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Abstract
We consider the inverse transmission scattering problem with piecewise

constant refractive index. Under mild a priori assumptions on the obstacle
we establish logarithmic stability estimates.

1 Introduction

In this paper we consider the scattering of acoustic time-harmonic waves in an
inhomogeneous medium. More precisely we shall consider a penetrable obstacle
D and we want to recover information on its location from a knowledge of
Cauchy data on the boundary of a region {2 containing the obstacle D.

Given a spherical incident wave u’(-,z9) = ®(-, o), where the point source
xo is located on the boundary of a ball B of radius R, B such that 2 C B, and
® denotes the fundamental solution to the Helmholtz equation

ik|lx—x
@(m,xo):ig, zeR®  x# o,
4dm |z — xo
we denote by G(z,zq) = u'(z,z0) + u®(z, 7o) the Green’s function of the equa-
tion

(1.1a) div (y(2)VG(z, x0)) + k*n(2)G(z, z0) = —6(x — o), in R3,

where the scattered field u® satisfies the Sommerfeld radiation condition

(1.1b) lim |z (aaf (@) —ikus(x)) ~0.

Here k > 0 is the wave number and r = |z|. We shall study equation (1.1a)
with piecewise constant coefficients, in particular we shall consider v and n to
be of the following form

Y(z) =14 (a—1)xp(7)
1+ (b—1)xp(x)
a>A>0, b>XA>0,
a—12+4+b-1)2%>4>0,

n(z)
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where A and J are given constants. We refer to [Co-Kr, Is06] for basic informa-
tion on scattering problem of this type.

The unique determination of D from a knowledge of the far field data has
been established by Isakov [Is90]. The purpose of the present paper is to estab-
lish a stability result. Under reasonable mild assumptions on the regularity of
0D we show that there is a continuous dependance of D on the Cauchy data
on 0f) with a modulus of continuity of logarithmic type. This rate of continu-
ity appears optimal in view of the recent paper [DC-Ro] indicating the strong
ill-posedness of the inverse problem.

The main ideas employed to obtain stability rely on the study of the be-
havior of G(z,xo) when x and x( get close and the use of unique continuation.
These ideas go bach to [Is88] where a uniqueness result for the inverse inclu-
sion problem is proved and it has also been used in inverse scattering theory
in [Is90]. In order to apply these ideas to stability some further properties on
singular solutions and quantitative estimates of unique continuation are needed.
We refer to [Al-DC] where similar ideas are developed for studying the stability
of the inverse inclusion problem.

The stability issue in inverse scattering theory has been considered by Isakov
[Is92, Is93] for the determination of a sound-soft obstacle. Hiahner and Hohage
[Ha-Ho] considered equation (1.1a) with a = 1 and n(z) smooth. They showed
that n depends on G(z,xq), x,xo € OB, with a logarithmic rate of continuity.
They considered both far field data and near field data. They improve and
simplify a previous result of Stefanov [St]. We finally mention a result obtained
by Potthast [Po] for impenetrable obstacles which is also based on the use of
singular solutions.

The plan of the paper is the following. In Section 2 we give the a priori
assumptions we need and we state the stability theorem. In Section 3 the proof
of the stability theorem is given based on some auxiliary results whose proofs
are collected in Section 4 and Section 5. In particular, in Section 4 we establish
some results on singular solutions of equation (1.1a) and in Section 5 we study
quantitative estimates of unique continuation.

2 The Main Result

In this section we state the stability theorem. Before doing this we shall give
some definitions we need and introduce the a priori assumptions on the regular-
ity of the obstacle. For any x = (1,22, 23) € R? and any r > 0 we denote by
B, (z) the open ball in R? of radius r centered in the point z, B,.(0) = B, and for
2’ = (z1,72) € R? we denote by B..(z') the open ball in R? of radius r centered
in the point 2’. In places, we shall denote a point 2 € R by x = (2/, x3) where
2 € R?, x5 € R.

Definition 2.1. Let Q be a bounded domain in R3. Given o, 0 < a < 1, we
shall say that a portion S of O is of class C* with constants ro, L > 0 if for
any P € S, there exists a rigid transformation of coordinates under which we
have P =0 and

QN B, ={xr € B, : z3 > o)},

. Lo . 2 . _ _
where ¢ is a C function on B, C R? satisfying ¢(0) = [Ve(0)] = 0 and
H90||011a(3;,0) < Lro.



Definition 2.2. We shall say that a portion S of 02 is of Lipschitz class with
constants ro, L > 0 if for any P € S, there exists a rigid transformation of
coordinates under which we have P =0 and

QN B,, ={z € By, : 3> ¢(z')},

where ¢ is a Lipschitz continuous function on B, C R? satisfying ©(0) = 0 and
lellcor s,y < Lro.

Remark 2.1. We use the convention to scale all norms in such a way that
they are dimensionally equivalent to their argument. For instance, for any i €
Ch(By,) we set

[llcrecsy,) = 1¥llLe(s;,) + rol Villre (s, ) + 7o VY a,my, -

Assumptions on the obstacle D

For given numbers rg, L > 0, 0 < a < 1, we shall assume there exists a bounded
domain 2 such that the obstacle D satisfies the following conditions:

(2.2a) Dc
(2.2b) QD is connected;
(2.2¢) OD is of class C'** with constants 7o, L.

In the sequel we shall refer to numbers rg, L, o, R, a, b and k as the a priori
data.

The inverse problem we are concerned with is the determination of the obsta-
cle D from the knowledge of the Cauchy data of the singular solutions G(-, z¢)
on 0N for all points source xq located on dB.

For two possible obstacles Dy, Dy satisfying (2.2) we shall denote by G;, i =
1,2, the corresponding solutions to (1.1a) satisfying the Sommerfeld radiation
condition (1.1Db).

Theorem 2.2. Let Dy, Do be two obstacles satisfying (2.2). If, given € > 0,
we have

o ([

z€0B ov

+
L2(89)

G (-, 2) — G2('a$)||L2(aQ)> <e,

then
dy(aDh 8D2) S (JJ(&'),

where w is an increasing function on [0,400), which satisfies
w(t) < C|logt|™", forevery 0<t<1
and C,n, C >0, 0<n<1, are constants only depending on the a priori data.

Remark 2.3. We stress the fact that we don’t need any assumption on k.



3 Proof of the Stability Theorem

We denote by G the connected component of Q\ (D1 U D3) such that 9Q C G
and Qp =0\ G.

Theorem 2.2 evaluates how close the two inclusions are in term of the Haus-
dorff distance d3. We recall a definition of this metric.

dy (D1, Ds) = max{ sup dist(x, D2), sup dist(x, Dl)} )
zeDy €Dy

In order to deal with the Hausdorff distance we introduce a simplified vari-
ation of it which we call modified distance.

Definition 3.1. We shall call modified distance between Dy and Do the number

(3.4)  du(D1,D2) = max{ sup  dist(z, Do), sup  dist(x, Dl)}.
©€dD1 N ©€dD2NIN D

We wish to remark here that such modified distance does not satisfy the
axioms of a metric and in general does not dominate the Hausdorff distance
(see [Al-Be-Ro-Ve, §3] for related arguments).

Proposition 3.1. Let Dy, Dy be two obstacles satisfying (2.2). Then

(3.5) dy(0D1,0D5) < cd, (D1, D2),

where ¢ depends only on the a priori assumptions.

Proof. See [Al-DC, Proposition 3.1] O

With no loss of generality, we can assume that there exists a point O of dD; N
00 p, where the maximum in the Definition 3.1 is attained, that is

(3.6) d, = d, (D1, D) = dist(O, D,).
We remark that G is solution to

We shall denote by G; and Gy Green’s functions when D = D; and Do
respectively and ~;, n;, ¢ = 1,2, the corresponding coefficients.
Integrating by parts we have

(“”{/Dl Ve () Tl - [ VG () Val-, )}

+k2(b— 1){ Ga(, w)Gi(,y) — Gl(',y)G@('aw)}

Dy Do

= / W(GQ(,@U) _Gl('vw))
o0

61 [ e (PHED 2BE0Y




Let us define for y,w € CB

Sl(y»w) = (CL - 1) VGl(vy) : VG2(7w) + k2(b - 1) Gl('ay)GQ('aw)v

Dy Dy

Sa(y,w) = (a —1) A VGi(-y) - VGa(-,w) + k*(b—1) i G1(,9)Ga(-,w),

f(yuw) = Sl(y7w) - SQ(yaw)
Thus (3.7) can be rewritten as

fow) = [ ZEED 6o u) - 6w

(3.8) +/m Gi(-y) (aGB(I;’w) - an(I;,w)) Yy, w € CB.

Let us fix P € 0D. We can assume P = 0. We denote by v(P) the outer
unit normal vector to Qp in P and we rotate the coordinate system in such a
way that v(P) = (0,0, —1).

Let us denote by x*(z) the characteristic function of the half-space and by
G the Green’s function of div((1 + (a — 1)xT)V) + k2(1+ (b —1)x™).

Proposition 3.2. Let D C 2 be a bounded open set whose boundary is of class
CYe with constants ro, L. Then there exist constants c1, co depending on a, «,
k and L such that

(3.9) IVeG(z,y)| < cr]z —y| 72,

(3.10) V.G (2,9)] < ol — |
for every x,y € R3.

Proof. (3.9) and (3.10) can be obtained following [Al-DC, Proposition 3.1]. In
[AI-DC] the key point is the piecewise regularity of the transmission problem.
For a proof of that we refer to [DB-EI-Fr] and [Li-Vo]. O

We shall state now two propositions that describe the behavior of f(y) and
S1(y) when we move the singularity y toward the boundary of the inclusion.
We postpone their proofs in the last Section 5.

Proposition 3.3. Let Dy, Dy two obstacles verifying (2.2) and let y = hv(O),
with O defined in (3.6). If, given ¢ > 0 we have

o (|28t 9Gs(a)
zG@IJ)B v ov

+

L2(09)
1Gr () - G2('ax)||L2(aQ)) <.,

then for every h, 0 < h < ¢rg, with ¢ € (0,1) depending on L,

F
th

hA 7
where 0 < A <1 and ¢, B, F > 0 are constants that depend only on the a priori
data.

|f(y,y)| <c



Proposition 3.4. Let Dy, Dy two obstacles verifying (2.2) and let y = hv(O),
with O defined in (3.6). Then for every h, 0 < h < min{7s,d,}

(3.11) 1S1(y,y)| > crh™ —ca(dy —h) 2 +c3
where ¢y, co, czand Ty are positive constants only depending on the a priori data.
Proof of Theorem 2.2. Let O € D as defined (3.6), that is

d, (D1, Dy) = dist(O, Dy) = d,,.

Then, for y = hv(0), with 0 < h < hq, where hy = min{d,,,¢ro,72/2}, using
(3.9), we have

1 1 1
3.12 So(y,y gc/ dr = c—|D3|.
( ) | 2( )| Da (du—h)(du—h) (du_h)Q‘ 2|
Using Proposition 3.3, we have
eBhr”
1510y, 9) = 152y, 9)] < 151y y) = S2(y. 9)| = | (v, 9)] < e 7

On the other hand, by Proposition 3.4 and (3.12), there exists hg > 0, only
depending on the a priori data, such that for h, 0 < h < hg

19105, 9)] — 1S2(3,9)] > c1h~2 — ea(dy — h)~2.

Thus we have
BhY

- g €
Clh 2_ C4(du - h) 2 S hT
Let h = h(e) where h(e) = min{\lng|_%,du}7 for 0 < e < ey, with &1 € (0,1)
such that exp(—B|Ine;|'/2) = 1/2. If d, < |Ine|~2F the theorem follows using
Proposition 3.1. In the other case we have

BhYT

ca(dy —h)™2 > esh > — S > esh2(1— PR,

BA
where A =2 — A, A > 0. Since
EBh(g)Fh(EyT < cBlne[~1/? < exp ( . B|ln€\1/2),

for any €, 0 < € < e,
(du — (€)™ = esh(e) 2,

that is, solving for d,,, and recalling that, in this case, h(e) = | ln6|_ﬁ
d, < ¢l ln{—:\*%
where § = 1/(2F'). When € > €1, then
d,, < diam@)
and, in particular when 1 <e < 1

1
d, < diam® [Ine]

Finally, using Proposition 3.1, the theorem follows. O



4 Remarks on Singular Solutions

Proposition 4.1. Let D C R3 be an open set with C1® boundary with constants
ro, L, let P be a point in OD and let us denote with v(P) the outer normal vector
to D in P. There exist positive constants cs, c4 depending on a, k, o and L
such that

C — e}
(4.13) Gla.y) = Gala,y)| < ol —y| e,
0
C _ o?
(4.14) VeG(@,9) = Vol (2, )] < —zlo =y 7,

0

for every x € DNB,.(P) andy = hv(P), with 0 < r < (min{1(8L)~Y*, i} ry =

Fo, 0< h < (min{}(81) 7% 41)%.

Proof. Let us fix 71 = min{2(8L)~1/%ry, 22}. In the ball B, (P) the boundary
of D can be represented as the graph of a O™ function ¢. Let us introduce now
the following change of variable that transform in B,,(P) 9D in the 2’-axis. For
every r > 0, let Q..(P) be the cube centered at P, with sides of length 2r and
parallel to the coordinates axes. We have that the ball B,.(P) is inscribed into
Q- (P). We define

V@ (P) — Qo (P)

(j) ” <sn=xn—g(;>9;l('i{')9(%) >

where 6 € C°°(R) be such that 0 < § < 1, 0(t) = 1, for |¢| < 1, 6(¢t) = 0, for
|t| > 2 and | 22| < 2. Since the C1* regularity of ¢, it is possible to verify that
the following inequalities hold:

(4.15a) cMay — xo| <|W(xy) — U(as)| < clzy — 2,
(4.15b) W(z) — 2| < —|2[F* Yz eR3
To
(4.15¢) IDU(z) —I| < —|z|* VaeR3
T

0

where ¢ > 1 depends on L and « only. ¥ is a C%® diffeomorphism from R? into
itself. Let us define the cylinder C,, as C,, = {x € R® : [2/| < ry,|zn| < m1}.
For z,y € C},, we shall denote

(4.16) Gla,y) = GU ™ (2), ¥ (y)).

G(z,y) is solution of

(4.17)  div((1 + (a — 1)x1)BVG(z, 1))
+ k(1 — (b= 1)x4(2))BG(z,y) = —b(z — y),

where B = %, with J = 28 (U1(€)), is of class C*, B(0) = I and ¢ = det J.

Since G is solution to

(4.18) div((1+ (a — D)x NGy (z,y))+
K (1= (b—1)x+(2)Gy (z,y) = —6(z,y),



subtracting (4.18) to (4.17) we obtain that R(z,y) = G(z,y) — Gy(z,y) is
solution to

(4.19)  div((1+ (a — D)x ") R(z,y))
+E (14 (b= 1)x 1) R(z,y)
= div((1 + (a — )x)[B(x) — [|VG(,y))
+E(1 =1+ (b— Dx4)G(x,y).

Let L, depending on the a priori data, be such that © C B;(0), then using the
fundamental solution G we get

— R(z,y) = / (1+ (a — DxH[B(2) — IV.G(2,y) - VoG (z,2)dz
B (0)

R, )2 (59) + G (9) g (0,7) | do(2)

+ /8 RCERY

+R1=0 [ (14 (b= Dx)EE )G et
B; (0)

R, ) B (29) + €2 ) o, z>] do(2)

201_ a
k(1) /agi@(”( 1xs)

Integrals over 0Bj(0) are bounded by a constant. Let us split
B;(0) = (B (0) ~ Cr,) U(BE(0) N Cp, ).

For |z|,|y| < 71/2, in B;(0) \ C,, we are away from the singularity thus
the integrals over Bj(0) \ C,, are bounded. Let us evaluate integrals over
B;(0) N C,,. We have

/ (14 (a— Dx[B() = V.Gl y) - VoG (2, 2)dz
B;(0)NC:,

Sc/ |2z —y| 2|z — 2| 2dz =1
BL(ONC,,

where ¢ depends on L, a, a and n. We can split I = I; + I where

I = / 121z — 2|2y — 2| 2dz,
{lz|<4h}NC:,

I = / |2|%|z — 2| |y — 2| 2dz.
{|z|>4h}NC\;



Now

-2

ap, jap—2|L =2, Y 3
I, < /w|<4h |w|“h |h w| "h |h w| “hPdw
a-1 oL =2 Y2
h /w|<4 |w |h w| ’h w| “dw
< hTUE(E ),

where h = |z — y| and
Feon) =4 [ 16— ully —u| du
|lw]|<4

and £ = x/h and n = y/h. From standard bounds (see, for instance, [Mi, Ch. 2,
§ 11]), it is not difficult to see that

F(&,m) < const. < oo,
for all £,n € R3, |¢ —n| = 1. Thus
I <clz —y|* .
Let us consider now I5. Since |y| = —y, < |z — y| = h, we can deduce |z| <
3y — 2| and |2| < 2|z — z| and thus obtain that

I, < c/ \z|a+1_"+1_"dz < ch* 1.
|z|>4h

Then we conclude
(4.20) |R(z,y)| < clz —y| 7+,

for every |z|, |y| < r1/2, where ¢ depends on L, «, k and a only.
We observe that if z € U1(BF ,(0)) and y = e3ys, with y3 € (—r1/2,0)

1/2
then
(4.21) ol < [9()] < [(x) — gl < clo — y.
From (4.20) and (4.21) we can conclude
(4.22) |R(x,y)| < cle—y|7
Now, since

G(z,y) — Gy (z,y)
=G(z,y) = G4 (z,y) + G4 (¥(2), ¥(y)) — G4 (¥(x), ¥(y))
=R(¥(2), ¥(y)) + G1(¥(z),y) — Gy (z,y),
using Theorem 4.1 of [Li-Vo], the properties of ¥ and (4.22) we obtain
|G(I7 y) - G+(‘Ta y)|

c _ c
< <l =yl + S IVGL ()l o lz — (@)
To o
c a4, c 14ap—2
< fa|$—y\a +%\l‘—y| “h
C// _
S rj|x_y‘a 17

0



where ¢” depends on k, @ and L only.

_ We estimate now the first derivative of R. To estimate the first derivative of
R let us consider a cube Q C B:'l /4(x) of side ¢rq/4, with 0 < ¢ < 1, such that
x € 0Q. The following interpolation inequality holds:

IVRC =@ < B0 VR, o

where § = H%’ ¢ depends on L only and
Vi sp VR VRG]
T zaeQuate’ |z — a’|*

Since, from the piecewise Holder continuity of VG and of VG, we have that
VR, )laq < [VE(,9)la.q + VG4 (2 y)lag < ch™ 72,

where ¢ depends on L only, thus we conclude

|V$I§(x,y)| < T%h(a—l)(l—é)h(—a—%é _ Tiﬂh_%nv
0 0

where n = <’ Thus

1+«
~ cC _
(4.23) Ve R(z,y)l < —lo —yl"?,
0
where n = 1?‘:(1 and ¢ depends on L only. Concerning G we have
VoG (¥(2),y) — VoG (z,9)]
= [DY(2)"VG (- Y)w() — VaGri(z,y)]
< [(D¥(2)T = DVG1 () jw@)| + VG4 (9 jw() — VaGoi(z,y)|
c (03
< LIV yll=@ple = ¥(@)[ + VG4 (L y)lal ¥ () — 2]
0
< i/h1+ah72 + %h7a72h(l+a)a
T re
< he
g
where ¢ depends on k, o and L only. O

Let us denote by GY the Green’s function of the operator div((1 + (a —
x+)V).

Proposition 4.2. Let Gy and Gg_ as above, then there exist positive constants
cs, cg depending on the a priori data such that for every x,y € R3 we have

(4.24) Gy (z,y) — Gz, y)| < cslz —y|
(4.25) IVaGoi(z,y) — VoG (2,y)| < colz —y| "

10



Proof. Defining R(z,y) = G4 (z,y) — G (z,y), we have that
(426)  div(1+ (b= 1)x:)VR(@,)) = —k3(1 + ((b— Dx)Gx (2,).

Thus

Rl = [ (14 0= 16 (2 0)GY (a2

Hence for [Li-St-We] we have
Reg)| <C [ o= sl My -2 e
Q

Let decompose 2 = Bja—y| () U Bla—y (y) UG.
3 3
For z € Bj.—y (x) we have that
3

ly—z > |yl =1zl >yl = |z —y| — ||
lz -yl 2
> —y| - =z —y.
> |z —yl 3 3Ix Yl
Thus
lz—yl

J

Similarly it can be evaluated the integral over B,y (y).
3

2 3
o — 2"y — 2| Mz < §|x—y\—1/0 pdp < clz — y?.

|lz—y]| (I)
3

Let us consider now the integral over G. For z € G we have that |z —y| > %,

then we obtain
/ |z — 2|7y — 2| "tz < c/ [ e o e
g g

c/ |z — 2|7 e — 2| tdz
Q\Bmgy‘ (I)

2L
< c/ pdp < c1lx —y| 72 + co.

[z—y|

IN

Let us prove now (4.25). We use the interpolation inequality
IVRC) (@) < IROIL o) VR )2 0
As in Proposition 4.1, since
|VR(7 y)|a,Q S h_a_27

we obtain
IVR(x,y)| < ch™ 2T < ch™t.

11



5 Proof of Proposition 3.3 and 3.4

Proof of Proposition 3.3. Let us consider f(y,w), where w is a fixed point in
CB. Since f, as a function of y, is a radiating solution of

Lyf =M f+kf=0 inCQp,

then by [Co-Kr, Theorem 2.14], for y € CB we have

=Y D arhP kDY),

n=0m=—n

where § = y/|y|, ¥,”* is a spherical harmonic of order n and hg) is a spherical
Hankel function of the first kind of order n. Let us consider y such that R <
Ry < |y| < Rz. For an integer N, using Schwarz inequality and the asymptotic
behavior of Hankel function (see [Co-Kr, (2.38) pg. 28]) we have

[z S D Y, ‘”r

n=0m=—n

N

3 e (k|y))

— | b (kR)

Z Z ' [*[RG) (RR) 21, (9) 2.

n=0m=—n

N n
ey Y lanPInd (RR)PIY ()],

n=0m=—n

for some constant ¢ depending on R, R; and Rs. Thus, taking the limit as
N — 400, we can conclude that

|f(ya@)|2 Sc‘f(',@)|63|27 VQGBRz \ERID

where ¢ depends on R, Ry and Rs. Analogous considerations can be car-
ried on fixing y and varying w. Thus, we can conclude that for all (y,w) €

[Br, ~ Bg,]”
|f(y, w)| < |floapxas| < ce.

For y € G", where G" = {z € G : dist(z,Qp) > h},
Siwml<e [ ooyl e
D,

where ¢ = ¢(L, R). Similarly |S2(y,w)| < ¢h=2. Then we conclude that
(5.27) \f(y, @) <ch™2  ingGh

At this stage we shall make use iteratively of the three spheres inequality
(see [La, Ku]). Let u be a solution of Lu =0 in G, let © € G. There exist 7, 7,
re, 0 <1 <1 <719 < Rand T € (0,1) such that

(5.28) el (8, o1y < €lullf e, @pllulEZs, oy

12



where c and 7 depend on R, r/ra, r1 /72 and L. Applying (5.28) to u(-) = f(-, w),
with # =T € Byg \ B3g, 11 =70/2, 7 = 3r¢/2 and ry = 21y we obtain

1—7

1F 2 (Bayg 2@ < €lF oo s, @ 112 B, @)

For every 7 € G", we denote by 7 a simple arc in G joining 7 to 7. Let us define

{z;},i=1,...,sasfollowsx; =T, x;41 = v(¢t;), where t; = max{t : |[y(t)—z;| =
ro} if |x; — 7| > 1o, otherwise let i« = s and stop the process. By construction,
the balls B, /o(2;) are pairwise disjoint, |z;11 — 23] = 79 for i = 1,...,s — 1,

|zs — | < rog. There exists 8 such that s < 3. An iterated application of the
three spheres inequality (5.28) for f (see for instance [Al-Be-Ro-Ve, pg. 780],
[Al-DB, Appendix E]) gives that for any r, 0 < r < 19

1—7°

(5.29) 1fllzo(B, @) < cllf

We can estimate the right hand side of (5.29) by (5.27) and obtain for any r,
0<r<rmrg

s

(5.30) £l (B, oy < c(B2) 7T e™ < chm e,
where 3 = 7% and A = 2(1 — ). Let O € @D, as defined in (3.6), that is
d(0, D3) = d, (D1, D3).

There exists a C1® neighborhood U of O in 0p with constants ry and L.
Thus there exists a non-tangential vector field 7, defined on U such that the
truncated cone

- 0)-v(0)

(5.31) C(0,v(0),0,19) = {1: cR3: (@ 20 > cosf, |t — O] < 7‘0}

satisfies

C(0,v(0),0,1) C G,
where 0 = arctan(1/L). Let us define

A . To T0 0 . sin @
=mins ———, ———— = arcsin
! 1+sinf’ 3sind |’ ! 4 )

G1 =0+ M\, p1 = Aysinfy.

We have that B, (G1) C C(0,v(0),01,70), Bap,(G1) C C(O,v(0),0,70). Let
G = G, since p; < r¢/2, we can use (5.30) in the ball B, (G) and we can
approach O € 0D; by constructing a sequence of balls contained in the cone

C(0,v(0),61,r9). We define, for k > 2

. 1 —siné
Gk = O + )\kl/, )\k = X)\k_l, Pk = XPk—1, Wlth X = 71
1+ sin 6,

k

Hence pr, = x o, A = X’“_l)\l and

BPk+1 (Gk+1) - BPSk (Gk) C BP4k (Gk) C O(O,V,G,To).
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Denoting d(k) = |Gx — O| — pr = A\ — pr, we have d(k) = x*~'d(1), with
d(1) = A (1 —sin@). For any r, 0 < r < d(1), let k(r) be the smallest integer
such that d(k) < r, that is

| log ﬁ|

1 _r_
< k) 1 < o]
| log x|

= |logx| '
By an iterated application of the three spheres inequality over the chain of balls

B, (G1),..., Bpkm (Gk(,«)), we have

(5.32)

. _ _k(r)—1 a-k(r)—1 _ a-k(r)—1
1@ Lo, (@) < B All-r )ehT < ch™AePT

)

for 0 < r < crg, where ¢, 0 < ¢ < 1, depends on L. Let us consider now f(y,w)
as a function of w. First we observe that

Lyof=0 in CQp, for all y € CQp.

For y,w € G", y # w, using (3.9)

Sl e [ Jo—yl e - ul P <ot
D,

Similarly for S5. Therefore
If(y,w)| < ch™  with y,w € G".
For w € Byr ~ B3g and y € Gh, using (5.32), we have
[Flyw)] < eh= e
Proceeding as before, let us fix y € G such that dist(y,Q2p) = h and w €
Byr ~\ Bsp such that dist(w,0Br) = R/2. Taking r = R/2, r1 = 3r, ro = 4r,
w1 = O + A\1v and using iteratively the three spheres inequality, we have
1F (s )| oo (B ) < F @ ) 1T (5 1 (05 0 1 g
where 7 and s are as above. Therefore
_ S, _ArS SR =1 s
1 (s 0l Lo (Brjp(wr) < c(h™) T hTAT (P )
< C(h—4)1—'yh—A‘rs (Eﬁrkw)*l)'y < Ch—A’ (Eﬁfk(h)*l)’y,

where v = 77, with § as above, so 0 < v < 1 and A’ = Ar® — 4 + . Once
again, let us apply the three spheres inequality over a chain of balls contained
in a cone with vertex in O, choosing y = w = hv(O) we obtain

Ak =1

(5.33) f(yy)| < ch™ (P

We observe that, for 0 < h < crg, where 0 < ¢ < 1 depends on L, k(h) <
c|log h| = —clog h, so we can write

7_k(h) — e—cloghlog‘r — h—clog‘r — hc| log 7| _ hF7
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with F' = ¢|log 7|. Therefore
Al k(h) Y (h)
|f(yay>| S h A E:BT =e A IOgheBT loge
e—A' 10gh+B'hF10gg

Then in (5.33) we obtain

1y F
EBh

rA"

|f(y,y)| < e—A' log h+B'hF loge __

O

Proof of Proposition 3.4. Let us define 7o = min{7g, 2}, where 7 is the one of
Proposition 4.1 and ry will be fixed later. For every z,y such that |z — y| < r,
with 0 < r < T4, the following asymptotic formula holds (cf. Proposition 4.1)

Gi(2,y) = Gy (2,9)] < clz —y|~H
We now distinguish two situations:
1) z € B, N (D1 N Dy);
2) x € B, N (D1 \ Da).

If case 1) occurs then the asymptotic formula (4.14) holds also for Gy since the
hypothesis of Proposition 4.1 are met. From [Al, Lemma 3.1] there exists 7,
depending on the a priori data, such that

(5.34) VGi(z,y) - VGo(z,y) > clz —y| 2

Let us consider case 2). In B, N (D; \ D) we consider a smaller ball B,(0)
with radius p where 0 < p < min{d,,r2}. Since the definition of d,, we have
B,N Dy =0. If x and y are in B, and denoting by £ = A + k? we have

L (Gy(z,y) — D(x,y)) =0 in B,

where ® is the fundamental solution of the Helmholtz equation, with the bound-
ary condition

(Ga(z.) — ®(z.v)] o5, < ™"

Thus by maximum principle
|Go(2,y) — ®(x,y)| < cipt Va,y € B,
and by interior gradient bound
VG (z,y) — VO(2,9)| < cap? Va € By, Vy € B,.
Thus using Lemma 3.1 of [Al], in B,/,(O) we obtain the formula formula

(5.35) VGi(z,y) - VGa(z,y) > clo —y| 7> —cap™>.
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Let us consider h < 73/2 and 0 < r < T5. Then we have

VGi(2,y) - VG2 (z,y)dx
D,
- | [ veey vewn+ [ vel(x,y»v«b(x,y)\
DlﬂBT(O) Dl\BT(O)
> VGl(fﬂay)'VGz(%y)’—‘ / mum,y)-va)]
D1NB,.(0) D1~B,.(0)

The first integral can be estimated as follows

\ / VGi(,y) - VGs(a, y)de
DlﬂBT(O)

(D1ND2)NB,-(0)

+/ VGi(z,y) - VGa(x,y)dz
(Dl\DZ)mBT(O)

Y

VGi(z,y) - VGo(x,y)dx

[(DlﬁDz)ﬁBP(O)]U[(Dl \DQ)me]

_‘ / VGi(z,y) - VGa(z,y)dz

[(D1~D2)NB.(O)]\B,

In conclusion, choosing p = h and using (5.34), (5.35) and (3.9) we obtain

151(9)] > er & — | 2de
[(D1ND2)NB,(0)|U[(D1~D2)NB,]
e, / o — g~V — y| "'z — e / & — g~ — ] da
[(D1~D2)NB(O)]~B, Di~B,(0)

>cqh 72— c5d;2 — Cg.

O
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