Eτ [·] to denote Eτ∼T [·].
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The excess of variance is given by
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