
1

Crowdsourcing for Top-K Query Processing
over Uncertain Data

Eleonora Ciceri, Piero Fraternali, Davide Martinenghi and Marco Tagliasacchi

Abstract—Querying uncertain data has become a prominent application due to the proliferation of user-generated content
from social media and of data streams from sensors. When data ambiguity cannot be reduced algorithmically, crowdsourcing
proves a viable approach, which consists in posting tasks to humans and harnessing their judgment for improving the confidence
about data values or relationships. This paper tackles the problem of processing top-K queries over uncertain data with the
help of crowdsourcing for quickly converging to the real ordering of relevant results. Several offline and online approaches for
addressing questions to a crowd are defined and contrasted on both synthetic and real data sets, with the aim of minimizing the
crowd interactions necessary to find the real ordering of the result set.

Index Terms—User/Machine Systems, Query processing.

F

1 INTRODUCTION

Both social media and sensing infrastructures are
producing an unprecedented mass of data that are
at the base of numerous applications in such fields
as information retrieval, data integration, location-
based services, monitoring and surveillance, predic-
tive modeling of natural and economic phenomena,
public health, and more. The common characteristic of
both sensor data and user-generated content is their
uncertain nature, due to either the noise inherent in
sensors or the imprecision of human contributions.
Therefore query processing over uncertain data has
become an active research field [47], where solutions
are being sought for coping with the two main uncer-
tainty factors inherent in this class of applications: the
approximate nature of users’ information needs and
the uncertainty residing in the queried data.

In the well-known class of applications commonly
referred to as “top-K queries” [26], the objective is
to find the best K objects matching the user’s infor-
mation need, formulated as a scoring function over
the objects’ attribute values. If both the data and the
scoring function are deterministic, the best K objects
can be univocally determined and totally ordered so
as to produce a single ranked result set (as long as
ties are broken by some deterministic rule).

However, in application scenarios involving un-
certain data and fuzzy information needs, this does
not hold. For example, in a large social network
the importance of a given user may be computed
as a fuzzy mixture of several characteristics, such

• Eleonora Ciceri, Piero Fraternali, Davide Martinenghi and Marco
Tagliasacchi are with the Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico di Milano, Italy.
E-mail: first.last@polimi.it

This work is partly funded by the EC’s FP7 CUbRIK and SmartH2O
projects, and the FESR project Proactive

as her network centrality, level of activity, expertise,
and topical affinity. A viral marketing campaign may
try to identify the “best” K users and exploit their
prominence to spread the popularity of a product
[20]. Another instance occurs when sorting videos for
recency or popularity in a video sharing site [4]: for
example, the video timestamps may be uncertain be-
cause the files were annotated at a coarse granularity
level (e.g., the day), or perhaps because similar but
not identical types of annotations are available (e.g.,
upload instead of creation time). Sometimes, data
processing may also be a source of uncertainty; for
example, when tagging images with a visual quality
or representativeness index, the score may be algorith-
mically computed as a probability distribution, with
a spread related to the confidence of the algorithm
employed to estimate quality [21], [39].

Furthermore, uncertainty may also derive from the
user’s information need itself; for example, when
ranking apartments for sale, their value depends on
the weights assigned to price, size, location, etc.,
which may be uncertain because they were specified
only qualitatively by the user or estimated by a
learning-to-rank algorithm [50].

When either the attribute values or the scoring
function are nondeterministic, there may be no con-
sensus on a single ordering, but rather a space of
possible orderings. For example, a query for the top-
K most recent videos may return multiple orderings,
namely all those compatible with the uncertainty of
the timestamps. To determine the correct ordering,
one needs to acquire additional information so as to
reduce the amount of uncertainty associated with the
queried data. Without this reduction, even moderate
amounts of uncertainty make top-K answers become
useless, since none of the returned orderings would
be clearly preferred to the others.

An emerging trend in data processing is crowd-

2

sourcing [16], defined as the systematic engagement
of humans in the resolution of tasks through online
distributed work. This approach combines human
and automatic computation in order to solve complex
problems, and has been applied to a variety of data
and query processing tasks, including multimedia
content analysis, data cleaning, semantic data integra-
tion, and query answering [51]. When data ambiguity
can be resolved by human judgment, crowdsourc-
ing becomes a viable tool for converging towards a
unique or at least more determinate query result. For
example, in an event detection and sorting scenario, a
human could know the relative order of occurrence of
two events; with this information, one could discard
the incompatible orderings. However, crowdsourcing
has problems of its own [1]: the output of humans is
uncertain, too, and thus additional knowledge must
be properly integrated, notably by aggregating the
responses of multiple contributors. Due to this redun-
dancy, significant budget savings may be achieved
by avoiding to post even a small amount of tasks.
This problem requires an appropriate policy in the
formulation of the tasks to submit to the crowd, aimed
at reaching the maximum reduction of uncertainty
with the smallest number of crowd task executions.

The goal of this paper is to define and compare
task selection policies for uncertainty reduction via
crowdsourcing, with emphasis on the case of top-K
queries. Given a data set with uncertain values, our
objective is to pose to a crowd the set of questions that,
within an allowed budget, minimizes the expected
residual uncertainty of the result, possibly leading to
a unique ordering of the top K results.

The main contributions of the paper are as follows:
1) We formalize a framework for uncertain top-

K query processing, adapt to it existing tech-
niques for computing the possible orderings, and
introduce a procedure for removing unsuitable
orderings, given new knowledge on the relative
order of the objects (Section 3).

2) We define and contrast several measures of un-
certainty, either agnostic (Entropy) or dependent
on the structure of the orderings (Section 4).

3) We formulate the problem of Uncertainty Reso-
lution (UR) in the context of top-K query pro-
cessing over uncertain data with crowd support
(Section 5.1). The UR problem amounts to iden-
tifying the shortest sequence of questions that,
when submitted to the crowd, ensures the conver-
gence to a unique, or at least more determinate,
sorted result set. We show that no deterministic
algorithm can find the optimal solution for an
arbitrary UR problem.

4) We introduce two families of heuristics for ques-
tion selection: offline, where all questions are se-
lected prior to interacting with the crowd, and
online, where crowd answers and question selec-
tion can intermix. For the offline case we define

a relaxed, probabilistic version of optimality, and
exhibit an algorithm that attains it as well as sub-
optimal but faster algorithms (Section 5.2). We
also generalize the algorithms to the case of an-
swers collected from noisy workers (Section 5.3).

5) We propose an algorithm that avoids the materi-
alization of the entire space of possible orderings
to achieve even faster results (Section 5.4).

6) We conduct an extensive experimental evaluation
of several algorithms on both synthetic and real
datasets, and with a real crowd, in order to assess
their performance and scalability (Section 6).

2 BACKGROUND

We consider the problem of answering a top-K query
over a relational database table T containing N tuples.
The relevance of a tuple to the query is modeled as a
score. Let ti ∈ T be a tuple in the database, defined
over a relation schema A = 〈A1, . . . , AM 〉, where
A1, . . . , AM are attributes. Let s(ti) denote the score
of tuple ti, computed by applying a scoring function
over ti’s attribute values. Generally, s(ti) is computed
by using an aggregation function

s(ti) = F (s(ti[A1]), . . . , s(ti[AM]);w1, . . . , wM), (1)

where ti[Aj] is the value of the j-th attribute of ti,
s(ti[Aj]) its relevance with respect to the query, and
wj is the weight associated with the j-th attribute, i.e.,
the importance of Aj with respect to the user needs. It
is common to define (1) as a convex sum of weighted
attribute scores [41].

When both the attribute values and the correspond-
ing weights are known, the tuples in T can be totally
ordered in descending order of s(ti) by breaking ties
deterministically. Instead, if either the attribute values
or the weights are uncertain, the score s(ti) can be
modeled as a random variable. The corresponding
probability density function (pdf) fi can be obtained
either analytically, from the knowledge of the domain,
or by fitting training data [42], [36], [5].

In the following we focus on the case in which fi
represents a continuous random variable, from which
the simpler discrete case can be derived. We make
very weak assumptions on the class of pdf’s: fi can
be any function that can be approximated with a
piecewise polynomial function defined over a finite
support [li, ui], where li and ui are the lowest and
highest values that can be attained by s(ti). This
approximation allows us to handle the most common
probability distributions [25]. For ease of presenta-
tion, from now on we focus on uniform probability
distributions. Let then δi denote the spread of the
score distribution associated with the tuple ti, i.e.,
δi = ui − li. Without loss of generality, we assume
that the scores are normalized in the [0, 1] interval.
Therefore, li ∈ [0, 1 − δi] and ui ∈ [δi, 1]. Figure 1(a)

3

illustrates an example with three tuples whose score
is represented by means of a uniform pdf.

The uncertain knowledge of the scores s(ti) induces
a partial order over the tuples [42]. Indeed, when the
pdf’s of two tuples overlap, their relative order is
undefined. Therefore, we define the space of possible
orderings as the set of all the total orderings compatible
with the given score probability functions. This space
can be represented by means of a tree of possible or-
derings (henceforth: TPO), in which each node (except
the root) represents a tuple ti, and an edge from ti to
tj indicates that ti is ranked higher than tj (denoted
ti ≺ tj). Each path tr(1) ≺ tr(2) ≺ . . . ≺ tr(N), where
r(k) is the index of the tuple ranked at position k, is
associated with a probability value. Complete paths
from the root (excluded) to the leaf tr(N) (included)
represent a possible ordering of the underlying set
of tuples T . For example, the score distributions in
Figure 1(a) induce the TPO in Figure 1(b) , where each
ordering is associated with its probability value.

In the next three sections we define and show how
to build a model that represents and quantitatively
measures the uncertainty in the space of possible
orderings. In Section 3, first we summarize how to
build the TPO starting from the score pdf’s via state-
of-the-art techniques, then show how to remove ir-
relevant orderings from the TPO. In Section 4 we
propose different measures that quantify the level of
uncertainty in a TPO. Based on this, in Section 5 we
introduce a framework that determines the sequence
of questions to ask for reducing uncertainty in top-K
query scenarios.

3 TREE OF POSSIBLE ORDERINGS (TPO)
3.1 Building the TPO
A method for constructing a TPO T was proposed
in [42]. Let T be a table containing the tuples with
uncertain score {t1, . . . , tN}. In order to build the tree,
a dummy root node is created. Then, the sources (i.e.,
tuples ti ∈ T such that there does not exist any tj ∈ T
such that lj > ui) are extracted from T and attached
as children of the root. Next, each extracted source
is used as a root for computing the next level of the
tree. The asymptotic time complexity of building the
tree up to level K is O(KN2). Finally, the probability
Pr(ω) of any ordering ω in the tree can be computed,
e.g., with the generating functions technique [25] with
asymptotic time complexity O(N2), or via Monte
Carlo sampling.

Figure 1(b) shows the TPO obtained from the score
distributions in Figure 1(a), along with the proba-
bility of each ordering, indicated next to each leaf.
Each internal node n at depth d is associated with
a probability Pr(n), obtained by summing up the
probabilities of the children of n; such a value denotes
the probability of the prefix of length d formed by the
nodes along the path from the root to node n.

3.2 Limiting the TPO to depth K

We observe that processing a top-K query over un-
certain data only requires computing the orderings
of the first K tuples compatible with the pdf’s of the
tuple scores. In other words, when a top-K query is
posed, only the sub-tree TK of possible orderings up
to depth K is relevant to answer the query. Building
the complete tree T of depth N is thus unneeded,
as the probabilities Pr(ωK) for each ωK ∈ TK can be
computed without knowing T and its probabilities,
and thus much more efficiently. Indeed, as discussed
in Section 6.2, while |T | increases exponentially with
N and δ, |TK | is typically slightly larger than K.
Figure 2(a) shows an example TPO with 4 tuples;
Figure 2(b) shows the same TPO when only the first
K = 2 levels are considered.

3.3 Pruning the TPO
If the relative order of two tuples in a TPO is known,
e.g., as determined by a crowd answer assumed to be
correct, we can prune all the paths incompatible with
such an order.

In particular, when considering two tuples ti and
tj in the full TPO T (i.e., when K = N), each path in
T agrees either with ti ≺ tj or with ti 6≺ tj . Thus, T
can be partitioned into two sub-trees: i) T ti≺tj , which
contains all the paths (from the root to a leaf) in T in
which ti is ranked higher than tj , and ii) T ti 6≺tj , which
contains all the remaining paths. Figure 1(c) shows
two sub-trees derived from the tree in Figure 1(b)
when either t1 ≺ t2 or t1 6≺ t2. Note that the leaf
probabilities are always normalized so that they sum
up to 1, i.e., each probability Pr(ω) in a sub-tree
T ′ ∈ {T ti≺tj , T ti 6≺tj} is recomputed as Pr(ω)∑

ω′∈T ′ Pr(ω′) .
The sub-tree that agrees with the known relative order
of ti and tj becomes the new TPO.

Instead, when K < N , it may happen that some
orderings in TK are not affected by the knowledge
of the relative order of some tuples. For instance,
consider the TPO T in Figure 2(a) and its restriction T2
to K = 2, shown in Figure 2(b). When considering the
relative order of t3 and t4, the paths 〈t1, t2〉 and 〈t2, t1〉
in T2 belong to both T t3≺t4

2 and T t3�t4
2 , although with

different probabilities, as shown in Figure 2(c). In such
cases, each path ωK in which the relative order of ti
and tj is ambiguous must be inserted in both the sub-
trees T ti≺tj

K and T ti�tj
K , and the probability of each

path must be computed accordingly. In Section 5.3 we
show how to generalize the definition of T ti≺tj

K and
T ti 6≺tj
K when crowd answers might be noisy and the

relative order of two tuples uncertain.

4 MEASURING UNCERTAINTY

Reducing uncertainty via crowdsourcing requires
acquiring additional knowledge from the crowd. Thus

4

f(s)

s

f1 f2

f3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Score pdf’s

root

1

t2

0.04

t3

0.04

t1

0.04

t3

0.96

t1

0.13

t2

0.13

t2

0.83

t1

0.83

(b) Tree of possible orderings T (c) Left: T t1≺t2 . Right: T t1 6≺t2

Fig. 1: (a) Score pdf’s for tuples t1, t2 and t3; (b) their TPO T ; (c) sub-trees corresponding to the possible
relative orders of t1 and t2. Each node is labeled with the probability of the corresponding prefixPossible order ings tree

root

1

t1

0.06

t2

0.06

t3

0.04

t4

0.04

t4

0.02

t3

0.02

t2

0.94

t1

0.72

t3

0.46

t4

0.46

t4

0.26

t3

0.26

t3

0.15

t1

0.12

t4

0.12

t4

0.03

t1

0.03

t4

0.06

t1

0.05

t3

0.05

t3

0.02

t1

0.02

7

(a) A complete TPO T with N = 4

Possible orderings tree (depth K)

root

1

t1

0.06

t2

0.06

t2

0.94

t1

0.72

t3

0.15

t4

0.07

(b) TPO T2 cut at K = 2 (c) T t3≺t4
2 (left); T t3 6≺t4

2 (right)

Fig. 2: (a) Tree of possible orderings T ; (b) its cut at depth K = 2; (c) possible relative orders of t3 and t4.

it becomes important to quantify the uncertainty re-
duction that can be expected by the execution of
a crowd task. Given a TPO TK , we propose four
measures to quantify its level of uncertainty. For
convenience, we treat TK as a set and write ω ∈ TK
to indicate that ω is one of the orderings in TK , and
|TK | to denote the number of orderings in TK .

Entropy. The first measure relies on Shannon’s en-
tropy, which quantifies the average information con-
veyed by a source that emits symbols from a finite
alphabet. In our context, the alphabet is represented
by the orderings in TK . Each ordering ω ∈ TK
is mapped into a symbol having probability Pr(ω).
Then, UH(TK) measures the uncertainty of TK , based
on the probabilities of its leaves:

UH(TK) = −
∑

ω∈TK

Pr(ω) log2 Pr(ω). (2)

The procedure used for computing UH(TK) has a
complexity of O(|TK |).

Weighted entropy. The measure UH(TK) only con-
siders the probabilities of the leaves of TK . However,
in a top-K context, better ranked tuples are more
important. Thus, we define weighted entropy as a
weighted combination of entropy values at the first
K levels of the TPO:

UHw
(TK) =

K∑
k=1

η(k)UH(Tk) (3)

where η(k) weighs the relevance of level k, i.e., the

smaller k, the larger η(k). Computing UHw(TK) has a
complexity of O(|nodes(TK)|).

ORA. The third measure is based on the idea of
comparing all the orderings in TK with an ordering
that is representative in some sense. To this end, we
adopt the Optimal Rank Aggregation (ORA) as the
“average” ordering [41]: the ORA is the ordering with
minimum average expected distance from all other
orderings in TK . That is,

ωORA = arg min
ω∈TK

1

|TK |
∑

ωi∈TK

d(ωi, ω) Pr(ωi), (4)

where d(·, ·) measures the distance between two or-
derings. Here we use the weighted Kendall-Tau dis-
tance [23] and adapt it to the top-K context, as
follows. Let ω1 and ω2 be two orderings in the tree
TK . Let us indicate with σi(t) the position of tuple
t in ωi, and with I(ω1, ω2) the set of pairs of tuples
whose order is inverted in ω1 and ω2, i.e.

I(ω1, ω2)= {(t,t′)|(σ1(t)− σ1(t′))(σ2(t)− σ2(t′))<0,
t∈ω1,t

′∈ω2}.
(5)

We define:

d(ω1, ω2) =
∑

(t,t′)∈I(ω1,ω2)

π(σ1(t), σ2(t)) · π(σ1(t′), σ2(t′))

(6)
where π(·, ·) is a weight that decreases as its argu-
ments increase. In this way, inversions involving a
tuple near the head of the orderings weigh more than

5

near the tail. Possible choices of π(·, ·) are shown in
Section 6.3 in Equations (17).

The average expected distance from ωORA induces
an uncertainty measure:

UORA(TK) =
1

|TK |
∑

ωi∈TK

d(ωi, ω
ORA) Pr(ωi) (7)

Computing UORA(TK) has a complexity of O(|TK |2).
MPO. The last measure is similar to UORA but

refers to another representative ordering, i.e., the Most
Probable Ordering (MPO) [41]:

ωMPO = arg max
ω∈TK

Pr(ω). (8)

In turn, this induces an uncertainty measure:

UMPO(TK) =
1

|TK |
∑

ωi∈TK

d(ωi, ω
MPO) Pr(ωi) (9)

Computing UMPO(TK) has a complexity of O(|TK |).
In the following, we will drop the subscript and

simply write U(TK) to denote the uncertainty of a
TPO, because the implementation of our algorithms
for uncertainty reduction, discussed in Section 5, is
orthogonal to the specific way of measuring uncer-
tainty. However, the impact of the adopted measure
is studied experimentally in Section 6.

5 HUMANS FIGHTING UNCERTAINTY

The number of possible orderings in a TPO (i.e., paths
from the root to a leaf in T) depends on the number
of tuples N and on the overlaps of their pdf’s fi, i =
1, . . . , N , and can be very large even for small values
of N , as we will show in Section 6. We have two main
ways of reducing uncertainty in T to quickly converge
to the correct ordering: i) building only the first K
levels of the TPO, as was shown in Section 3.2, thereby
focusing on TK instead of T , and ii) defining crowd
tasks for disambiguating the relative order of tuples
in order to prune the TPO as shown in Section 3.3.

Therefore we consider crowd tasks expressed as
questions of the form q = ti ?≺ tj , which compare
ti and tj to determine which one ranks higher. We
initially assume that a crowd worker’s answer ans(q),
which is either ti ≺ tj or ti 6≺ tj ,1 always reflects
the real ordering of the tuples (we shall relax this
assumption in Section 5.3). With that, we can prune
from TK all the paths disagreeing with the answer.

5.1 Problem definition
We now focus on the problem of Uncertainty Reso-
lution (UR) and use TK as a starting point of our
investigation, knowing that TK can be built with
the techniques described in the previous sections.
For convenience, let ansω(q) indicate the answer to

1. We assume a deterministic rule known to the crowd worker
for breaking ties and thus write equivalently ti 6≺ tj and tj ≺ ti.

question q compatible with an ordering ω ∈ T . Also,
for a sequence of answers ans = 〈ans1, . . . , ansn〉,
let T ans

K indicate the tree (. . . (T ans1
K) . . .)ansn obtained

by pruning the TPO TK accordingly. Formally, an
underlying real ordering ω is part of the problem
definition, although ω does not need to be known in
practice.

Definition 5.1: A UR problem is a pair 〈TK , ω〉, where
TK is a TPO and ω is an ordering of all tuples in TK ,
called real ordering, such that an ordering ωK ∈ TK is
a prefix of ω. A solution to 〈TK , ω〉 is a sequence of
questions 〈q1, . . . , qn〉 such that T 〈ansω(q1),...,ansω(qn)〉

K

only contains ωK . A solution is minimal if no shorter
sequence is also a solution.

We consider two classes of algorithms: i) offline
algorithms, which determine the solution a priori, be-
fore obtaining any answer from the crowd, and ii) on-
line algorithms, whereby the solution is determined
incrementally as the answers to previous questions
arrive. These classes reflect two common situations in
crowdsourcing markets: one where the interaction is
limited to the publication of a batch of tasks, which is
evaluated for acceptance as a whole; and one where
the employer can inspect the outcome of crowd work
as it becomes available and incrementally publish
further tasks.

The difference between these two classes lies in
the ability of each online algorithm A to probe the
real ordering so as to choose at each step a new
question, via a function φA, according to the answers
to previously posed questions.

Definition 5.2: A UR algorithm A takes as input a
pair 〈TK , B〉, where TK is a TPO and B (the budget)
is a nonnegative integer, and outputs a sequence
Q = 〈q1, . . . , qB〉 of questions on the tuples in TK .
A is offline if Q is a function of 〈TK , B〉. A is online
if there is a function φA such that, for any real
ordering ω and for 1 ≤ i ≤ B, we have qi =
φA(〈TK , 〈q1, . . . , qi−1〉, 〈ansω(q1), . . . , ansω(qi−1)〉〉).

An algorithm is optimal if it always finds a minimal
solution.

Definition 5.3: A UR algorithm A is optimal if, for
every UR problem P = 〈TK , ω〉 and minimal solution
Q of P , A’s output on 〈TK , |Q|〉 is a solution of P .

Theorem 5.4: No deterministic algorithm is optimal.
Proof: Let T = {t1, t2, t3} be such that t1 dom-

inates t3, while t2’s pdf overlaps with both t1’s and
t3’s. Only three orderings are possible: ω1 = 〈t1, t2, t3〉,
ω2 = 〈t1, t3, t2〉, and ω3 = 〈t2, t1, t3〉. The only two
questions on overlapping tuples are: q1 = t1 ?≺ t2
and q2 = t2 ?≺ t3. Each deterministic algorithm must
commit to a choice of either q1 or q2 as the first ques-
tion, with no prior knowledge on the real ordering.
However, if the real ordering is ω2, each deterministic
algorithm choosing q1 as the first question fails to
identify the correct ordering with just one question,
which could have been done by choosing q2. Analo-
gously, if the real ordering is ω3, each deterministic

6

algorithm choosing q2 fails in a similar way (q1 suf-
fices to identify the real ordering). Therefore, for every
deterministic algorithm there is a UR problem whose
minimal solution consists of one question while the
algorithm’s solution includes two questions.

5.2 Selecting the best questions

With the result of Theorem 5.4 we cannot hope to
find an optimal algorithm. Therefore we now turn our
attention to an attainable form of optimality that is
of a probabilistic nature, in that it refers to the ex-
pected amount of uncertainty that remains in the TPO
after posing the questions selected by an algorithm.
For this reason, we introduce the notion of residual
uncertainty as a means of finding the best sequence
of questions for a given TPO TK . Clearly, the only
relevant questions (set QK) are those that compare
tuples with an uncertain relative ordering, i.e., whose
pdf’s overlap:

QK = {ti ?≺ tj | ti, tj ∈ TK ∧ overlap(fi, fj) ∧ i < j}
(10)

The average residual uncertainty RQ(TK) that can
be expected after a crowd worker has answered the
questions Q can be estimated as follows:

RQ(TK)=
∑
ans

Pr(ans)U(T ans
K) (11)

where ans = 〈ans1, . . . , ans|Q|〉 ranges over all possi-
ble sequences of answers for the questions in Q, T ans

K

is the pruned tree obtained from TK according to the
answers ans, and Pr(ans) = Pr(

∧|Q|
j=1 ans(qj) = ansj)

is the probability that each answer ansj in ans is the
actual worker’s answer to question qj ∈ Q. For a
single question Q = {ti ?≺ tj}, we have RQ(TK) =

Pr(ti ≺ tj)U(T ti≺tj
K)+Pr(ti 6≺ tj)U(T ti 6≺tj

K).
In crowdsourcing applications, restrictions in the

budget used for rewarding workers or in the avail-
able time allotted for collecting answers usually limit
the number of questions that can be posted to the
crowd. In practical scenarios, such restrictions are yet
more significant if the crowd is noisy and thus the
same question needs to be posed to several workers
to increase confidence. Let B denote the maximum
number of questions (budget) that can be asked to
the crowd workers. Our goal is then to select the
best sequence of questions Q∗ = 〈q∗1 , . . . , q∗B〉 ⊆ QK

that causes the lowest amount of expected residual
uncertainty. Based on this, we introduce a relaxed
version of optimality for offline algorithms, and show
how to attain it. Then we discuss sub-optimal, but
more efficient algorithms.

5.2.1 Offline question selection strategies
We first observe that an offline algorithm determines
all the questions to pose before obtaining any answer
from the crowd. Therefore, permuting the order in

which the questions selected by such an algorithm are
asked always leads to the same uncertainty reduction
on the tree TK . The order of questions is thus im-
material, and we shall then consider that the output
of an offline algorithm is simply a set (instead of a
sequence) of questions.

Definition 5.5: An offline UR algorithm is offline-
optimal if it outputs the set of B questions Q∗ that
minimizes the expected residual uncertainty, i.e.:

Q∗ = arg min
Q : |Q|=B∧Q⊆QK

RQ(TK). (12)

Best-first search offline algorithm (A∗−off). An
implementation of an offline-optimal algorithm can
be obtained by adapting the well-known A* best-
first search algorithm [12] to UR. A∗−off explores the
solution space with the help of a solution tree defined
as follows: i) each node n is associated with a gain
function f(n), which determines the priority of the
node in the search process for the optimal solution;
ii) each edge outgoing from n represents the choice
of a question q ∈ QK ; iii) the maximum tree depth is
B; iv) for each pair of paths P and R of B questions,
|P ∩ R| < B (so as to avoid considering the same
set of questions multiple times). Let n be a node in
the solution tree at depth d and let Qn denote the
sequence of questions on the path between the root
and n. The gain function f(n), defined as knowledge
plus heuristic, is f(n) = g(n) + h(n). The knowledge
g(n) is given by the uncertainty reduction expected
by asking the questions in Qn:

g(n) = U(TK)−RQn
(TK). (13)

Since the contribution to uncertainty reduction of a
set of dependent questions is at most the sum of
the single contributions (and at most the residual
uncertainty), the following heuristic h(n) is an upper
bound on the uncertainty reduction expected by ask-
ing (B − d) more questions:

h(n) = min{RQn(TK),
∑

q∈Qbest

RQn(TK)−RQn◦〈q〉(TK)}

(14)
where Qbest is the set of (B − d) questions (obtained
by enumeration) that, if asked after Qn, guarantee the
highest uncertainty reduction. A* traverses the solu-
tion tree keeping a sorted priority queue of nodes. The
higher the expected gain f(n) achieved by traversing
a node, the higher the node priority. Thus, high pri-
ority nodes will be explored before others. When the
algorithm traverses a path of length B, the questions
on that path become the selected set Q∗.

Theorem 5.6: A∗−off is offline-optimal.
Offline-optimality follows immediately from the

fact that A* is complete [12], and thus considers all
candidate solutions, while retaining only the optimal
one. Yet, A∗−off is computationally very expensive,
so we shall also consider two sub-optimal, but more
efficient algorithms.

7

Algorithm 1: Top-1 online algorithm (T1−on)
Input: TPO TK , Budget B
Output: Optimal sequence of questions Q∗
Environment: Underlying real ordering ω

1) Q∗ := ∅;
2) for i := 1 to B
3) if |TK | = 1 then break;
4) q∗i := argminq∈QK\Q∗ R〈q〉(TK); // see Equation (11)
5) Q∗ := Q∗ ◦ 〈q∗i 〉; // appending the selected question
6) Ask q∗i to the crowd and collect the answer ansω(q∗i)
7) TK := T ansω(q∗i)

K ; // updating the TPO
8) return Q∗;

Top-B offline algorithm (TB−off). This simpler
method computes for each question q ∈ QK the
expected residual uncertainty Rq(TK). Then, we sort
the questions in ascending order ofRq(TK) and define
Q∗ as the set of top B questions.

Conditional offline algorithm (C−off). This
method iteratively selects one question at a time
based on the previous selections. Let {q∗1 , . . . , q∗i } be
the first i selected questions (∅ when i = 0). The
(i + 1)-th question q∗i+1 is selected by C−off from
QK\{q∗1 , . . . , q∗i } so as to minimize R〈q∗1 ,...,q∗i ,q∗i+1〉(TK),
i.e., the residual uncertainty conditioned by the choice
of the previously selected questions q∗1 , . . . , q

∗
i . The

final output is thus Q∗ = {q∗1 , . . . , q∗B}.

5.2.2 Online question selection strategies

An online algorithm has the ability to determine the
i-th question based on the answers collected for all
the previously asked i− 1 questions. Differently from
the offline case, the output of an online algorithm is
treated as a sequence and not as a set, since each
received answer may influence the choice of the next
question, and thus the order matters.

Best-first search online algorithm (A∗−on). An
online UR algorithm can be obtained by iteratively
applying A∗−off B times. At the i-th step, 1 ≤ i ≤ B,
A∗−on identifies the i-th question q∗i in its output
and asks it to the worker, thus obtaining the answer
ansω(q

∗
i). Question q∗i is simply the first element of

the sequence Q∗i returned by A∗−off for the TPO
T 〈ansω(q∗1),...,ansω(q∗i−1)〉
K with budget (B−i+1), where ω

is the real ordering and q∗1 , . . . , q
∗
i−1 are the previously

selected questions (initially, A∗−off is applied on TK
with budget B and the first question in its output
is chosen as q∗1). Intuitively, each step chooses the
most promising question q∗i within the horizon of the
remaining B − i + 1 questions to be asked based on
the current knowledge of ω. Note that, as new an-
swers arrive, the next most promising questions might
no longer coincide with the rest of the previously
planned sequence Q∗i .

Being based on A∗−off, A∗−on is costly. Thus,
we also consider a simpler but more efficient online
algorithm.

Top-1 online algorithm (T1−on). Algorithm 1 illus-
trates the T1−on algorithm, which builds the sequence
of questions Q∗ iteratively until the budget B is
exhausted (line 2). At each iteration, the algorithm
selects the best (Top-1) unasked question, i.e., the one
that minimizes the expected residual uncertainty with
budget B = 1 (line 4). The selected question q∗i is then
appended to Q∗ and asked to the crowd. Depending
on the answer, the TPO TK is updated to the sub-
tree that agrees with the answer to q∗i (line 7). Early
termination may occur if all uncertainty is removed,
i.e., the tree is left with a single path (line 3).

5.3 Handling noisy workers
In a crowdsourcing scenario, the collected answers
might be noisy. Let p denote a crowd worker’s accu-
racy (i.e., the probability that his/her answer is cor-
rect). Handling this case requires a simple redefinition
of the trees T ti≺tj

K , T ti 6≺tj
K . When p < 1, both trees will

represent the whole set of possible orderings included
in TK , but the probabilities of the orderings need to be
adjusted. Let Pr(ω) and Pr(ω|ansq = ti ≺ tj) denote,
respectively, the probability of the same ordering ω in
TK and T ti≺tj

K . Then, by Bayes’ theorem [52]

Pr(ω|ansq =ti ≺ tj) =
Pr(ansq = ti ≺ tj |ω) Pr(ω)

Pr(ansq = ti ≺ tj)

=
Pr(ansq = ti ≺ tj |ω) Pr(ω)

pPr(ti ≺ tj) + (1− p) Pr(ti 6≺ tj)
,

(15)

where Pr(ansq = ti ≺ tj |ω) = p, if ti ≺ tj in ω;
otherwise, 1− p; similarly for T ti 6≺tj .

5.4 Incremental algorithm
The number of orderings in a TPO can be large if there
are many overlaps in the tuple score distributions,
thereby affecting the execution time of our algorithms.
Hence, we propose the incr algorithm, shown in
Algorithm 2, that does not receive as input a TPO TK .
Instead, it builds the TPO incrementally, one level at
a time, by alternating tree construction with a round
of n questions and tree pruning. The number n of
questions posed at each round is between 1 and B,
therefore incr can be considered a hybrid between
an online and an offline algorithm.

Each TPO Tk, 1 ≤ k ≤ K, is built by adding
one level to the previous TPO Tk−1 (line 10), i.e., by
attaching to each ordering ωk−1 in Tk−1 the unused
sources as leaves. We only build new levels if there are
not enough questions to ask (line 5), i.e., n questions
for all the rounds but the last one, where B mod n
questions are asked (line 3). Then, we select the best
questions, pose them to the crowd, collect the answers
and apply the pruning accordingly (lines 6–9), until
either the budget B is exhausted or the TPO is entirely
built (line 2). We thus keep the TPO as pruned as

8

Algorithm 2: Incremental algorithm (incr)
Input: Tuple set T , Budget B, Depth K, Questions per round n
Output: Optimal sequence of questions Q∗
Environment: Underlying real ordering ω

1) Q∗ := ∅; ans := ∅; k := 1; T1 := TPO with only the first level;
2) while |ans| < B and k < K
3) n′ := min(n,B − |ans|); // # of questions at next round
4) Qk := relevant questions for Tk; // as in Equation (10)
5) if |Qk \ Q∗| ≥ n′ // there are enough relevant questions to ask
6) 〈q1, . . . , qn′〉 := argminQ⊆Qk\Q∗,|Q|=n′ RQ(Tk); // as in (11)
7) Q∗ := Q∗ ◦ 〈q1, . . . , qn′〉; // appending the selected questions
8) ans := ans ◦ 〈ansω(q1), . . . , ansω(qn′)〉 // appending answers
9) Tk := T ans

k ; // updating the TPO
10) else k := k + 1; Tk := Tk−1 extended by one level;
11) return Q∗;

possible, and only proceed to computing the next
level when the uncertainty in the previous levels is
so low that it does not require n questions to ask.

6 EXPERIMENTAL EVALUATION

In this section we evaluate the proposed uncertainty
reduction methods on several synthetic and two real
datasets, and collect answers through a real crowd-
sourcing platform.

First, we exploit the synthetic datasets to investigate
the impact of uncertainty; the study shows that even
small sizes of the dataset (N < 100) might lead to
an extremely large number of possible orderings. This
justifies the need for considering top-K query results,
which dramatically reduce the number of orderings
by restricting the analysis to the tuples occurring in
the first K levels of the tree (Figure 3).

Then, we compare the online, offline and incre-
mental methods described in Section 5 on uncertain
datasets characterized by thousands of possible order-
ings of top-K tuples (Figure 5). For completeness, we
include in our analysis the comparison with two sim-
ple algorithms used as baselines: Random and Naive.

The Random algorithm returns a sequence of B dif-
ferent questions chosen completely at random among
all possible tuple comparisons in TK .

The Naive algorithm avoids irrelevant questions by
returning a sequence of B questions chosen randomly
from QK (see (10)), i.e., from all the possible compar-
isons between tuples in TK that have overlapping pdf’s.

6.1 Datasets and evaluation measures

Synthetic datasets. The synthetic datasets consist of
collections of tuples with uncertain scores. The score
of each tuple s(ti) is uniformly distributed within the
interval [li, ui]. We used δ = ui − li as a parameter
to tune the level of uncertainty. For each tuple, the
value li is sampled at random in the interval [0, 1− δ]
from a uniform or a Zipfian distribution, such that
0 ≤ li < ui ≤ 1. For each configuration of the
parameters, we generate 10 instances so as to compute

the average performance. The real ordering ωr of the
tuples is simulated by sampling, for each tuple, a
score value from the corresponding pdf, and sorting
tuples in decreasing order of score value. Such an
ordering corresponds to a path of the TPO T .

YouTube dataset. Real datasets are often charac-
terized by tuples whose score uncertainty cannot be
represented with a uniform distribution. As a concrete
example, we considered the case of videos down-
loaded from YouTube. Their upload timestamps are
an uncertain indication of the occurrence time of the
event captured by each video. Therefore, we estimated
the distribution foffset describing the temporal offset
between the upload time and the event time from a
training dataset. The dataset was obtained by down-
loading 3000 videos in response to keyword queries
referring to events happened in October-November
2012, either unexpected (e.g., earthquakes) or an-
nounced (e.g., presidential elections). We processed
this dataset so as to: a) manually remove the irrelevant
videos returned in response to the keyword queries,
and b) shift the timestamps of the videos by setting
the origin (t = 0) to the actual occurrence time of
the event. After preprocessing, the training dataset
contained 939 videos, whose timestamps were used
to estimate foffset. In order to assess the quality of
workers on a real crowdsourcing platform, we also
downloaded 180 videos related to 36 events of 2014,
and 210 videos related to 42 events of 2013 (5 per
event). We then extracted a set of relevant questions
about the videos, asking the correct temporal ordering
of two events. Finally, the collected instances were
used as a test dataset, which contains 5 sets of N = 78
videos. For each set of videos a TPO is built (K = 10)
by assigning to each video an uncertain occurrence
time, modeled with a non-uniform distribution foffset
centered in the upload time.

Image quality dataset. The second real dataset
consists of a collection of images affected by different
types of distortion (e.g., blur, Gaussian noise, JPEG
compression, etc.) extracted from the IVC dataset [24].
Each image comes with a Mean Opinion Score (MOS)
value (a number in the range [0, 100]), which can be
used to determine the real ordering ωr of the images
based on their quality. MOS values are difficult to
obtain, since they are the result of the aggregation of
scores provided by individuals that take part in time-
consuming subjective evaluation campaigns. For this
reason, objective image quality metrics have been pro-
posed in the literature to automatically assign quality
scores. For example, the SSIM metrics [48] evaluates
the difference between an image Id and its original
(distortion-free) version Io, and produces as output an
objective quality metrics for Id. Due to the different
kinds of distortion affecting digital images and the
complex task of modeling visual perception, objective
metrics (including SSIM) provide an approximate (un-
certain) indication of image quality. In [48], a mapping

9

Full name Parameter Tested values
Size of dataset N 100, 500, 1000, 10000, 100000, 1000000

Number of results K 1, 3, 5, 7, 10
Question budget B 5, 10, 20, 30, 40, 50

Score probability distribution spread δ 1e-6, 1e-5, 1e-4, 1e-3, 3e-3
Measure of uncertainty U entropy (UH), weighted entropy (UHw), ORA (UORA), MPO (UMPO)
Accuracy of annotators p 0.8, 0.9, 1

Number of questions per round for incr n 1, 3, 5, 7, 10, 15, 20, 25

TABLE 1: Operating parameters for synthetic datasets (defaults used in all figures are in bold)

between the objective/subjective scores is provided,
showing that a single SSIM value may correspond to a
range of MOS values, comprised on average within an
interval of 10 MOS units. This finding allows model-
ing uncertainty in image quality scores with a uniform
probability distribution fq centered on the SSIM value,
with a spread δ of 10 MOS units. We considered 10
different sets of N = 15 images each, with the goal
of determining the top-K (K = 3) images in each
set based on their quality. The proposed methods
were used to determine which questions to ask, i.e.,
which pairs of images need to be compared to sort
images according to their visual quality. This dataset
is characterized by a very high level of uncertainty
due to difficulties in devising objective quality metrics
mimicking the human visual system. Increasing N
would thus lead to compare pairs of images with too
similar a quality, thus being adversely affected by the
subjective nature of the task.

Evaluation measures. In the experiments, we assess
performance of the various algorithms by comparing
the average distance from the real ordering in the
obtained TPO. Note that, if uncertainty is measured
as a distance from a representative ordering (such as
ORA or MPO), which in turn is a probabilistic proxy
for the real ordering, then minimizing the residual
uncertainty indeed amounts to minimizing an expec-
tation of the distance from the real ordering.

The average distance D(ωr, TK) between the real
ordering ωr and the orderings in TK is given by:

D(ωr, TK) =
∑

ω∈TK

Pr(ω)d(ωr, ω), (16)

where d(ωr, ω) is a distance function. We use Kendall-
Tau distance for the Youtube dataset and weighted
Kendall-Tau distance for all other datasets.

6.2 Uncertainty and problem size
We start by examining the impact of uncertainty on
full datasets containing all the N tuples. Note that the
amount of uncertainty depends on the combination
of N and δ (i.e., the spread of the score distribution)
: given a fixed value of δ, the number of overlaps
among the pdf’s increases with N , since the score
distributions are more densely spaced in [0, 1]. The
size of the problem, measured in terms of the number
of orderings in T , grows exponentially in both N
and δ. Thus, even with relatively small values of N ,
the number of orderings quickly becomes intractable

when increasing δ. For example, when N = 100 and
δ = 0.001, there are 12 overlapping pairs of tuples,
which generate as many as |T | = 4000 possible order-
ings , while increasing N to just 110 tuples makes the
number of orderings grow by an order of magnitude.

However, users are mostly interested in the top-
K results only. Indeed, regardless of N , we observed
that the number of tuples in the first K levels of T
is only slightly larger than K, growing slowly when
increasing δ. Figure 3 shows the impact of uncertainty
when one focuses on TK , for K = 10 and several
different values of N and δ. Both the number of
overlaps of tuples and the number of orderings grow
with N , although in a much more tractable manner:
for N = 100 and δ = 0.001 the average number of
orderings is |TK | = 1.2, while for N = 1000 and
δ = 0.001 the average number of overlaps is 10,
leading to |TK | = 273 (TK built in 13s). A similar
problem size is obtained, e.g., when N = 106 and δ =
10−6 (|TK | = 203). To test our algorithms, we chose
a default scenario with high uncertainty: N=1000,
δ=0.003 (32 overlaps on average, |TK | = 39, 330, and
TK built in more than 5 hours).

Although there are combinations of the parameters
N and δ for which the number of orderings is exceed-
ingly large, they correspond to cases of little practical
interest. Indeed, in such cases, the pdf’s of the tuples
in the first K levels are nearly all overlapping with
each other, indicating an extremely large amount of
uncertainty in the data. In those cases, very little is
known about the ordering among tuples, and other
means to reduce uncertainty (e.g., aggregating/fusing
data from additional sources) should be applied [53].

6.3 Comparing the methods on synthetic data
In this section we compare the effectiveness of the
proposed methods in reducing the number of possible
orderings, using the Random and Naive algorithms as
baselines. We adopt the default values of the param-
eters indicated in Table 1, unless stated otherwise.

Uncertainty measure - Figure 4 shows the perfor-
mance of T1−on and incr with the four different
uncertainty measures (UH , UHw , UMPO, and UORA). The
weights π(·, ·) used for the distance (6) vary logarith-
mically (adapted from [23] to the top-K context):

π(i, j) =


1

log(min(i,j)+1) (i > K ∨
j > K)

1
log2(min(i,j)+1) −

1
log2(max(i,j)+2) otherwise

(17)

10

 1e+2 1e+3 1e+4 1e+5 1e+6
0

 1e+0
 1e+1
 1e+2
 1e+3
 1e+4
 1e+5
 1e+6

N

#
o
v
e
r
la
p
s

δ =0.003
δ =0.001
δ =0.0001
δ =1e-05
δ =1e-06

(a) # overlaps at depth K

 1e+2 1e+3 1e+4 1e+5 1e+6
0

 1e+0
 1e+1
 1e+2
 1e+3
 1e+4
 1e+5
 1e+6
 1e+7
 1e+8

N

|T
K
|

δ =0.003
δ =0.001
δ =0.0001
δ =1e-05
δ =1e-06

(b) # orderings at depth K

Fig. 3: Number of overlaps and orderings in TK
(K=10) as dataset size N and pdf’s spread δ vary

0 5 10 20 30 40 50
0

0.2

0.4

B

D
(ω

r
,
T
K
)

UMPO
UH
UHw

UORA

(a) T1−on, weights as in (17)

0 5 10 20 30 40 50
0

0.2

0.4

B

D
(ω

r
,
T
K
)

UMPO
UH
UHw

UORA

(b) incr, weights as in (17)

5 10 20 30 40 50
0

 1e+0
 1e+1
 1e+2
 1e+3
 1e+4
 1e+5
 1e+6

B

C
P
U

T
im

e
(s
)

UMPO

UH

UHw

UORA

(c) T1−on, CPU time

5 10 20 30 40 50
0

 1e+0

 1e+1

 1e+2

 1e+3

 1e+4

 1e+5

B

C
P
U

T
im

e
(s
)

UMPO

UH

UHw

UORA

(d) incr, CPU time

Fig. 4: Impact of uncertainty measures as B varies.

The results obtained with entropy (UH) are con-
sistently worse than with all the other measures,
which make the algorithms converge to the real or-
dering much more quickly. Indeed, UH only takes
into account the probabilities of the orderings, thus
neglecting the structure of the TPO and inadequately
quantifying its uncertainty. For instance, with UH , a
TPO with branching only at level K−1 may easily be
considered more uncertain than a TPO with branching
close to the root. The other measures achieve similar
performance (Figures 4(a), 4(b)), but UMPO requires the
lowest CPU time (Figures 4(c) and 4(d)) and, thus, we
adopt UMPO as the default. Note that Figure 4(c) omits
the time to compute the TPO (more than 5 hours in
the default case), which is paid by T1−on only once
and is the same for all the measures. No such cost is
incurred by incr.

Number of questions B - Increasing the number
of questions B to ask reduces the uncertainty while
converging to the underlying real ordering, as shown
in Figure 5(a). Indeed, the collected answers al-
low discarding incompatible orderings from the TPO.
The T1−on algorithm achieves the best performance
(Figure 5(a)), converging to the real ordering with
B = 20 questions, when considering the default

0 5 10 20 30 40 50
0

0.2

0.4

B

D
(ω

r
,
T
K
)

T1-on
TB-off
C-off
incr
naive
random

(a) Distance wrt. budget B

1 3 5 7 10
0

0.2

0.4

0.6

K

D
(ω

r
,
T
K
)

T1-on
TB-off
C-off
incr
naive
random

(b) Distance wrt. # of results K

5 10 20 30 40 50
0

 1e+0
 1e+1
 1e+2
 1e+3
 1e+4
 1e+5
 1e+6

B

C
P
U

T
im

e
(s
)

T1-on
TB-off
C-off
incr

(c) CPU time wrt. budget B

0 5 10 20 30 40 50
0

0.2

0.4

B

D
(ω

r
,
T
K
)

p=1 (T1-on)
p=0.9 (T1-on)
p=0.8 (T1-on)
p=1 (incr)
p=0.9 (incr)
p=0.8 (incr)

(d) Impact of accuracy p

0 10 20 30 40 50
0.97

0.98

0.99

1

B

N
D
C
G
(T

K
)

T1-on
TB-off
C-off
incr
naive
random

(e) NDCG wrt. budget B

0 20 40 60 80 100 120 140

0

0.1

0.2

0.3

0.4

1

3
5

7

101
3
5
7

10
15

2025

1

3
5 7 10 1520 251

3 57 10 15 20 25

CPU time (s)

D
(ω

r
,
T
K
)

B = 5
B = 10
B = 20
B = 30

(f) Impact of n for incr

Fig. 5: Performance as B, K, p and n vary.

parameters. The offline algorithms, namely TB−off
and C−off, obtain the same result as T1−on when
B = 1 (since in this case the strategies coincide) and
eliminate all uncertainty when B = 20. However,
since none of the answers are available when choosing
the questions, TB−off and C−off are outperformed
in terms of quality by T1−on, which has knowledge
of previous answers. C−off achieves slightly better
quality than TB−off, because at each step a new
question is selected by taking into account the past
choices. The incr algorithm eliminates all uncertainty
when B = 30, thus attaining lower quality than
T1−on, TB−off and C−off, which all require the
full materialization of the TPO. Yet, incr is much
faster, thus representing a good tradeoff between
computational time and quality. The Random baseline
yields very poor results. With respect to the Naive

heuristics, T1−on attains the same performance with
50% to 80% fewer questions. Figure 5(a) reports results
for uniform data distributions, but the same trends
and relative strengths are observable under a Zipfian
distribution (results omitted due to space constraints).

Figure 5(a) does not include the two algorithms
based on A∗, namely A∗−on and A∗−off. This is due
to their high computational complexity, which makes
them impractical for a problem size using the default
parameters. Hence, we repeated the same experiment
with N = 500, K = 7 and δ = 0.001. In this
case, T1−on achieved nearly the same performance
as A∗−on, and C−off did the same with A∗−off (in

11

both cases less than 1% difference in the required
budget). Therefore, T1−on and C−off are preferable,
in practice, to A∗−on and A∗−off, respectively.

Number of results K - Increasing the number of
results K increases the uncertainty, as a larger number
of possible orderings can be generated. Indeed, Figure
5(b) shows that, for a fixed budget of B = 10 ques-
tions, the distance from the real ordering increases
when increasing K.

CPU time - Figure 5(c) shows the required CPU
time for selecting the questions when B varies. The re-
sults show that the CPU time increases with B. Apart
from incr, all algorithms require a fixed amount
of time, not shown in the bars, to build the TPO;
although overall very high (more than 5 hours for
our default case), this is a cost paid only once be-
fore asking any question to the workers. A∗−off
and C−off are computationally intractable even for
a small B. Conversely, TB−off exhibits the lowest
overhead, because it analyzes the questions in QK

only once, on the first iteration. The time required by
T1−on increases with B (since multiple iterations of
the algorithms are required). Instead, incr runs much
faster, since the TPO is only partially materialized,
and thus question selection steps are quicker. The
indicated times may even decrease as B grows, since,
once B questions are posed, incr may still need to
build the TPO up to level K, which is more expensive
for more uncertain TPO’s (i.e., for lower values of B).

Accuracy of the workers - Figure 5(d) shows the
impact of accuracy p for T1−on and incr. When
p = 1 the worker always answers correctly, while
when p = 0.5 answers are random. The proposed
approach, shown in Section 5.3, never prunes the TPO.
The distance from the real ordering reduces as B
increases if p is reasonably high (p ≥ 0.8). Note that
majority voting or more sophisticated approaches can
be conveniently employed to aggregate the answers
of noisy workers, so as to attain a higher overall
accuracy. Aggregating answers from multiple workers
requires scaling up the budget by a non-negligible
factor [40], thus making the budget savings obtained
with our algorithms yet more significant.

NDCG measure. Figure 5(e) shows the perfor-
mance when Normalized Discounted Cumulative
Gain [17] is used to measure the quality of the output.
Since NDCG measures the quality of a ranking, the
performance increases as B increases, i.e., as uncer-
tainty decreases. The relative strengths of the various
algorithms are the same as in Figure 5(a).

Number of questions per round n. Figure 5(f)
shows the performance of the incr algorithm and the
required CPU time when the number of per-round
questions n varies. Larger values of n entail higher
quality (as larger parts of TK are built and thus better
questions can be chosen), and higher CPU times to
build the TPO. In our tests, n = 5 (our default) proved
a good trade-off between time and quality.

6.4 Comparing the methods on real data

YouTube dataset - Figures 6(a) and 6(b) show the
results achieved by T1−on and incr when questions
are asked to either an internal crowd of experts
(whose accuracy is close to 100%, “expert crowd”
label) or a real crowd (“real crowd” label). In the
former case, the algorithms rapidly converge to the
real ordering, eliminating all the uncertainty with
B = 7 and B = 15, respectively. However, while
the time spent by incr is limited, T1−on requires the
full materialization of the tree, thus with high CPU
times. The collection of answers from the real crowd
is described in Section 6.5.

Image quality dataset - Figure 6(d) shows the un-
certainty reduction when asking workers to compare
pairs of images in terms of their visual quality. The
results confirm the findings obtained on the synthetic
datasets: T1−on and incr always dominate Naive.
However, here Naive achieves almost the same results
as Random, since the number of overlaps between the
score pdf’s is very high. Thus, it is very likely that a
question picked at random is relevant.

6.5 Tests on a real crowdsourcing platform

In this Section we assess T1−on and incr when
questions are asked to noisy workers on a real crowd
reached via the Crowdflower2 platform.

We built a set of questions of the form “Does A
precede B?” out of the YouTube dataset, where A and
B are events with overlapping PDFs. The platform
allows the inclusion of test questions to filter out
spammers and low quality workers: workers answer-
ing more than 70% of the test questions incorrectly are
discarded. We paid each answer 0.01$ and tried two
scenarios: i) a limited set of videos and mild quality
tests: 279 questions out of 180 videos for 2014; each
question was replicated 4 times; 5 test questions; 158
workers with an overall accuracy of 69.5%; overall
cost 47.77$. ii) a larger set of videos and stricter quality
tests: 419 questions out of 390 videos for 2013 and
2014; each question was replicated 5 times; 10 test
questions; 142 workers with an overall accuracy of
91.2%; overall cost 28.90$. In both cases, nearly all
answers were collected within 25 minutes, and no
one answered after 35 minutes. The second scenario
clearly indicates that better quality tests have a strong
impact on both cost and quality.

Figures 6(a)-6(c) (“real crowd” label) show the re-
sults achieved by T1−on and incr when questions
are asked to the Crowdflower crowd in the second
scenario. The T1−on algorithm clearly achieves the
best quality also in this case, with slightly higher
CPU times (Figure 6(b)). However, the overall time
incurred by T1−on is extremely high (due to TPO
materialization, not included in Figure 6(b), averaging

2. https://crowdflower.com

12

0 3 5 7 10 15 20 30 40 50
0

0.01

0.02

0.03

B

D
(ω

r
,
T
K
)

 T1-on,expert crowd
T1-on,real crowd
incr,expert crowd
incr,real crowd

(a) “YouTube”, N = 78, K = 10

3 5 7 10 15 20 30 40 50
0

100

200

300

400

B

C
P
U

T
im

e
(s
)

T1-on, expert crowd
T1-on, real crowd
incr, expert crowd
incr, real crowd

(b) “YouTube”, N = 78, K = 10
(CPU time)

3 5 7 10 15 20 30 40 50
0

2000

4000

6000

B

cr
ow

d
ti
m
e
(s
)

T1-on, real crowd
incr, real crowd

(c) “YouTube”, N = 78, K = 10
(crowdsourcing time)

0 1 3 5 7 10
0

0.2

0.4

0.6

0.8

B

D
(ω

r
,
T
K
)

T1-on
incr
naive
random

(d) “Image quality”, N = 15,
K = 3

Fig. 6: Distance to solution achieved on real datasets, when B varies (T1−on and incr)

3 hours and 14 minutes), while incr is acceptably
fast also when the budget is large. Note that times
are much higher with the real crowd also because we
cannot trust their answers, and thus do not prune the
TPO (see Section 6.5). Figure 6(c) shows the crowd-
sourcing time needed to perform tasks on Crowd-
flower. Note that T1−on requires a larger crowdsourc-
ing time (on average, 86 seconds for each question)
with respect to incr (on average, 239 seconds for each
batch of 5 questions), since batches containing a single
question are more time-consuming for workers.

7 RELATED WORK

Many works in the crowdsourcing area have studied
how to exploit a crowd to obtain reliable results in
uncertain scenarios. In [32], binary questions are used
to label nodes in a directed acyclic graph, showing
that an accurate question selection improves upon a
random one. Similarly, [33] and [28] aim to reduce the
time and budget used for labeling objects in a set by
means of an appropriate question selection. Instead,
[11] proposes an online question selection approach
for finding the next most convenient question so as
to identify the highest ranked object in a set. A query
language where questions are asked to humans and
algorithms is described in [34]; humans are assumed
to always answer correctly, and thus each question is
asked once. All these works do not apply to a top-K
setting and cannot be directly compared to our work.

Uncertainty in top-K queries.
Uncertainty representation. The problem of ranking

tuples in the presence of uncertainty has been ad-
dressed in several works [42], [26], [25]. As discussed
in Section 3, we based our techniques for the construc-
tion of a TPO on these works.

Uncertain top-K queries on probabilistic databases.
In [30], the quality score for an uncertain top-K
query on a probabilistic (i.e., uncertain) database is
computed. Moreover, the authors address the problem
of cleaning uncertainty to improve the quality of the
query answer, by collecting multiple times data from
the real world (under budget constraints), so as to
confirm or refute what is stated in the database.

Crowdsourcing via tuples comparison. We now discuss
recent works on uncertain top-K scenarios where

questions comparing tuples in a set are asked to
a crowd. In [8], the authors consider a crowd of
noisy workers and tuples whose scores are totally
uncertain. This approach does not lend itself well to
our scenarios, where prior knowledge on the score
pdf’s is assumed: for instance, when N = 1000, δ =
0.001 and workers answer correctly with probability
0.8, their approach would require 999 questions to
determine the top-1 tuple, while 2.7 are in average
sufficient with our T1−on. The work in [29] proposes
a query interface that can be used to post tasks to
a crowdsourcing platform such as Amazon MTurk.
When addressing a top-K query, their method first
disambiguates the order of all the tuples by asking
questions to the crowd, and then extracts the top-K
items. This amounts to asking many questions that
are irrelevant for the top-K prefix, since they could
involve tuples that are ranked in lower positions.
The wasted effort grows exponentially as the dataset
cardinality grows. Instead, our work only considers
questions that involve tuples comprised in the first K
levels of the tree. A more recent work in [35] builds
the top-K (top-1 in [43]) list by asking workers to
sort small sets of s tuples whose scores are, again,
totally uncertain. The top-K tuples are determined
via a voting mechanism that refines the set of top-K
candidates after each “roundtrip” of tasks, until only
K tuples are left. Although when s = 2 the tasks are a
comparison of two tuples like in our approach, their
question selection is completely agnostic of any prior
knowledge on the tuples, thus resulting in a much
higher overall amount of questions in scenarios like
those considered in this paper.

Uncertain top-K sets. In [7] the authors propose
procedures for the extraction of k objects that have
a specified property. The proposed algorithms extract
sets of n objects that are analyzed in parallel by
humans. At each round, n tasks are submitted to
the crowd, and the objects that are recognized as
relevant (i.e., objects having the specified property)
are retrieved. Rounds are continuously created, until
exactly K objects are retrieved. The work considers
both the cases of oracles and of noisy workers. How-
ever, this work only takes care of extracting a set of
objects, which remain unordered, with no guarantee

13

to include the top K objects.
Crowdsourcing via other task types. In [2] the authors

assume that the ordering of a set of objects is known,
and use a crowdsourcing-based algorithm to estimate
their score values. In [19] crowdsourcing is used to
build a tree where the root represents an initial status,
leaves represent a fixed objective and each path rep-
resents a sequence of actions to be performed so as to
meet the objective. Workers are provided with a sub-
path and are required to suggest the next action in the
sequence to be performed. The goal of the proposed
algorithm is to retrieve the best K paths from the tree.

Uncertainty in schema and object matching.
Schema matching. In [52], uncertainty in schema

matching is tackled by posing questions to workers.
Uncertainty is measured via entropy, and two algo-
rithms (online and offline) are proposed to select the
questions reducing uncertainty the most. A similar
approach is proposed in [9] for the context of web
tables schema matching, although only an online sce-
nario is considered in this case. We have shown that,
in top-K contexts, the results obtained by measuring
uncertainty via entropy are largely outperformed by
the use of other criteria (e.g., UMPO). Noisy workers
are used to validate schema matchings also in [14],
with emphasis on the design of questions, so as to
maximize their informativeness and reduce the noise
in validations. Yet, [14] does not present any question
selection strategy, which we have shown to be a useful
means to obtain good results even with a noisy crowd
and simple boolean questions.

Object matching. There are several noteworthy
works about object matching. In [46], the objective
is to identify all pairs of matching objects between
two collections of objects. The authors propose a
mixed online and offline approach, where the se-
lected sequence of questions is annotated partially
by machines and partially by users, and minimizes
the number of questions answered by humans. This
work was recently extended by the authors of [45],
who propose two alternative algorithms for entity
resolution. In [49], the B most promising questions are
asked to workers so as to enhance Entity Resolution.

Workers’ accuracy estimation.
Several works in the state of the art ([10], [7], [8],

[22]) use majority voting as a tool for aggregating
multiple noisy answers and computing trusted labels.
In other cases ([13], [38], [27]) workers are pre-filtered
via qualification tests, so that low-quality workers will
not access the submitted tasks. Experts may be used
to validate uncertain answers [31]. Other works [44],
[15], [18], [6], [37] in crowd-related research propose
ways to estimate workers’ accuracy: it may be com-
puted depending on the number of disagreements
with other worker answers (i.e., the larger the number
of disagreements, the larger the error probability), or
by modeling the behavior of high quality workers
versus spammers. In [52], the error probability of the

user is supposed to be known, and accordingly the
user’s answer is considered less relevant as the error
probability grows. Finally, [3] uses an approach that
mixes test questions to filter out spammers, majority
voting to improve the accuracy of single workers and
estimation of probability error based on task difficulty.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have introduced Uncertainty Resolu-
tion (UR), which is the problem of identifying the min-
imal set of questions to be submitted to a crowd in or-
der to reduce the uncertainty in the ordering of top-K
query results. First of all, we proved that measures of
uncertainty that take into account the structure of the
tree in addition to ordering probabilities (i.e., UMPO,
UHw

and UORA) achieve better performance than state-
of-the-art measures (i.e., UH). Moreover, since UR
does not admit deterministic optimal algorithms, we
have introduced two families of heuristics (offline and
online, plus a hybrid thereof) capable of reducing the
expected residual uncertainty of the result set. The
proposed algorithms have been evaluated experimen-
tally on both synthetic and real data sets, against base-
lines that select questions either randomly or focusing
on tuples with an ambiguous order. The experiments
show that offline and online best-first search algo-
rithms achieve the best performance, but are com-
putationally impractical. Conversely, the T1−on and
C−off algorithms offer a good tradeoff between costs
and performance. With synthetic datasets, both the
T1−on and C−off achieve significant reductions of
the number of questions wrt. the Naive algorithm. The
proposed algorithms have been shown to work also
with non-uniform tuple score distributions and with
noisy crowds. Much lower CPU times are possible
with the incr algorithm, with slightly lower quality
(which makes incr suited for large, highly uncertain
datasets). These trends are further validated on the
real datasets. Future work will focus on generalizing
the UR problem and heuristics to other uncertain data
and queries, for example in skill-based expert search,
where queries are desired skills and results contain
sequences of people sorted based on their topical
expertise and skills can be endorsed by community
peers.

REFERENCES
[1] M. Allahbakhsh et al. Quality control in crowdsourcing

systems: Issues and directions. IEEE Internet Comp., 17(2):76–
81, 2013.

[2] A. Amarilli et al. Uncertainty in crowd data sourcing under
structural constraints. In DASFAA, pages 351–359, 2014.

[3] A. Anagnostopoulos et al. The importance of being expert:
Efficient max-finding in crowdsourcing. In SIGMOD, 2015.

[4] M. Cha et al. Analyzing the video popularity characteristics of
large-scale user generated content systems. IEEE/ACM Trans.
Netw., 17(5):1357–1370, 2009.

[5] R. Cheng et al. Efficient join processing over uncertain data. In
15th ACM international conference on Information and knowledge
management, pages 738–747. ACM, 2006.

14

[6] N. N. Dalvi et al. Aggregating crowdsourced binary ratings.
In WWW, pages 285–294, 2013.

[7] A. Das Sarma et al. Crowd-powered find algorithms. In ICDE,
pages 964–975. IEEE, 2014.

[8] S. B. Davidson et al. Top-k and clustering with noisy compar-
isons. ACM Trans. Database Syst., 39(4):35:1–35:39, 2014.

[9] J. Fan et al. A hybrid machine-crowdsourcing system for
matching web tables. ICDE, 2014.

[10] C. Gokhale et al. Corleone: hands-off crowdsourcing for entity
matching. In SIGMOD, pages 601–612, 2014.

[11] S. Guo et al. So who won?: Dynamic max discovery with the
crowd. In SIGMOD ’12, pages 385–396, 2012.

[12] P. Hart et al. A formal basis for the heuristic determination of
minimum cost paths. IEEE TSSC, 4(2):100–107, 1968.

[13] F. C. Heilbron and J. C. Niebles. Collecting and annotating
human activities in web videos. In ICMR, page 377, 2014.

[14] N. Hung et al. On leveraging crowdsourcing techniques for
schema matching networks. In DASFAA, LNCS 7826, pages
139–154. 2013.

[15] P. G. Ipeirotis et al. Quality management on amazon mechan-
ical turk. In SIGKDD workshop on human computation, pages
64–67. ACM, 2010.

[16] P. G. Ipeirotis and E. Gabrilovich. Quizz: Targeted crowdsourc-
ing with a billion (potential) users. WWW ’14, pages 143–154.

[17] K. Järvelin and J. Kekäläinen. Cumulated gain-based evalua-
tion of ir techniques. TOIS, 20(4):422–446, 2002.

[18] M. Joglekar et al. Comprehensive and reliable crowd assess-
ment algorithms. ICDE, 2015.

[19] H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov. Answering
planning queries with the crowd. PVLDB, 6(9):697–708, 2013.

[20] D. Kempe et al. Maximizing the spread of influence through
a social network. KDD ’03, pages 137–146. ACM.

[21] L. S. Kennedy and M. Naaman. Generating diverse and
representative image search results for landmarks. In WWW,
pages 297–306. ACM, 2008.

[22] S. K. Kondreddi et al. Combining information extraction and
human computing for crowdsourced knowledge acquisition.
In ICDE, pages 988–999, 2014.

[23] R. Kumar and S. Vassilvitskii. Generalized distances between
rankings. In WWW ’10, pages 571–580, 2010.

[24] P. Le Callet and F. Autrusseau. Subjective quality assessment
IRCCyN/IVC database, 2005. http://www.irccyn.ec-nantes.fr/ivcdb/.

[25] J. Li and A. Deshpande. Ranking continuous probabilistic
datasets. PVLDB, 3(1-2):638–649, 2010.

[26] J. Li et al. A unified approach to ranking in probabilistic
databases. PVLDB, 2(1):502–513, 2009.

[27] X. Liu et al. CDAS: A crowdsourcing data analytics system.
PVLDB, 5(10):1040–1051, 2012.

[28] A. Marcus et al. Crowdsourced databases: Query processing
with people. In CIDR ’11, pages 211–214, 2011.

[29] A. Marcus et al. Human-powered sorts and joins. PVLDB,
5(1):13–24, Sept. 2011.

[30] L. Mo et al. Cleaning uncertain data for top-k queries. In
ICDE, 2013, pages 134–145. IEEE, 2013.

[31] Q. V. H. Nguyen et al. Minimizing Efforts in Validating Crowd
Answers. In The 2015 ACM SIGMOD/PODS Conference, 2015.

[32] A. Parameswaran et al. Human-assisted graph search: It’s
okay to ask questions. PVLDB, 4(5):267–278, 2011.

[33] A. Parameswaran et al. Crowdscreen: Algorithms for filtering
data with humans. In SIGMOD ’12, pages 361–372, 2012.

[34] A. Parameswaran and N. Polyzotis. Answering queries using
humans, algorithms and databases. In CIDR ’11.

[35] V. Polychronopoulos et al. Human-powered top-k lists. In
WebDB, pages 25–30, 2013.

[36] B. Qin et al. A rule-based classification algorithm for uncertain
data. In ICDE, pages 1633–1640. IEEE, 2009.

[37] V. C. Raykar and S. Yu. Ranking annotators for crowdsourced
labeling tasks. In NIPS, pages 1809–1817, 2011.

[38] J. Redi and I. Povoa. Crowdsourcing for rating image aesthetic
appeal: Better a paid or a volunteer crowd? In ACM MM,
CrowdMM ’14, pages 25–30. ACM, 2014.

[39] H. R. Sheikh et al. A statistical evaluation of recent full ref-
erence image quality assessment algorithms. Image Processing,
IEEE Trans. on, 15(11):3440–3451, 2006.

[40] V. S. Sheng et al. Get another label? improving data quality
and data mining using multiple, noisy labelers. In KDD ’08,
pages 614–622, 2008.

[41] M. Soliman et al. Ranking with uncertain scoring functions:
semantics and sensitivity measures. In SIGMOD ’11, pages
805–816, 2011.

[42] M. Soliman and I. Ilyas. Ranking with uncertain scores. In
ICDE ’09., pages 317 –328, 2009.

[43] P. Venetis et al. Max algorithms in crowdsourcing environ-
ments. In WWW, pages 989–998, 2012.

[44] P. Venetis and H. Garcia-Molina. Quality control for compari-
son microtasks. In International Workshop on Crowdsourcing and
Data Mining, pages 15–21. ACM, 2012.

[45] N. Vesdapunt et al. Crowdsourcing algorithms for entity
resolution. VLDB, 7(12), 2014.

[46] J. Wang et al. Leveraging transitive relations for crowdsourced
joins. In Proceedings of the 2013 international conference on
Management of data, pages 229–240. ACM, 2013.

[47] Y. Wang et al. A survey of queries over uncertain data.
Knowledge and information systems, 37(3):485–530, 2013.

[48] Z. Wang et al. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[49] S. E. Whang et al. Question selection for crowd entity
resolution. VLDB, 2013.

[50] H. Yu et al. Enabling ad-hoc ranking for data retrieval. ICDE,
2005.

[51] M.-C. Yuen et al. A survey of crowdsourcing systems. In
SocialCom, pages 766–773. IEEE, 2011.

[52] C. J. Zhang et al. Reducing uncertainty of schema matching
via crowdsourcing. PVLDB, 6(9):757–768, July 2013.

[53] W. Zhang et al. A trust based framework for secure data
aggregation in wireless sensor networks. In SECON ’06, pages
60–69, 2006.

Eleonora Ciceri , Ph.D., is a post-doc re-
searcher at Politecnico di Milano, Italy. Her
research interests mainly include query pro-
cessing and crowdsourcing.

Piero Fraternali is full professor of Web
Technologies at DEIB, Politecnico di Milano,
Italy. His main research interests concern
software engineering, and methodologies,
tools for Web application development, multi-
media information retrieval and human com-
putation.

Davide Martinenghi, Ph.D., is an associate
professor at Politecnico di Milano, Italy. His
areas of expertise include ranking queries,
data integrity maintenance, knowledge rep-
resentation, and query optimization aspects
related to web data access and web search.

Marco Tagliasacchi is currently Associate
Professor at DEIB, Politecnico di Milano,
Italy. He received the MS degree (2002)
in Computer Engineering and the Ph.D. in
Electrical Engineering and Computer Sci-
ence (2006), both from Politecnico di Mi-
lano. His research interests include multi-
media forensics, multimedia communications
(visual sensor networks, coding, quality as-
sessment) and information retrieval.

