# Stability Estimates in the Inverse Transmission Scattering Problem 

Michele Di Cristo<br>Dipartimento di Matematica<br>Politecnico di Milano<br>michele.dicristo@polimi.it


#### Abstract

We consider the inverse transmission scattering problem with piecewise constant refractive index. Under mild a priori assumptions on the obstacle we establish logarithmic stability estimates.


## 1 Introduction

In this paper we consider the scattering of acoustic time-harmonic waves in an inhomogeneous medium. More precisely we shall consider a penetrable obstacle $D$ and we want to recover information on its location from a knowledge of Cauchy data on the boundary of a region $\Omega$ containing the obstacle $D$.

Given a spherical incident wave $u^{i}\left(\cdot, x_{0}\right)=\Phi\left(\cdot, x_{0}\right)$, where the point source $x_{0}$ is located on the boundary of a ball $B$ of radius $R, B$ such that $\Omega \subset B$, and $\Phi$ denotes the fundamental solution to the Helmholtz equation

$$
\Phi\left(x, x_{0}\right)=\frac{1}{4 \pi} \frac{\mathrm{e}^{i k\left|x-x_{0}\right|}}{\left|x-x_{0}\right|}, \quad x \in \mathbb{R}^{3}, \quad x \neq x_{0}
$$

we denote by $\mathbb{G}\left(x, x_{0}\right)=u^{i}\left(x, x_{0}\right)+u^{s}\left(x, x_{0}\right)$ the Green's function of the equation

$$
\begin{equation*}
\operatorname{div}\left(\gamma(x) \nabla \mathbb{G}\left(x, x_{0}\right)\right)+k^{2} n(x) \mathbb{G}\left(x, x_{0}\right)=-\delta\left(x-x_{0}\right), \quad \text { in } \mathbb{R}^{3}, \tag{1.1a}
\end{equation*}
$$

where the scattered field $u^{s}$ satisfies the Sommerfeld radiation condition

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|\left(\frac{\partial u^{s}}{\partial r}(x)-i k u^{s}(x)\right)=0 \tag{1.1b}
\end{equation*}
$$

Here $k>0$ is the wave number and $r=|x|$. We shall study equation (1.1a) with piecewise constant coefficients, in particular we shall consider $\gamma$ and $n$ to be of the following form

$$
\left\{\begin{array}{l}
\gamma(x)=1+(a-1) \chi_{D}(x) \\
n(x)=1+(b-1) \chi_{D}(x) \\
a \geq \lambda>0, \quad b \geq \lambda>0 \\
(a-1)^{2}+(b-1)^{2} \geq \delta^{2}>0
\end{array}\right.
$$

where $\lambda$ and $\delta$ are given constants. We refer to [Co-Kr, Is06] for basic information on scattering problem of this type.

The unique determination of $D$ from a knowledge of the far field data has been established by Isakov [Is90]. The purpose of the present paper is to establish a stability result. Under reasonable mild assumptions on the regularity of $\partial D$ we show that there is a continuous dependance of $D$ on the Cauchy data on $\partial \Omega$ with a modulus of continuity of logarithmic type. This rate of continuity appears optimal in view of the recent paper [DC-Ro] indicating the strong ill-posedness of the inverse problem.

The main ideas employed to obtain stability rely on the study of the behavior of $\mathbb{G}\left(x, x_{0}\right)$ when $x$ and $x_{0}$ get close and the use of unique continuation. These ideas go bach to [Is88] where a uniqueness result for the inverse inclusion problem is proved and it has also been used in inverse scattering theory in [Is90]. In order to apply these ideas to stability some further properties on singular solutions and quantitative estimates of unique continuation are needed. We refer to [Al-DC] where similar ideas are developed for studying the stability of the inverse inclusion problem.

The stability issue in inverse scattering theory has been considered by Isakov [Is92, Is93] for the determination of a sound-soft obstacle. Hähner and Hohage [Ha-Ho] considered equation (1.1a) with $a=1$ and $n(x)$ smooth. They showed that $n$ depends on $\mathbb{G}\left(x, x_{0}\right), x, x_{0} \in \partial B$, with a logarithmic rate of continuity. They considered both far field data and near field data. They improve and simplify a previous result of Stefanov [St]. We finally mention a result obtained by Potthast $[\mathrm{Po}]$ for impenetrable obstacles which is also based on the use of singular solutions.

The plan of the paper is the following. In Section 2 we give the a priori assumptions we need and we state the stability theorem. In Section 3 the proof of the stability theorem is given based on some auxiliary results whose proofs are collected in Section 4 and Section 5. In particular, in Section 4 we establish some results on singular solutions of equation (1.1a) and in Section 5 we study quantitative estimates of unique continuation.

## 2 The Main Result

In this section we state the stability theorem. Before doing this we shall give some definitions we need and introduce the a priori assumptions on the regularity of the obstacle. For any $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and any $r>0$ we denote by $B_{r}(x)$ the open ball in $\mathbb{R}^{3}$ of radius $r$ centered in the point $x, B_{r}(0)=B_{r}$ and for $x^{\prime}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ we denote by $B_{r}^{\prime}\left(x^{\prime}\right)$ the open ball in $\mathbb{R}^{2}$ of radius $r$ centered in the point $x^{\prime}$. In places, we shall denote a point $x \in \mathbb{R}^{3}$ by $x=\left(x^{\prime}, x_{3}\right)$ where $x^{\prime} \in \mathbb{R}^{2}, x_{3} \in \mathbb{R}$.

Definition 2.1. Let $\Omega$ be a bounded domain in $\mathbb{R}^{3}$. Given $\alpha, 0<\alpha \leq 1$, we shall say that a portion $S$ of $\partial \Omega$ is of class $C^{1, \alpha}$ with constants $r_{0}, L>0$ if for any $P \in S$, there exists a rigid transformation of coordinates under which we have $P=0$ and

$$
\Omega \cap B_{r_{0}}=\left\{x \in B_{r_{0}}: x_{3}>\varphi\left(x^{\prime}\right)\right\}
$$

where $\varphi$ is a $C^{1, \alpha}$ function on $B_{r_{0}}^{\prime} \subset \mathbb{R}^{2}$ satisfying $\varphi(0)=|\nabla \varphi(0)|=0$ and $\|\varphi\|_{C^{1, \alpha}\left(B_{r_{0}}^{\prime}\right)} \leq L r_{0}$.

Definition 2.2. We shall say that a portion $S$ of $\partial \Omega$ is of Lipschitz class with constants $r_{0}, L>0$ if for any $P \in S$, there exists a rigid transformation of coordinates under which we have $P=0$ and

$$
\Omega \cap B_{r_{0}}=\left\{x \in B_{r_{0}}: x_{3}>\varphi\left(x^{\prime}\right)\right\}
$$

where $\varphi$ is a Lipschitz continuous function on $B_{r_{0}}^{\prime} \subset \mathbb{R}^{2}$ satisfying $\varphi(0)=0$ and $\|\varphi\|_{C^{0,1}\left(B_{r_{0}}^{\prime}\right)} \leq L r_{0}$.

Remark 2.1. We use the convention to scale all norms in such a way that they are dimensionally equivalent to their argument. For instance, for any $\psi \in$ $C^{1, \alpha}\left(B_{r_{0}}^{\prime}\right)$ we set

$$
\|\psi\|_{C^{1, \alpha}\left(B_{r_{0}}^{\prime}\right)}=\|\psi\|_{L^{\infty}\left(B_{r_{0}}^{\prime}\right)}+r_{0}\|\nabla \psi\|_{L^{\infty}\left(B_{r_{0}}^{\prime}\right)}+r_{0}^{1+\alpha}|\nabla \psi|_{\alpha, B_{r_{0}}^{\prime}} .
$$

## Assumptions on the obstacle $D$

For given numbers $r_{0}, L>0,0<\alpha<1$, we shall assume there exists a bounded domain $\Omega$ such that the obstacle $D$ satisfies the following conditions:

$$
\begin{align*}
& D \subset \Omega  \tag{2.2a}\\
& \Omega \backslash \bar{D} \text { is connected; }  \tag{2.2b}\\
& \partial D \text { is of class } C^{1, \alpha} \text { with constants } r_{0}, L \tag{2.2c}
\end{align*}
$$

In the sequel we shall refer to numbers $r_{0}, L, \alpha, R, a, b$ and $k$ as the a priori data.

The inverse problem we are concerned with is the determination of the obstacle $D$ from the knowledge of the Cauchy data of the singular solutions $\mathbb{G}\left(\cdot, x_{0}\right)$ on $\partial \Omega$ for all points source $x_{0}$ located on $\partial B$.

For two possible obstacles $D_{1}, D_{2}$ satisfying (2.2) we shall denote by $\mathbb{G}_{i}, i=$ 1,2 , the corresponding solutions to (1.1a) satisfying the Sommerfeld radiation condition (1.1b).

Theorem 2.2. Let $D_{1}, D_{2}$ be two obstacles satisfying (2.2). If, given $\varepsilon>0$, we have

$$
\begin{align*}
\sup _{x \in \partial B}\left(\left\|\frac{\partial \mathbb{G}_{1}(\cdot, x)}{\partial \nu}-\frac{\partial \mathbb{G}_{2}(\cdot, x)}{\partial \nu}\right\|_{L^{2}(\partial \Omega)}\right. & +  \tag{2.3}\\
& \left.\left\|\mathbb{G}_{1}(\cdot, x)-\mathbb{G}_{2}(\cdot, x)\right\|_{L^{2}(\partial \Omega)}\right) \leq \varepsilon
\end{align*}
$$

then

$$
d_{\mathcal{H}}\left(\partial D_{1}, \partial D_{2}\right) \leq \omega(\varepsilon)
$$

where $\omega$ is an increasing function on $[0,+\infty)$, which satisfies

$$
\omega(t) \leq C|\log t|^{-\eta}, \quad \text { for every } \quad 0<t<1
$$

and $C, \eta, C>0,0<\eta \leq 1$, are constants only depending on the a priori data.
Remark 2.3. We stress the fact that we don't need any assumption on $k$.

## 3 Proof of the Stability Theorem

We denote by $\mathcal{G}$ the connected component of $\Omega \backslash\left(D_{1} \cup D_{2}\right)$ such that $\partial \Omega \subset \overline{\mathcal{G}}$ and $\Omega_{D}=\Omega \backslash \mathcal{G}$.

Theorem 2.2 evaluates how close the two inclusions are in term of the Hausdorff distance $d_{\mathcal{H}}$. We recall a definition of this metric.

$$
d_{\mathcal{H}}\left(D_{1}, D_{2}\right)=\max \left\{\sup _{x \in D_{1}} \operatorname{dist}\left(x, D_{2}\right), \sup _{x \in D_{2}} \operatorname{dist}\left(x, D_{1}\right)\right\} .
$$

In order to deal with the Hausdorff distance we introduce a simplified variation of it which we call modified distance.

Definition 3.1. We shall call modified distance between $D_{1}$ and $D_{2}$ the number

$$
\begin{equation*}
d_{\mu}\left(D_{1}, D_{2}\right)=\max \left\{\sup _{x \in \partial D_{1} \cap \partial \Omega_{D}} \operatorname{dist}\left(x, D_{2}\right), \sup _{x \in \partial D_{2} \cap \partial \Omega_{D}} \operatorname{dist}\left(x, D_{1}\right)\right\} \tag{3.4}
\end{equation*}
$$

We wish to remark here that such modified distance does not satisfy the axioms of a metric and in general does not dominate the Hausdorff distance (see [Al-Be-Ro-Ve, §3] for related arguments).

Proposition 3.1. Let $D_{1}, D_{2}$ be two obstacles satisfying (2.2). Then

$$
\begin{equation*}
d_{\mathcal{H}}\left(\partial D_{1}, \partial D_{2}\right) \leq c d_{\mu}\left(D_{1}, D_{2}\right) \tag{3.5}
\end{equation*}
$$

where $c$ depends only on the a priori assumptions.
Proof. See [Al-DC, Proposition 3.1]
With no loss of generality, we can assume that there exists a point $O$ of $\partial D_{1} \cap$ $\partial \Omega_{D}$, where the maximum in the Definition 3.1 is attained, that is

$$
\begin{equation*}
d_{\mu}=d_{\mu}\left(D_{1}, D_{2}\right)=\operatorname{dist}\left(O, D_{2}\right) \tag{3.6}
\end{equation*}
$$

We remark that $\mathbb{G}$ is solution to

$$
\operatorname{div}(\gamma(x) \nabla \mathbb{G}(x, y))+k^{2} n(x) \mathbb{G}(x, y)=-\delta(x, y)
$$

We shall denote by $\mathbb{G}_{1}$ and $\mathbb{G}_{2}$ Green's functions when $D=D_{1}$ and $D_{2}$ respectively and $\gamma_{i}, n_{i}, i=1,2$, the corresponding coefficients.

Integrating by parts we have

$$
\begin{align*}
& (a-1)\left\{\int_{D_{1}} \nabla \mathbb{G}_{1}(\cdot, y) \cdot \nabla \mathbb{G}_{2}(\cdot, w)-\int_{D_{2}} \nabla \mathbb{G}_{1}(\cdot, y) \cdot \nabla \mathbb{G}_{2}(\cdot, w)\right\} \\
& +k^{2}(b-1)\left\{\int_{D_{1}} \mathbb{G}_{2}(\cdot, w) \mathbb{G}_{1}(\cdot, y)-\int_{D_{2}} \mathbb{G}_{1}(\cdot, y) \mathbb{G}_{2}(\cdot, w)\right\} \\
= & \int_{\partial \Omega}\left(\frac{\partial \mathbb{G}_{1}(\cdot, y)}{\partial \nu} \mathbb{G}_{2}(\cdot, w)-\mathbb{G}_{1}(\cdot, y) \frac{\partial \mathbb{G}_{2}(\cdot, w)}{\partial \nu}\right) \\
= & \int_{\partial \Omega} \frac{\partial \mathbb{G}_{1}(\cdot, y)}{\partial \nu}\left(\mathbb{G}_{2}(\cdot, w)-\mathbb{G}_{1}(\cdot, w)\right) \\
& +\int_{\partial \Omega} \mathbb{G}_{1}(\cdot, y)\left(\frac{\partial \mathbb{G}_{1}(\cdot, w)}{\partial \nu}-\frac{\partial \mathbb{G}_{2}(\cdot, w)}{\partial \nu}\right) \quad \forall y, w \in \mathcal{C} B . \tag{3.7}
\end{align*}
$$

Let us define for $y, w \in \mathcal{C} B$

$$
\begin{aligned}
& S_{1}(y, w)=(a-1) \int_{D_{1}} \nabla \mathbb{G}_{1}(\cdot, y) \cdot \nabla \mathbb{G}_{2}(\cdot, w)+k^{2}(b-1) \int_{D_{1}} \mathbb{G}_{1}(\cdot, y) \mathbb{G}_{2}(\cdot, w), \\
& S_{2}(y, w)=(a-1) \int_{D_{2}} \nabla \mathbb{G}_{1}(\cdot, y) \cdot \nabla \mathbb{G}_{2}(\cdot, w)+k^{2}(b-1) \int_{D_{2}} \mathbb{G}_{1}(\cdot, y) \mathbb{G}_{2}(\cdot, w), \\
& f(y, w)=S_{1}(y, w)-S_{2}(y, w) .
\end{aligned}
$$

Thus (3.7) can be rewritten as

$$
\begin{aligned}
f(y, w)= & \int_{\partial \Omega} \frac{\partial \mathbb{G}_{1}(\cdot, y)}{\partial \nu}\left(\mathbb{G}_{2}(\cdot, w)-\mathbb{G}_{1}(\cdot, w)\right) \\
& +\int_{\partial \Omega} \mathbb{G}_{1}(\cdot, y)\left(\frac{\partial \mathbb{G}_{1}(\cdot, w)}{\partial \nu}-\frac{\partial \mathbb{G}_{2}(\cdot, w)}{\partial \nu}\right) \quad \forall y, w \in \mathcal{C} B .
\end{aligned}
$$

Let us fix $P \in \partial D$. We can assume $P \equiv 0$. We denote by $\nu(P)$ the outer unit normal vector to $\Omega_{D}$ in $P$ and we rotate the coordinate system in such a way that $\nu(P)=(0,0,-1)$.

Let us denote by $\chi^{+}(x)$ the characteristic function of the half-space and by $\mathbb{G}_{+}$the Green's function of $\operatorname{div}\left(\left(1+(a-1) \chi^{+}\right) \nabla\right)+k^{2}\left(1+(b-1) \chi^{+}\right)$.
Proposition 3.2. Let $D \subset \Omega$ be a bounded open set whose boundary is of class $C^{1, \alpha}$ with constants $r_{0}, L$. Then there exist constants $c_{1}, c_{2}$ depending on $a, \alpha$, $k$ and $L$ such that

$$
\begin{align*}
& \left|\nabla_{x} \mathbb{G}(x, y)\right| \leq c_{1}|x-y|^{-2}  \tag{3.9}\\
& \left|\nabla_{x} \mathbb{G}_{+}(x, y)\right| \leq c_{2}|x-y|^{-2} \tag{3.10}
\end{align*}
$$

for every $x, y \in \mathbb{R}^{3}$.
Proof. (3.9) and (3.10) can be obtained following [Al-DC, Proposition 3.1]. In [Al-DC] the key point is the piecewise regularity of the transmission problem. For a proof of that we refer to [DB-El-Fr] and [Li-Vo].

We shall state now two propositions that describe the behavior of $f(y)$ and $S_{1}(y)$ when we move the singularity $y$ toward the boundary of the inclusion. We postpone their proofs in the last Section 5.

Proposition 3.3. Let $D_{1}, D_{2}$ two obstacles verifying (2.2) and let $y=h \nu(O)$, with $O$ defined in (3.6). If, given $\varepsilon>0$ we have

$$
\begin{aligned}
\sup _{x \in \partial B}\left(\left\|\frac{\partial \mathbb{G}_{1}(\cdot, x)}{\partial \nu}-\frac{\partial \mathbb{G}_{2}(\cdot, x)}{\partial \nu}\right\|_{L^{2}(\partial \Omega)}+\right. & \\
& \left.\left\|\mathbb{G}_{1}(\cdot, x)-\mathbb{G}_{2}(\cdot, x)\right\|_{L^{2}(\partial \Omega)}\right) \leq \varepsilon
\end{aligned}
$$

then for every $h, 0<h<\bar{c} r_{0}$, with $\bar{c} \in(0,1)$ depending on $L$,

$$
|f(y, y)| \leq c \frac{\varepsilon^{B h^{F}}}{h^{A}}
$$

where $0<A<1$ and $c, B, F>0$ are constants that depend only on the a priori data.

Proposition 3.4. Let $D_{1}, D_{2}$ two obstacles verifying (2.2) and let $y=h \nu(O)$, with $O$ defined in (3.6). Then for every $h, 0<h<\min \left\{\bar{r}_{2}, d_{\mu}\right\}$

$$
\begin{equation*}
\left|S_{1}(y, y)\right| \geq c_{1} h^{-2}-c_{2}\left(d_{\mu}-h\right)^{-2}+c_{3} \tag{3.11}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}$ and $\bar{r}_{2}$ are positive constants only depending on the a priori data.
Proof of Theorem 2.2. Let $O \in \partial D_{1}$ as defined (3.6), that is

$$
d_{\mu}\left(D_{1}, D_{2}\right)=\operatorname{dist}\left(O, D_{2}\right)=d_{\mu}
$$

Then, for $y=h \nu(O)$, with $0<h<h_{1}$, where $h_{1}=\min \left\{d_{\mu}, \bar{c} r_{0}, \bar{r}_{2} / 2\right\}$, using (3.9), we have

$$
\begin{equation*}
\left|S_{2}(y, y)\right| \leq c \int_{D_{2}} \frac{1}{\left(d_{\mu}-h\right)} \frac{1}{\left(d_{\mu}-h\right)} d x=c \frac{1}{\left(d_{\mu}-h\right)^{2}}\left|D_{2}\right| \tag{3.12}
\end{equation*}
$$

Using Proposition 3.3, we have

$$
\left|S_{1}(y, y)\right|-\left|S_{2}(y, y)\right| \leq\left|S_{1}(y, y)-S_{2}(y, y)\right|=|f(y, y)| \leq c \frac{\varepsilon^{B h^{F}}}{h^{A}}
$$

On the other hand, by Proposition 3.4 and (3.12), there exists $h_{0}>0$, only depending on the a priori data, such that for $h, 0<h<h_{0}$

$$
\left|S_{1}(y, y)\right|-\left|S_{2}(y, y)\right| \geq c_{1} h^{-2}-c_{4}\left(d_{\mu}-h\right)^{-2}
$$

Thus we have

$$
c_{1} h^{-2}-c_{4}\left(d_{\mu}-h\right)^{-2} \leq \frac{\varepsilon^{B h^{F}}}{h^{A}}
$$

Let $h=h(\varepsilon)$ where $h(\varepsilon)=\min \left\{|\ln \varepsilon|^{-\frac{1}{2 F}}, d_{\mu}\right\}$, for $0<\varepsilon \leq \varepsilon_{1}$, with $\varepsilon_{1} \in(0,1)$ such that $\exp \left(-B\left|\ln \varepsilon_{1}\right|^{1 / 2}\right)=1 / 2$. If $d_{\mu} \leq|\ln \varepsilon|^{-\frac{1}{2 F}}$ the theorem follows using Proposition 3.1. In the other case we have

$$
c_{4}\left(d_{\mu}-h\right)^{-2} \geq c_{3} h^{-2}-\frac{\varepsilon^{B h^{F}}}{h^{A}} \geq c_{5} h^{-2}\left(1-\varepsilon^{B h^{F}} h^{\widetilde{A}}\right)
$$

where $\widetilde{A}=2-A, \widetilde{A}>0$. Since

$$
\varepsilon^{B h(\varepsilon)^{F}} h(\varepsilon)^{\widetilde{A}} \leq \varepsilon^{B|\ln \varepsilon|^{-1 / 2}} \leq \exp \left(-B|\ln \varepsilon|^{1 / 2}\right)
$$

for any $\varepsilon, 0<\varepsilon<\varepsilon_{1}$,

$$
\left(d_{\mu}-h(\varepsilon)\right)^{-2} \geq c_{6} h(\varepsilon)^{-2}
$$

that is, solving for $d_{\mu}$, and recalling that, in this case, $h(\varepsilon)=|\ln \varepsilon|^{-\frac{1}{2 F}}$

$$
d_{\mu} \leq c_{7}|\ln \varepsilon|^{-\frac{\delta}{2}}
$$

where $\delta=1 /(2 F)$. When $\varepsilon \geq \varepsilon_{1}$, then

$$
d_{\mu} \leq \operatorname{diam} \Omega
$$

and, in particular when $\varepsilon_{1} \leq \varepsilon<1$

$$
d_{\mu} \leq \operatorname{diam} \Omega \frac{|\ln \varepsilon|^{-\frac{1}{2 F}}}{\left|\ln \varepsilon_{1}\right|^{-\frac{1}{2 F}}}
$$

Finally, using Proposition 3.1, the theorem follows.

## 4 Remarks on Singular Solutions

Proposition 4.1. Let $D \subset \mathbb{R}^{3}$ be an open set with $C^{1, \alpha}$ boundary with constants $r_{0}$, $L$, let $P$ be a point in $\partial D$ and let us denote with $\nu(P)$ the outer normal vector to $D$ in $P$. There exist positive constants $c_{3}, c_{4}$ depending on $a, k, \alpha$ and $L$ such that

$$
\begin{align*}
& \left|\mathbb{G}(x, y)-\mathbb{G}_{+}(x, y)\right| \leq \frac{c_{3}}{r_{0}^{\alpha}}|x-y|^{-1+\alpha}  \tag{4.13}\\
& \left|\nabla_{x} \mathbb{G}(x, y)-\nabla_{x} \mathbb{G}_{+}(x, y)\right| \leq \frac{c_{4}}{r_{0}^{\alpha^{2}}}|x-y|^{-2+\alpha^{2}} \tag{4.14}
\end{align*}
$$

for every $x \in D \cap B_{r}(P)$ and $y=h \nu(P)$, with $0<r<\left(\min \left\{\frac{1}{2}(8 L)^{-1 / \alpha}, \frac{1}{2}\right\}\right) r_{0}=$ $\bar{r}_{0}, 0<h<\left(\min \left\{\frac{1}{2}(8 L)^{-1 / \alpha}, \frac{1}{2}\right\}\right) \frac{r_{0}}{2}$.
Proof. Let us fix $r_{1}=\min \left\{\frac{1}{2}(8 L)^{-1 / \alpha} r_{0}, \frac{r_{0}}{2}\right\}$. In the ball $B_{r_{0}}(P)$ the boundary of $D$ can be represented as the graph of a $C^{1, \alpha}$ function $\varphi$. Let us introduce now the following change of variable that transform in $B_{r_{0}}(P) \partial D$ in the $x^{\prime}$-axis. For every $r>0$, let $Q_{r}(P)$ be the cube centered at $P$, with sides of length $2 r$ and parallel to the coordinates axes. We have that the ball $B_{r}(P)$ is inscribed into $Q_{r}(P)$. We define

$$
\begin{aligned}
\Psi: Q_{2 r_{1}}(P) & \rightarrow Q_{2 r_{1}}(P) \\
\binom{x^{\prime}}{x_{n}} & \rightarrow\binom{\xi^{\prime}=x^{\prime}}{\xi_{n}=x_{n}-\varphi\left(x^{\prime}\right) \theta\left(\frac{\left|x^{\prime}\right|}{r_{1}}\right) \theta\left(\frac{x_{n}}{r_{1}}\right)},
\end{aligned}
$$

where $\theta \in C^{\infty}(\mathbb{R})$ be such that $0 \leq \theta \leq 1, \theta(t)=1$, for $|t|<1, \theta(t)=0$, for $|t|>2$ and $\left|\frac{d \theta}{d t}\right| \leq 2$. Since the $C^{1, \alpha}$ regularity of $\varphi$, it is possible to verify that the following inequalities hold:

$$
\begin{align*}
c^{-1}\left|x_{1}-x_{2}\right| \leq & \left|\Psi\left(x_{1}\right)-\Psi\left(x_{2}\right)\right| \leq c\left|x_{1}-x_{2}\right|,  \tag{4.15a}\\
& |\Psi(x)-x| \leq \frac{c}{r_{0}^{\alpha}}|x|^{1+\alpha} \quad \forall x \in \mathbb{R}^{3},  \tag{4.15b}\\
& |D \Psi(x)-I| \leq \frac{c}{r_{0}^{\alpha}}|x|^{\alpha} \quad \forall x \in \mathbb{R}^{3} \tag{4.15c}
\end{align*}
$$

where $c \geq 1$ depends on $L$ and $\alpha$ only. $\Psi$ is a $C^{1, \alpha}$ diffeomorphism from $\mathbb{R}^{3}$ into itself. Let us define the cylinder $C_{r_{1}}$ as $C_{r_{1}}=\left\{x \in \mathbb{R}^{3}:\left|x^{\prime}\right|<r_{1},\left|x_{n}\right|<r_{1}\right\}$. For $x, y \in C_{r_{1}}$, we shall denote

$$
\begin{equation*}
\widetilde{\mathbb{G}}(x, y)=\mathbb{G}\left(\Psi^{-1}(x), \Psi^{-1}(y)\right) . \tag{4.16}
\end{equation*}
$$

$\widetilde{\mathbb{G}}(x, y)$ is solution of

$$
\begin{align*}
& \operatorname{div}\left(\left(1+(a-1) \chi^{+}\right) B \nabla \widetilde{\mathbb{G}}(x, y)\right)  \tag{4.17}\\
&+k^{2} \zeta\left(1-(b-1) \chi_{+}(x)\right) B \widetilde{\mathbb{G}}(x, y)=-\delta(x-y)
\end{align*}
$$

where $B=\frac{J J^{T}}{\operatorname{det} J}$, with $J=\frac{\partial \xi}{\partial x}\left(\Psi^{-1}(\xi)\right)$, is of class $C^{\alpha}, B(0)=I$ and $\zeta=\operatorname{det} J$. Since $\mathbb{G}_{+}$is solution to

$$
\begin{align*}
& \operatorname{div}\left(\left(1+(a-1) \chi^{+}\right) \mathbb{G}_{+}(x, y)\right)+  \tag{4.18}\\
& k^{2}\left(1-(b-1) \chi_{+}(x)\right) \mathbb{G}_{+}(x, y)=-\delta(x, y)
\end{align*}
$$

subtracting (4.18) to (4.17) we obtain that $\widetilde{R}(x, y)=\widetilde{\mathbb{G}}(x, y)-\mathbb{G}_{+}(x, y)$ is solution to

$$
\begin{aligned}
& \text { (4.19) } \quad \begin{aligned}
& \operatorname{div}\left(\left(1+(a-1) \chi^{+}\right) \tilde{R}(x, y)\right) \\
&+k^{2}\left(1+(b-1) \chi_{+}\right) \tilde{R}(x, y) \\
&=\operatorname{div}\left(\left(1+(a-1) \chi^{+}\right)[ \right.B(x)-I] \nabla \widetilde{\mathbb{G}}(x, y)) \\
&+k^{2}(1-\zeta)\left(1+(b-1) \chi_{+}\right) \widetilde{\mathbb{G}}(x, y)
\end{aligned}
\end{aligned}
$$

Let $\tilde{L}$, depending on the a priori data, be such that $\bar{\Omega} \subset B_{\tilde{L}}(0)$, then using the fundamental solution $\mathbb{G}_{+}$we get

$$
\begin{aligned}
& -\tilde{R}(x, y)=\int_{B_{\tilde{L}}(0)}\left(1+(a-1) \chi^{+}\right)[B(z)-I] \nabla_{x} \tilde{\mathbb{G}}(z, y) \cdot \nabla_{x} \mathbb{G}_{+}(z, x) d z \\
& \quad+\int_{\partial B_{\tilde{L}}(0)}[B(z)-I]\left[\tilde{R}(x, z) \frac{\partial \mathbb{G}_{+}}{\partial \nu}(z, y)+\mathbb{G}_{+}(z, y) \frac{\partial \tilde{R}}{\partial \nu}(x, z)\right] d \sigma(z) \\
& \quad+k^{2}(1-\zeta) \int_{B_{\tilde{L}}(0)}\left(1+(b-1) \chi_{+}\right) \tilde{\mathbb{G}}(z, x) \mathbb{G}_{+}(z, y) d z+ \\
& k^{2}(1-\zeta) \int_{\partial B_{\tilde{L}}(0)}\left(1+(a-1) \chi_{+}\right)\left[\tilde{R}(x, z) \frac{\partial \mathbb{G}_{+}}{\partial \nu}(z, y)+\mathbb{G}_{+}(z, y) \frac{\partial \tilde{R}}{\partial \nu}(x, z)\right] d \sigma(z)
\end{aligned}
$$

Integrals over $\partial B_{\tilde{L}}(0)$ are bounded by a constant. Let us split

$$
B_{\tilde{L}}(0)=\left(B_{\tilde{L}}(0) \backslash C_{r_{1}}\right) \cup\left(B_{\tilde{L}}(0) \cap C_{r_{1}}\right)
$$

For $|x|,|y| \leq r_{1} / 2$, in $B_{\tilde{L}}(0) \backslash C_{r_{1}}$ we are away from the singularity thus the integrals over $B_{\tilde{L}}(0) \backslash C_{r_{1}}$ are bounded. Let us evaluate integrals over $B_{\tilde{L}}(0) \cap C_{r_{1}}$. We have

$$
\begin{aligned}
&\left|\int_{B_{\tilde{L}}(0) \cap C_{r_{1}}}\left(1+(a-1) \chi^{+}\right)[B(z)-I] \nabla_{x} \tilde{\mathbb{G}}(z, y) \cdot \nabla_{x} \mathbb{G}_{+}(z, x) d z\right| \\
& \leq c \int_{B_{\tilde{L}}(0) \cap C_{r_{1}}}|z|^{\alpha}|z-y|^{-2}|z-x|^{-2} d z=I
\end{aligned}
$$

where $c$ depends on $L, \alpha, a$ and $n$. We can split $I=I_{1}+I_{2}$ where

$$
\begin{aligned}
& I_{1}=\int_{\{|z|<4 h\} \cap C_{r_{1}}}|z|^{\alpha}|x-z|^{-2}|y-z|^{-2} d z \\
& I_{2}=\int_{\{|z|>4 h\} \cap C_{r_{1}}}|z|^{\alpha}|x-z|^{-2}|y-z|^{-2} d z
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{1} & \leq \int_{|w|<4} h^{\alpha}|w|^{\alpha} h^{-2}\left|\frac{x}{h}-w\right|^{-2} h^{-2}\left|\frac{y}{h}-w\right|^{-2} h^{3} d w \\
& =h^{\alpha-1} \int_{|w|<4}|w|^{\alpha}\left|\frac{x}{h}-w\right|^{-2}\left|\frac{y}{h}-w\right|^{-2} d w \\
& \leq h^{\alpha-1} F(\xi, \eta)
\end{aligned}
$$

where $h=|x-y|$ and

$$
F(\xi, \eta)=4^{\alpha} \int_{|w|<4}|\xi-w|^{-2}|\eta-w|^{-2} d w
$$

and $\xi=x / h$ and $\eta=y / h$. From standard bounds (see, for instance, [Mi, Ch. 2, § 11]), it is not difficult to see that

$$
F(\xi, \eta) \leq \text { const. }<\infty
$$

for all $\xi, \eta \in \mathbb{R}^{3},|\xi-\eta|=1$. Thus

$$
I_{1} \leq c|x-y|^{\alpha-1}
$$

Let us consider now $I_{2}$. Since $|y|=-y_{n} \leq|x-y|=h$, we can deduce $|z| \leq$ $\frac{4}{3}|y-z|$ and $|z| \leq 2|x-z|$ and thus obtain that

$$
I_{2} \leq c \int_{|z|>4 h}|z|^{\alpha+1-n+1-n} d z \leq c h^{\alpha-1} .
$$

Then we conclude

$$
\begin{equation*}
|\widetilde{R}(x, y)| \leq c|x-y|^{-1+\alpha} \tag{4.20}
\end{equation*}
$$

for every $|x|,|y| \leq r_{1} / 2$, where $c$ depends on $L, \alpha, k$ and $a$ only.
We observe that if $x \in \Psi^{-1}\left(B_{r_{1} / 2}^{+}(0)\right)$ and $y=e_{3} y_{3}$, with $y_{3} \in\left(-r_{1} / 2,0\right)$ then

$$
\begin{equation*}
c^{-1}|x| \leq|\Psi(x)| \leq|\Psi(x)-y| \leq c|x-y| . \tag{4.21}
\end{equation*}
$$

From (4.20) and (4.21) we can conclude

$$
\begin{equation*}
|\widetilde{R}(x, y)| \leq c|x-y|^{-1+\alpha} \tag{4.22}
\end{equation*}
$$

Now, since

$$
\begin{aligned}
& \mathbb{G}(x, y)-\mathbb{G}_{+}(x, y) \\
= & \mathbb{G}(x, y)-\mathbb{G}_{+}(x, y)+\mathbb{G}_{+}(\Psi(x), \Psi(y))-\mathbb{G}_{+}(\Psi(x), \Psi(y)) \\
= & \widetilde{R}(\Psi(x), \Psi(y))+\mathbb{G}_{+}(\Psi(x), y)-\mathbb{G}_{+}(x, y),
\end{aligned}
$$

using Theorem 4.1 of [ $\mathrm{Li}-\mathrm{Vo}$ ], the properties of $\Psi$ and (4.22) we obtain

$$
\begin{aligned}
& \left|\mathbb{G}(x, y)-\mathbb{G}_{+}(x, y)\right| \\
\leq & \frac{c}{r_{0}^{\alpha}}|x-y|^{\alpha-1}+\frac{c}{r_{0}^{\alpha}}\left\|\nabla \mathbb{G}_{+}(\cdot, y)\right\|_{L^{\infty}\left(Q_{r_{1}}\right)}|x-\Psi(x)| \\
\leq & \frac{c}{r_{0}^{\alpha}}|x-y|^{\alpha-1}+\frac{c^{\prime}}{r_{0}^{\alpha}}|x-y|^{1+\alpha} h^{-2} \\
\leq & \frac{c^{\prime \prime}}{r_{0}^{\alpha}}|x-y|^{\alpha-1},
\end{aligned}
$$

where $c^{\prime \prime}$ depends on $k, \alpha$ and $L$ only.
We estimate now the first derivative of $R$. To estimate the first derivative of $\widetilde{R}$ let us consider a cube $Q \subset B_{r_{1} / 4}^{+}(x)$ of side $c r_{1} / 4$, with $0<c<1$, such that $x \in \partial Q$. The following interpolation inequality holds:

$$
\|\nabla \widetilde{R}(\cdot, y)\|_{L^{\infty}(Q)} \leq c\|\widetilde{R}(\cdot, y)\|_{L^{\infty}(Q)}^{1-\delta}|\nabla \widetilde{R}(\cdot, y)|_{\alpha, Q}^{\delta},
$$

where $\delta=\frac{1}{1+\alpha}, c$ depends on $L$ only and

$$
|\nabla \widetilde{R}|_{\alpha, Q}=\sup _{x, x^{\prime} \in Q, x \neq x^{\prime}} \frac{\left|\nabla \widetilde{R}(x, y)-\nabla \widetilde{R}\left(x^{\prime}, y\right)\right|}{\left|x-x^{\prime}\right|^{\alpha}}
$$

Since, from the piecewise Hölder continuity of $\nabla \mathbb{G}$ and of $\nabla \mathbb{G}_{+}$, we have that

$$
|\nabla \widetilde{R}(x, y)|_{\alpha, Q} \leq|\nabla \widetilde{\mathbb{G}}(x, y)|_{\alpha, Q}+\left|\nabla \mathbb{G}_{+}(x, y)\right|_{\alpha, Q} \leq c h^{-\alpha-2}
$$

where $c$ depends on $L$ only, thus we conclude

$$
\left|\nabla_{x} \widetilde{R}(x, y)\right| \leq \frac{c}{r_{0}^{\eta}} h^{(\alpha-1)(1-\delta)} h^{(-\alpha-2) \delta}=\frac{c}{r_{0}^{\eta}} h^{-2+\eta},
$$

where $\eta=\frac{\alpha^{2}}{1+\alpha}$. Thus

$$
\begin{equation*}
\left|\nabla_{x} \widetilde{R}(x, y)\right| \leq \frac{c}{r_{0}^{\eta}}|x-y|^{\eta-2} \tag{4.23}
\end{equation*}
$$

where $\eta=\frac{\alpha^{2}}{1+\alpha}$ and $c$ depends on $L$ only. Concerning $\mathbb{G}_{+}$we have

$$
\begin{aligned}
& \left|\nabla_{x} \mathbb{G}_{+}(\Psi(x), y)-\nabla_{x} \mathbb{G}_{+}(x, y)\right| \\
= & \left|D \Psi(x)^{T} \nabla \mathbb{G}_{+}(\cdot, y)_{\mid \Psi(x)}-\nabla_{x} \mathbb{G}_{+}(x, y)\right| \\
\leq & \left|\left(D \Psi(x)^{T}-I\right) \nabla \mathbb{G}_{+}(\cdot, y)_{\mid \Psi(x)}\right|+\left|\nabla \mathbb{G}_{+}(\cdot, y)_{\mid \Psi(x)}-\nabla_{x} \mathbb{G}_{+}(x, y)\right| \\
\leq & \frac{c}{r_{0}^{\alpha}}\left\|\nabla \mathbb{G}_{+}(\cdot, y)\right\|_{L^{\infty}\left(Q_{r_{1}}\right)}|x-\Psi(x)|+\left|\nabla \mathbb{G}_{+}(\cdot, y)\right|_{\alpha, Q}|\Psi(x)-x|^{\alpha} \\
\leq & \frac{c^{\prime}}{r_{0}^{\alpha}} h^{1+\alpha} h^{-2}+\frac{c}{r_{0}^{\alpha^{2}}} h^{-\alpha-2} h^{(1+\alpha) \alpha} \\
\leq & \frac{c}{r_{0}^{\alpha^{2}}} h^{-2+\alpha^{2}},
\end{aligned}
$$

where $c$ depends on $k, \alpha$ and $L$ only.
Let us denote by $\mathbb{G}_{+}^{0}$ the Green's function of the operator $\operatorname{div}((1+(a-$ 1) $\left.\chi_{+}\right) \nabla$ ).

Proposition 4.2. Let $\mathbb{G}_{+}$and $\mathbb{G}_{+}^{0}$ as above, then there exist positive constants $c_{5}, c_{6}$ depending on the a priori data such that for every $x, y \in \mathbb{R}^{3}$ we have

$$
\begin{gather*}
\left|\mathbb{G}_{+}(x, y)-\mathbb{G}_{+}^{0}(x, y)\right| \leq c_{5}|x-y|  \tag{4.24}\\
\left|\nabla_{x} \mathbb{G}_{+}(x, y)-\nabla_{x} \mathbb{G}_{+}^{0}(x, y)\right| \leq c_{6}|x-y|^{-1} \tag{4.25}
\end{gather*}
$$

Proof. Defining $R(x, y)=\mathbb{G}_{+}(x, y)-\mathbb{G}_{+}^{0}(x, y)$, we have that

$$
\begin{equation*}
\operatorname{div}\left(\left(1+(b-1) \chi_{+}\right) \nabla R(x, y)\right)=-k^{2}\left(1+\left((b-1) \chi_{+}\right) \mathbb{G}_{+}(x, y)\right. \tag{4.26}
\end{equation*}
$$

Thus

$$
-R(x, y)=k^{2} \int_{\Omega}\left(1+(b-1) \chi_{+}\right) \mathbb{G}_{+}(z, y) \mathbb{G}_{+}^{0}(x, z) d z
$$

Hence for [Li-St-We] we have

$$
|R(x, y)| \leq C \int_{\Omega}|x-z|^{-1}|y-z|^{-1} d z
$$

Let decompose $\Omega=B_{\frac{|x-y|}{3}}(x) \cup B_{\frac{|x-y|}{3}}(y) \cup \mathcal{G}$.
For $z \in B_{\frac{|x-y|}{3}}(x)$ we have that

$$
\begin{aligned}
|y-z| & \geq|y|-|z| \geq|y|-|z-y|-|x| \\
& \geq|x-y|-\frac{|x-y|}{3}=\frac{2}{3}|x-y| .
\end{aligned}
$$

Thus

$$
\int_{B_{\frac{|x-y|}{3}}(x)}|x-z|^{-1}|y-z|^{-1} d z \leq \frac{2}{3}|x-y|^{-1} \int_{0}^{\frac{|x-y|}{3}} \rho d \rho \leq c|x-y|^{2}
$$

Similarly it can be evaluated the integral over $B_{\frac{|x-y|}{3}}(y)$.
Let us consider now the integral over $\mathcal{G}$. For $z \in \mathcal{G}$ we have that $|z-y| \geq \frac{|x-z|}{3}$, then we obtain

$$
\begin{aligned}
& \int_{\mathcal{G}}|x-z|^{-1}|y-z|^{-1} d z \leq c \int_{\mathcal{G}}|x-z|^{-1}|x-z|^{-1} d z \\
\leq & c \int_{\Omega \backslash B_{|x-y|}^{3}(x)}|x-z|^{-1}|x-z|^{-1} d z \\
\leq & c \int_{\frac{|x-y|}{3}}^{2 \tilde{L}} \rho d \rho \leq c_{1}|x-y|^{-2}+c_{2} .
\end{aligned}
$$

Let us prove now (4.25). We use the interpolation inequality

$$
\|\nabla R(\cdot)\|_{L^{\infty}(Q)} \leq\|R(\cdot)\|_{L^{\infty}(Q)}^{1-\delta}|\nabla R(\cdot, y)|_{\alpha, Q}^{\delta}
$$

As in Proposition 4.1, since

$$
|\nabla R(\cdot, y)|_{\alpha, Q} \leq h^{-\alpha-2}
$$

we obtain

$$
|\nabla R(x, y)| \leq c h^{-2+\eta} \leq c h^{-1}
$$

## 5 Proof of Proposition 3.3 and 3.4

Proof of Proposition 3.3. Let us consider $f(y, \bar{w})$, where $\bar{w}$ is a fixed point in $\overline{\mathcal{C} B}$. Since $f$, as a function of $y$, is a radiating solution of

$$
\mathcal{L}_{y} f=\Delta_{y} f+k^{2} f=0 \quad \text { in } \mathcal{C} \Omega_{D}
$$

then by [Co-Kr, Theorem 2.14], for $y \in \overline{\mathcal{C} B}$ we have

$$
f(y, \bar{w})=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} a_{n}^{m} h_{n}^{(1)}(k|y|) Y_{n}^{m}(\hat{y})
$$

where $\hat{y}=y /|y|, Y_{n}^{m}$ is a spherical harmonic of order $n$ and $h_{n}^{(1)}$ is a spherical Hankel function of the first kind of order $n$. Let us consider $y$ such that $R<$ $R_{1}<|y|<R_{2}$. For an integer $N$, using Schwarz inequality and the asymptotic behavior of Hankel function (see [Co-Kr, (2.38) pg. 28]) we have

$$
\begin{aligned}
& {\left[\sum_{n=0}^{N} \sum_{m=-n}^{n} a_{n}^{m} h_{n}^{(1)}(k|y|) Y_{n}^{m}(\hat{y})\right]^{2} } \\
\leq & \sum_{n=0}^{N}\left|\frac{h_{n}^{(1)}(k|y|)}{h_{n}^{(1)}(k R)}\right|^{2} \sum_{n=0}^{N} \sum_{m=-n}^{n}\left|a_{n}^{m}\right|^{2}\left|h_{n}^{(1)}(k R)\right|^{2}\left|Y_{n}^{m}(\hat{y})\right|^{2} . \\
\leq & c \sum_{n=0}^{N} \sum_{m=-n}^{n}\left|a_{n}^{m}\right|^{2}\left|h_{n}^{(1)}(k R)\right|^{2}\left|Y_{n}^{m}(\hat{y})\right|^{2},
\end{aligned}
$$

for some constant $c$ depending on $R, R_{1}$ and $R_{2}$. Thus, taking the limit as $N \rightarrow+\infty$, we can conclude that

$$
|f(y, \bar{w})|^{2} \leq c\left|f(\cdot, \bar{w})_{\mid \partial B}\right|^{2}, \quad \forall y \in B_{R_{2}} \backslash \bar{B}_{R_{1}}
$$

where $c$ depends on $R, R_{1}$ and $R_{2}$. Analogous considerations can be carried on fixing $y$ and varying $w$. Thus, we can conclude that for all $(y, w) \in$ $\left[B_{R_{2}} \backslash \bar{B}_{R_{1}}\right]^{2}$

$$
|f(y, w)| \leq\left|f_{\mid \partial B \times \partial B}\right| \leq c \varepsilon .
$$

For $y \in \mathcal{G}^{h}$, where $\mathcal{G}^{h}=\left\{x \in \mathcal{G}: \operatorname{dist}\left(x, \Omega_{D}\right) \geq h\right\}$,

$$
\left|S_{1}(y, \bar{w})\right| \leq c \int_{D_{1}}|x-y|^{-2} \leq c h^{-2}
$$

where $c=c(L, R)$. Similarly $\left|S_{2}(y, \bar{w})\right| \leq c h^{-2}$. Then we conclude that

$$
\begin{equation*}
|f(y, \bar{w})| \leq c h^{-2} \quad \text { in } \mathcal{G}^{h} . \tag{5.27}
\end{equation*}
$$

At this stage we shall make use iteratively of the three spheres inequality (see [La, Ku]). Let $u$ be a solution of $\mathcal{L} u=0$ in $\mathcal{G}$, let $x \in \mathcal{G}$. There exist $r_{1}, r$, $r_{2}, 0<r_{1}<r<r_{2}<R$ and $\tau \in(0,1)$ such that

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(B_{r}(x)\right)} \leq c\|u\|_{L^{\infty}\left(B_{r_{1}}(x)\right)}^{\tau}\|u\|_{L^{\infty}\left(B_{r_{2}}(x)\right)}^{1-\tau} \tag{5.28}
\end{equation*}
$$

where $c$ and $\tau$ depend on $R, r / r_{2}, r_{1} / r_{2}$ and $L$. Applying (5.28) to $u(\cdot)=f(\cdot, \bar{w})$, with $x=\bar{x} \in B_{4 R} \backslash \bar{B}_{3 R}, r_{1}=r_{0} / 2, r=3 r_{0} / 2$ and $r_{2}=2 r_{0}$ we obtain

$$
\|f\|_{L^{\infty}\left(B_{3 r_{0} / 2}(\bar{x})\right)} \leq c\|f\|_{L^{\infty}\left(B_{r_{0} / 2}(\bar{x})\right)}^{\tau}\|f\|_{L^{\infty}\left(B_{2 r_{0}}(\bar{x})\right)}^{1-\tau},
$$

For every $\bar{y} \in \mathcal{G}^{h}$, we denote by $\gamma$ a simple arc in $\mathcal{G}$ joining $\bar{x}$ to $\bar{y}$. Let us define $\left\{x_{i}\right\}, i=1, \ldots, s$ as follows $x_{1}=\bar{x}, x_{i+1}=\gamma\left(t_{i}\right)$, where $t_{i}=\max \left\{t:\left|\gamma(t)-x_{i}\right|=\right.$ $\left.r_{0}\right\}$ if $\left|x_{i}-\bar{y}\right|>r_{0}$, otherwise let $i=s$ and stop the process. By construction, the balls $B_{r_{0} / 2}\left(x_{i}\right)$ are pairwise disjoint, $\left|x_{i+1}-x_{i}\right|=r_{0}$ for $i=1, \ldots, s-1$, $\left|x_{s}-\bar{y}\right| \leq r_{0}$. There exists $\beta$ such that $s \leq \beta$. An iterated application of the three spheres inequality (5.28) for $f$ (see for instance [Al-Be-Ro-Ve, pg. 780], [Al-DB, Appendix E]) gives that for any $r, 0<r<r_{0}$

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(B_{r / 2}(\bar{y})\right)} \leq c\|f\|_{L^{\infty}\left(B_{r / 2}(\bar{x})\right)}^{\tau^{s}}\|f\|_{L^{\infty}(\mathcal{G})}^{1-\tau^{s}} . \tag{5.29}
\end{equation*}
$$

We can estimate the right hand side of (5.29) by (5.27) and obtain for any $r$, $0<r<r_{0}$

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(B_{r / 2}(\bar{y})\right)} \leq c\left(h^{-2}\right)^{1-\tau^{s}} \varepsilon^{\tau^{s}} \leq c h^{-A} \varepsilon^{\tilde{\beta}} \tag{5.30}
\end{equation*}
$$

where $\tilde{\beta}=\tau^{\beta}$ and $A=2(1-\tilde{\beta})$. Let $O \in \partial D_{1}$ as defined in (3.6), that is

$$
d\left(O, D_{2}\right)=d_{\mu}\left(D_{1}, D_{2}\right)
$$

There exists a $C^{1, \alpha}$ neighborhood $U$ of $O$ in $\partial \Omega_{D}$ with constants $r_{0}$ and $L$. Thus there exists a non-tangential vector field $\widetilde{\nu}$, defined on $U$ such that the truncated cone

$$
\begin{equation*}
C\left(O, \widetilde{\nu}(O), \theta, r_{0}\right)=\left\{x \in \mathbb{R}^{3}: \frac{(x-O) \cdot \widetilde{\nu}(O)}{|x-O|}>\cos \theta,|x-O|<r_{0}\right\} \tag{5.31}
\end{equation*}
$$

satisfies

$$
C\left(O, \widetilde{\nu}(O), \theta, r_{0}\right) \subset \mathcal{G}
$$

where $\theta=\arctan (1 / \bar{L})$. Let us define

$$
\begin{array}{lr}
\lambda_{1}=\min \left\{\frac{r_{0}}{1+\sin \theta}, \frac{r_{0}}{3 \sin \theta}\right\}, & \theta_{1}=\arcsin \left(\frac{\sin \theta}{4}\right), \\
G_{1}=O+\lambda_{1} \nu, & \rho_{1}=\lambda_{1} \sin \theta_{1} .
\end{array}
$$

We have that $B_{\rho_{1}}\left(G_{1}\right) \subset C\left(O, \widetilde{\nu}(O), \theta_{1}, r_{0}\right), B_{4 \rho_{1}}\left(G_{1}\right) \subset C\left(O, \widetilde{\nu}(O), \theta, r_{0}\right)$. Let $\bar{G}=G_{1}$, since $\rho_{1} \leq r_{0} / 2$, we can use (5.30) in the ball $B_{\rho_{1}}(\bar{G})$ and we can approach $O \in \partial D_{1}$ by constructing a sequence of balls contained in the cone $C\left(O, \widetilde{\nu}(O), \theta_{1}, r_{0}\right)$. We define, for $k \geq 2$

$$
G_{k}=O+\lambda_{k} \nu, \quad \lambda_{k}=\chi \lambda_{k-1}, \quad \rho_{k}=\chi \rho_{k-1}, \quad \text { with } \chi=\frac{1-\sin \theta_{1}}{1+\sin \theta_{1}}
$$

Hence $\rho_{k}=\chi^{k-1} \rho_{1}, \lambda_{k}=\chi^{k-1} \lambda_{1}$ and

$$
B_{\rho_{k+1}}\left(G_{k+1}\right) \subset B_{\rho_{3 k}}\left(G_{k}\right) \subset B_{\rho_{4 k}}\left(G_{k}\right) \subset C\left(O, \nu, \theta, r_{0}\right)
$$

Denoting $d(k)=\left|G_{k}-O\right|-\rho_{k}=\lambda_{k}-\rho_{k}$, we have $d(k)=\chi^{k-1} d(1)$, with $d(1)=\lambda_{1}(1-\sin \theta)$. For any $r, 0<r \leq d(1)$, let $k(r)$ be the smallest integer such that $d(k) \leq r$, that is

$$
\frac{\left|\log \frac{r}{d(1)}\right|}{|\log \chi|} \leq k(r)-1 \leq \frac{\left|\log \frac{r}{d(1)}\right|}{|\log \chi|}+1 .
$$

By an iterated application of the three spheres inequality over the chain of balls $B_{\rho_{1}}\left(G_{1}\right), \ldots, B_{\rho_{k(r)}}\left(G_{k(r)}\right)$, we have

$$
\begin{equation*}
\|f(\cdot, \bar{w})\|_{L^{\infty}\left(B_{\rho_{k(r)}}\left(G_{k(r)}\right)\right)} \leq c h^{-A\left(1-\tau^{k(r)-1}\right)} \varepsilon^{\tilde{\beta} \tau^{k(r)-1}} \leq c h^{-A} \varepsilon^{\tilde{\beta} \tau^{k(r)-1}} \tag{5.32}
\end{equation*}
$$

for $0<r<c r_{0}$, where $c, 0<c<1$, depends on $L$. Let us consider now $f(y, w)$ as a function of $w$. First we observe that

$$
\mathcal{L}_{w} f=0 \quad \text { in } \mathcal{C} \Omega_{D}, \quad \text { for all } y \in \mathcal{C} \Omega_{D}
$$

For $y, w \in \mathcal{G}^{h}, y \neq w$, using (3.9)

$$
\left|S_{1}(y, w)\right| \leq c \int_{D_{1}}|x-y|^{-2}|x-w|^{-2} d x \leq c h^{-4}
$$

Similarly for $S_{2}$. Therefore

$$
|f(y, w)| \leq c h^{-4} \quad \text { with } y, w \in \mathcal{G}^{h}
$$

For $w \in B_{4 R} \backslash B_{3 R}$ and $y \in \mathcal{G}^{h}$, using (5.32), we have

$$
|f(y, w)| \leq c h^{-A} \varepsilon^{\tilde{\beta} \tau^{k(r)-1}} .
$$

Proceeding as before, let us fix $y \in \mathcal{G}$ such that $\operatorname{dist}\left(y, \Omega_{D}\right)=h$ and $\tilde{w} \in$ $B_{4 R} \backslash B_{3 R}$ such that $\operatorname{dist}\left(\tilde{w}, \partial B_{R}\right)=R / 2$. Taking $r=R / 2, r_{1}=3 r, r_{2}=4 r$, $w_{1}=O+\lambda_{1} \nu$ and using iteratively the three spheres inequality, we have

$$
\|f(y, w)\|_{L^{\infty}\left(B_{R / 2}\left(w_{1}\right)\right.} \leq\|f(y, w)\|_{L^{\infty}\left(B_{R / 2}(\tilde{w})\right.}^{\tau^{s}}\|f(y, w)\|_{L^{\infty}(\mathcal{G})}^{1-\tau^{s}},
$$

where $\tau$ and $s$ are as above. Therefore

$$
\begin{aligned}
\|f(y, w)\|_{L^{\infty}\left(B_{R / 2}\left(w_{1}\right)\right.} & \leq c\left(h^{-4}\right)^{1-\tau^{s}} h^{-A \tau^{s}}\left(\varepsilon^{\beta \tau^{k(h)-1}}\right)^{\tau^{s}} \\
& \leq c\left(h^{-4}\right)^{1-\gamma} h^{-A \tau^{s}}\left(\varepsilon^{\beta \tau^{k(h)-1}}\right)^{\gamma} \leq c h^{-A^{\prime}}\left(\varepsilon^{\beta \tau^{k(h)-1}}\right)^{\gamma}
\end{aligned}
$$

where $\gamma=\tau^{\beta}$, with $\beta$ as above, so $0<\gamma<1$ and $A^{\prime}=A \tau^{s}-4+\gamma$. Once again, let us apply the three spheres inequality over a chain of balls contained in a cone with vertex in $O$, choosing $y=w=h \nu(O)$ we obtain

$$
\begin{equation*}
|f(y, y)| \leq c h^{-A^{\prime}}\left(\varepsilon^{\beta \tau^{k(h)-1}}\right)^{\gamma \tau^{k(h)-1}} . \tag{5.33}
\end{equation*}
$$

We observe that, for $0<h<c r_{0}$, where $0<c<1$ depends on $L, k(h) \leq$ $c|\log h|=-c \log h$, so we can write

$$
\tau^{k(h)}=\mathrm{e}^{-c \log h \log \tau}=h^{-c \log \tau}=h^{c|\log \tau|}=h^{F},
$$

with $F=c|\log \tau|$. Therefore

$$
\begin{aligned}
|f(y, y)| & \leq h^{-A^{\prime}} \varepsilon \tau^{k(h)}=\mathrm{e}^{-A^{\prime} \log h} \mathrm{e}^{B \tau^{k(h)} \log \varepsilon} \\
& =\mathrm{e}^{-A^{\prime} \log h+B^{\prime} h^{F} \log \varepsilon}
\end{aligned}
$$

Then in (5.33) we obtain

$$
|f(y, y)| \leq \mathrm{e}^{-A^{\prime} \log h+B^{\prime} h^{F} \log \varepsilon}=\frac{\varepsilon^{B^{\prime} h^{F}}}{h^{A^{\prime}}} .
$$

Proof of Proposition 3.4. Let us define $\bar{r}_{2}=\min \left\{\bar{r}_{0}, r_{2}\right\}$, where $\bar{r}_{0}$ is the one of Proposition 4.1 and $r_{2}$ will be fixed later. For every $x, y$ such that $|x-y|<r$, with $0<r<\bar{r}_{2}$, the following asymptotic formula holds (cf. Proposition 4.1)

$$
\left|\mathbb{G}_{1}(x, y)-\mathbb{G}_{+}(x, y)\right| \leq c|x-y|^{-1+\alpha} .
$$

We now distinguish two situations:

1) $x \in B_{r} \cap\left(D_{1} \cap D_{2}\right)$;
2) $x \in B_{r} \cap\left(D_{1} \backslash D_{2}\right)$.

If case 1 ) occurs then the asymptotic formula (4.14) holds also for $\mathbb{G}_{2}$ since the hypothesis of Proposition 4.1 are met. From [Al, Lemma 3.1] there exists $r_{2}$, depending on the a priori data, such that

$$
\begin{equation*}
\nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) \geq c|x-y|^{-2} \tag{5.34}
\end{equation*}
$$

Let us consider case 2$)$. In $B_{r} \cap\left(D_{1} \backslash D_{2}\right)$ we consider a smaller ball $B_{\rho}(0)$ with radius $\rho$ where $0<\rho<\min \left\{d_{\mu}, r_{2}\right\}$. Since the definition of $d_{\mu}$ we have $B_{\rho} \cap D_{2}=\emptyset$. If $x$ and $y$ are in $B_{\rho}$ and denoting by $\mathcal{L}=\Delta+k^{2}$ we have

$$
\mathcal{L}\left(\mathbb{G}_{2}(x, y)-\Phi(x, y)\right)=0 \quad \text { in } B_{\rho}
$$

where $\Phi$ is the fundamental solution of the Helmholtz equation, with the boundary condition

$$
\left[\mathbb{G}_{2}(x, y)-\Phi(x, y)\right]_{\mid \partial B_{\rho}} \leq c \rho^{-1}
$$

Thus by maximum principle

$$
\left|\mathbb{G}_{2}(x, y)-\Phi(x, y)\right| \leq c_{1} \rho^{-1} \quad \forall x, y \in B_{\rho}
$$

and by interior gradient bound

$$
\left|\nabla \mathbb{G}_{2}(x, y)-\nabla \Phi(x, y)\right| \leq c_{2} \rho^{-2} \quad \forall x \in B_{\rho / 2}, \forall y \in B_{\rho} .
$$

Thus using Lemma 3.1 of [Al], in $B_{\rho / 2}(O)$ we obtain the formula formula

$$
\begin{equation*}
\nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) \geq c|x-y|^{-2}-c_{4} \rho^{-2} \tag{5.35}
\end{equation*}
$$

Let us consider $h<\bar{r}_{2} / 2$ and $0<r<\bar{r}_{2}$. Then we have

$$
\begin{aligned}
& \left|\int_{D_{1}} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x\right| \\
= & \left|\int_{D_{1} \cap B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y)+\int_{D_{1} \backslash B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y)\right| \\
\geq & \left|\int_{D_{1} \cap B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y)\right|-\left|\int_{D_{1} \backslash B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y)\right|
\end{aligned}
$$

The first integral can be estimated as follows

$$
\begin{aligned}
& \left|\int_{D_{1} \cap B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x\right| \\
= & \mid \int_{\left(D_{1} \cap D_{2}\right) \cap B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x \\
& +\int_{\left(D_{1} \backslash D_{2}\right) \cap B_{r}(O)} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x \mid \\
\geq & \left|\int_{\left[\left(D_{1} \cap D_{2}\right) \cap B_{\rho}(O)\right] \cup\left[\left(D_{1} \backslash D_{2}\right) \cap B_{\rho}\right]} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x\right| \\
& -\left|\int_{\left[\left(D_{1} \backslash D_{2}\right) \cap B_{r}(O)\right] \backslash B_{\rho}} \nabla \mathbb{G}_{1}(x, y) \cdot \nabla \mathbb{G}_{2}(x, y) d x\right|
\end{aligned}
$$

In conclusion, choosing $\rho=h$ and using (5.34), (5.35) and (3.9) we obtain

$$
\begin{gathered}
\left|S_{1}(y)\right| \geq c_{1} \int_{\substack{ \\
\left[\left(D_{1} \cap D_{2}\right) \cap B_{\rho}(O)\right] \cup\left[\left(D_{1} \backslash D_{2}\right) \cap B_{\rho}\right]}}|x-y|^{-2} d x \\
-c_{2} \int_{\left[\left(D_{1} \backslash D_{2}\right) \cap B_{r}(O)\right] \backslash B_{\rho}}|x-y|^{-1}|x-y|^{-1} d x-c_{3} \int_{D_{1} \backslash B_{r}(O)}|x-y|^{-1}|x-y|^{-1} d x \\
\\
\quad \geq c_{4} h^{-2}-c_{5} d_{\mu}^{-2}-c_{6}
\end{gathered}
$$

## References

[Al] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurement, J. Differential Equations 84 (1990), pp. 252-272.
[Al-Be-Ro-Ve] G. Alessandrini, E. Beretta, E. Rosset, S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa 4 (2000), pp. 755-806.
[Al-DB] G. Alessandrini, E. Di Benedetto, Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability, Indiana Univ. Math. J. 46 (1997), pp. 1-82.
[Al-DC] G. Alessandrini, M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal. 37 (2005), pp. 200-217.
[Co-Kr] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992.
[DB-El-Fr] E. Di Benedetto, C. Elliott, A. Friedman, The free boundary of a flow in a porous body heated from its boundary, Nonlinear Anal. 10 (1986), pp. 879-900.
[DC-Ro] M. Di Cristo, L. Rondi, Examples of exponential instability for inverse inclusion and scattering problem. Inverse Problems 19 (2003), pp. 685-701.
[Ha-Ho] P. Hähner, T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal. 33 (2001), pp. 670-685.
[Is88] V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), pp. 865-877.
[Is90] V. Isakov, On uniqueness in the inverse transmission scattering problem, Comm. Partial Differential Equations 15 (1990), pp. 1565-1587.
[Is92] V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comput. Appl. Math. 42 (1992), pp. 79-88.
[Is93] V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems 9 (1993), pp. 535-543.
[Is06] V. Isakov, Inverse problems for partial differential equations. Second edition, Springer, New York, 2006.
[Ku] I. Kukavica, Quantitative uniqueness for second-order elliptic operators, Duke Math. J. 91 (1998), pp. 225-236.
[La] E. M. Landis, A three-sphere theorem, (Russian) Dokl. Akad. Nauk SSSR 148 (1963), pp. 277-279.
[Li-Vo] Y. Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal. 153 (2000), pp. 91-151.
[Li-St-We] W. Littman, G. Stampacchia, H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 17 (1963), pp. 43-77.
[Mi] C. Miranda, Partial differential equations of elliptic type, Springer-Verlag, Berlin Heidelberg New York, 1970.
[Po] R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comput. Appl. Math. 114 (2000), pp. 247-274.
[St] P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy, Ann. Inst. Fourier 40 (1990), pp. 867-884.

