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Abstract

We consider the inverse transmission scattering problem with piecewise
constant refractive index. Under mild a priori assumptions on the obstacle
we establish logarithmic stability estimates.

1 Introduction

In this paper we consider the scattering of acoustic time-harmonic waves in an
inhomogeneous medium. More precisely we shall consider a penetrable obstacle
D and we want to recover information on its location from a knowledge of
Cauchy data on the boundary of a region Ω containing the obstacle D.

Given a spherical incident wave ui(·, x0) = Φ(·, x0), where the point source
x0 is located on the boundary of a ball B of radius R, B such that Ω ⊂ B, and
Φ denotes the fundamental solution to the Helmholtz equation

Φ(x, x0) =
1

4π

eik|x−x0|

|x− x0|
, x ∈ R3, x 6= x0,

we denote by G(x, x0) = ui(x, x0) + us(x, x0) the Green’s function of the equa-
tion

(1.1a) div (γ(x)∇G(x, x0)) + k2n(x)G(x, x0) = −δ(x− x0), in R3,

where the scattered field us satisfies the Sommerfeld radiation condition

(1.1b) lim
|x|→∞

|x|
(
∂us

∂r
(x)− ikus(x)

)
= 0.

Here k > 0 is the wave number and r = |x|. We shall study equation (1.1a)
with piecewise constant coefficients, in particular we shall consider γ and n to
be of the following form

γ(x) = 1 + (a− 1)χD(x)

n(x) = 1 + (b− 1)χD(x)

a ≥ λ > 0, b ≥ λ > 0,

(a− 1)2 + (b− 1)2 ≥ δ2 > 0,
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where λ and δ are given constants. We refer to [Co-Kr, Is06] for basic informa-
tion on scattering problem of this type.

The unique determination of D from a knowledge of the far field data has
been established by Isakov [Is90]. The purpose of the present paper is to estab-
lish a stability result. Under reasonable mild assumptions on the regularity of
∂D we show that there is a continuous dependance of D on the Cauchy data
on ∂Ω with a modulus of continuity of logarithmic type. This rate of continu-
ity appears optimal in view of the recent paper [DC-Ro] indicating the strong
ill-posedness of the inverse problem.

The main ideas employed to obtain stability rely on the study of the be-
havior of G(x, x0) when x and x0 get close and the use of unique continuation.
These ideas go bach to [Is88] where a uniqueness result for the inverse inclu-
sion problem is proved and it has also been used in inverse scattering theory
in [Is90]. In order to apply these ideas to stability some further properties on
singular solutions and quantitative estimates of unique continuation are needed.
We refer to [Al-DC] where similar ideas are developed for studying the stability
of the inverse inclusion problem.

The stability issue in inverse scattering theory has been considered by Isakov
[Is92, Is93] for the determination of a sound-soft obstacle. Hähner and Hohage
[Ha-Ho] considered equation (1.1a) with a = 1 and n(x) smooth. They showed
that n depends on G(x, x0), x, x0 ∈ ∂B, with a logarithmic rate of continuity.
They considered both far field data and near field data. They improve and
simplify a previous result of Stefanov [St]. We finally mention a result obtained
by Potthast [Po] for impenetrable obstacles which is also based on the use of
singular solutions.

The plan of the paper is the following. In Section 2 we give the a priori
assumptions we need and we state the stability theorem. In Section 3 the proof
of the stability theorem is given based on some auxiliary results whose proofs
are collected in Section 4 and Section 5. In particular, in Section 4 we establish
some results on singular solutions of equation (1.1a) and in Section 5 we study
quantitative estimates of unique continuation.

2 The Main Result

In this section we state the stability theorem. Before doing this we shall give
some definitions we need and introduce the a priori assumptions on the regular-
ity of the obstacle. For any x = (x1, x2, x3) ∈ R3 and any r > 0 we denote by
Br(x) the open ball in R3 of radius r centered in the point x, Br(0) = Br and for
x′ = (x1, x2) ∈ R2 we denote by B′r(x

′) the open ball in R2 of radius r centered
in the point x′. In places, we shall denote a point x ∈ R3 by x = (x′, x3) where
x′ ∈ R2, x3 ∈ R.

Definition 2.1. Let Ω be a bounded domain in R3. Given α, 0 < α ≤ 1, we
shall say that a portion S of ∂Ω is of class C1,α with constants r0, L > 0 if for
any P ∈ S, there exists a rigid transformation of coordinates under which we
have P = 0 and

Ω ∩Br0 = {x ∈ Br0 : x3 > ϕ(x′)},

where ϕ is a C1,α function on B′r0 ⊂ R2 satisfying ϕ(0) = |∇ϕ(0)| = 0 and
‖ϕ‖C1,α(B′r0

) ≤ Lr0.
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Definition 2.2. We shall say that a portion S of ∂Ω is of Lipschitz class with
constants r0, L > 0 if for any P ∈ S, there exists a rigid transformation of
coordinates under which we have P = 0 and

Ω ∩Br0 = {x ∈ Br0 : x3 > ϕ(x′)},

where ϕ is a Lipschitz continuous function on B′r0 ⊂ R2 satisfying ϕ(0) = 0 and
‖ϕ‖C0,1(B′r0

) ≤ Lr0.

Remark 2.1. We use the convention to scale all norms in such a way that
they are dimensionally equivalent to their argument. For instance, for any ψ ∈
C1,α(B′r0) we set

‖ψ‖C1,α(B′r0
) = ‖ψ‖L∞(B′r0

) + r0‖∇ψ‖L∞(B′r0
) + r1+α

0 |∇ψ|α,B′r0 .

Assumptions on the obstacle D

For given numbers r0, L > 0, 0 < α < 1, we shall assume there exists a bounded
domain Ω such that the obstacle D satisfies the following conditions:

D ⊂ Ω;(2.2a)

Ω rD is connected;(2.2b)

∂D is of class C1,α with constants r0, L.(2.2c)

In the sequel we shall refer to numbers r0, L, α, R, a, b and k as the a priori
data.

The inverse problem we are concerned with is the determination of the obsta-
cle D from the knowledge of the Cauchy data of the singular solutions G(·, x0)
on ∂Ω for all points source x0 located on ∂B.

For two possible obstacles D1, D2 satisfying (2.2) we shall denote by Gi, i =
1, 2, the corresponding solutions to (1.1a) satisfying the Sommerfeld radiation
condition (1.1b).

Theorem 2.2. Let D1, D2 be two obstacles satisfying (2.2). If, given ε > 0,
we have

(2.3) sup
x∈∂B

(∥∥∥∥∂G1(·, x)

∂ν
− ∂G2(·, x)

∂ν

∥∥∥∥
L2(∂Ω)

+

‖G1(·, x)−G2(·, x)‖L2(∂Ω)

)
≤ ε,

then
dH(∂D1, ∂D2) ≤ ω(ε),

where ω is an increasing function on [0,+∞), which satisfies

ω(t) ≤ C| log t|−η, for every 0 < t < 1

and C, η, C > 0, 0 < η ≤ 1, are constants only depending on the a priori data.

Remark 2.3. We stress the fact that we don’t need any assumption on k.
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3 Proof of the Stability Theorem

We denote by G the connected component of Ω \ (D1 ∪D2) such that ∂Ω ⊂ G
and ΩD = Ω \ G.

Theorem 2.2 evaluates how close the two inclusions are in term of the Haus-
dorff distance dH. We recall a definition of this metric.

dH(D1, D2) = max

{
sup
x∈D1

dist(x,D2), sup
x∈D2

dist(x,D1)

}
.

In order to deal with the Hausdorff distance we introduce a simplified vari-
ation of it which we call modified distance.

Definition 3.1. We shall call modified distance between D1 and D2 the number

(3.4) dµ(D1, D2) = max

{
sup

x∈∂D1∩∂ΩD

dist(x,D2), sup
x∈∂D2∩∂ΩD

dist(x,D1)

}
.

We wish to remark here that such modified distance does not satisfy the
axioms of a metric and in general does not dominate the Hausdorff distance
(see [Al-Be-Ro-Ve, §3] for related arguments).

Proposition 3.1. Let D1, D2 be two obstacles satisfying (2.2). Then

(3.5) dH(∂D1, ∂D2) ≤ cdµ(D1, D2),

where c depends only on the a priori assumptions.

Proof. See [Al-DC, Proposition 3.1]

With no loss of generality, we can assume that there exists a point O of ∂D1 ∩
∂ΩD, where the maximum in the Definition 3.1 is attained, that is

(3.6) dµ = dµ(D1, D2) = dist(O,D2).

We remark that G is solution to

div (γ(x)∇G(x, y)) + k2n(x)G(x, y) = −δ(x, y).

We shall denote by G1 and G2 Green’s functions when D = D1 and D2

respectively and γi, ni, i = 1, 2, the corresponding coefficients.
Integrating by parts we have

(a− 1)

{∫
D1

∇G1(·, y) · ∇G2(·, w)−
∫
D2

∇G1(·, y) · ∇G2(·, w)

}

+k2(b− 1)

{∫
D1

G2(·, w)G1(·, y)−
∫
D2

G1(·, y)G2(·, w)

}

=

∫
∂Ω

(
∂G1(·, y)

∂ν
G2(·, w)−G1(·, y)

∂G2(·, w)

∂ν

)

=

∫
∂Ω

∂G1(·, y)

∂ν
(G2(·, w)−G1(·, w))

+

∫
∂Ω

G1(·, y)

(
∂G1(·, w)

∂ν
− ∂G2(·, w)

∂ν

)
∀ y, w ∈ CB.(3.7)
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Let us define for y, w ∈ CB

S1(y, w) = (a− 1)

∫
D1

∇G1(·, y) · ∇G2(·, w) + k2(b− 1)

∫
D1

G1(·, y)G2(·, w),

S2(y, w) = (a− 1)

∫
D2

∇G1(·, y) · ∇G2(·, w) + k2(b− 1)

∫
D2

G1(·, y)G2(·, w),

f(y, w) = S1(y, w)− S2(y, w).

Thus (3.7) can be rewritten as

f(y, w) =

∫
∂Ω

∂G1(·, y)

∂ν
(G2(·, w)−G1(·, w))

+

∫
∂Ω

G1(·, y)

(
∂G1(·, w)

∂ν
− ∂G2(·, w)

∂ν

)
∀y, w ∈ CB.(3.8)

Let us fix P ∈ ∂D. We can assume P ≡ 0. We denote by ν(P ) the outer
unit normal vector to ΩD in P and we rotate the coordinate system in such a
way that ν(P ) = (0, 0,−1).

Let us denote by χ+(x) the characteristic function of the half-space and by
G+ the Green’s function of div((1 + (a− 1)χ+)∇) + k2(1 + (b− 1)χ+).

Proposition 3.2. Let D ⊂ Ω be a bounded open set whose boundary is of class
C1,α with constants r0, L. Then there exist constants c1, c2 depending on a, α,
k and L such that

|∇xG(x, y)| ≤ c1|x− y|−2,(3.9)

|∇xG+(x, y)| ≤ c2|x− y|−2(3.10)

for every x, y ∈ R3.

Proof. (3.9) and (3.10) can be obtained following [Al-DC, Proposition 3.1]. In
[Al-DC] the key point is the piecewise regularity of the transmission problem.
For a proof of that we refer to [DB-El-Fr] and [Li-Vo].

We shall state now two propositions that describe the behavior of f(y) and
S1(y) when we move the singularity y toward the boundary of the inclusion.
We postpone their proofs in the last Section 5.

Proposition 3.3. Let D1, D2 two obstacles verifying (2.2) and let y = hν(O),
with O defined in (3.6). If, given ε > 0 we have

sup
x∈∂B

(∥∥∥∥∂G1(·, x)

∂ν
− ∂G2(·, x)

∂ν

∥∥∥∥
L2(∂Ω)

+

‖G1(·, x)−G2(·, x)‖L2(∂Ω)

)
≤ ε,

then for every h, 0 < h < cr0, with c ∈ (0, 1) depending on L,

|f(y, y)| ≤ cε
BhF

hA
,

where 0 < A < 1 and c,B, F > 0 are constants that depend only on the a priori
data.
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Proposition 3.4. Let D1, D2 two obstacles verifying (2.2) and let y = hν(O),
with O defined in (3.6). Then for every h, 0 < h < min{r2, dµ}

(3.11) |S1(y, y)| ≥ c1h−2 − c2(dµ − h)−2 + c3

where c1, c2, c3and r2 are positive constants only depending on the a priori data.

Proof of Theorem 2.2. Let O ∈ ∂D1 as defined (3.6), that is

dµ(D1, D2) = dist(O,D2) = dµ.

Then, for y = hν(O), with 0 < h < h1, where h1 = min{dµ, cr0, r2/2}, using
(3.9), we have

(3.12) |S2(y, y)| ≤ c
∫
D2

1

(dµ − h)

1

(dµ − h)
dx = c

1

(dµ − h)2
|D2|.

Using Proposition 3.3, we have

|S1(y, y)| − |S2(y, y)| ≤ |S1(y, y)− S2(y, y)| = |f(y, y)| ≤ cε
BhF

hA
.

On the other hand, by Proposition 3.4 and (3.12), there exists h0 > 0, only
depending on the a priori data, such that for h, 0 < h < h0

|S1(y, y)| − |S2(y, y)| ≥ c1h−2 − c4(dµ − h)−2.

Thus we have

c1h
−2 − c4(dµ − h)−2 ≤ εBh

F

hA
.

Let h = h(ε) where h(ε) = min{| ln ε|− 1
2F , dµ}, for 0 < ε ≤ ε1, with ε1 ∈ (0, 1)

such that exp(−B| ln ε1|1/2) = 1/2. If dµ ≤ | ln ε|−
1

2F the theorem follows using
Proposition 3.1. In the other case we have

c4(dµ − h)−2 ≥ c3h
−2 − εBh

F

hA
≥ c5h−2

(
1− εBh

F

hÃ
)
,

where Ã = 2−A, Ã > 0. Since

εBh(ε)F h(ε)Ã ≤ εB| ln ε|
−1/2

≤ exp
(
−B| ln ε|1/2

)
,

for any ε, 0 < ε < ε1,
(dµ − h(ε))−2 ≥ c6h(ε)−2,

that is, solving for dµ, and recalling that, in this case, h(ε) = | ln ε|− 1
2F

dµ ≤ c7| ln ε|−
δ
2

where δ = 1/(2F ). When ε ≥ ε1, then

dµ ≤ diamΩ

and, in particular when ε1 ≤ ε < 1

dµ ≤ diamΩ
| ln ε|− 1

2F

| ln ε1|−
1

2F

.

Finally, using Proposition 3.1, the theorem follows.
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4 Remarks on Singular Solutions

Proposition 4.1. Let D ⊂ R3 be an open set with C1,α boundary with constants
r0, L, let P be a point in ∂D and let us denote with ν(P ) the outer normal vector
to D in P . There exist positive constants c3, c4 depending on a, k, α and L
such that

|G(x, y)−G+(x, y)| ≤ c3
rα0
|x− y|−1+α,(4.13)

|∇xG(x, y)−∇xG+(x, y)| ≤ c4

rα
2

0

|x− y|−2+α2

,(4.14)

for every x ∈ D∩Br(P ) and y = hν(P ), with 0 < r < (min{ 1
2 (8L)−1/α, 1

2})r0 =

r0, 0 < h < (min{ 1
2 (8L)−1/α, 1

2})
r0
2 .

Proof. Let us fix r1 = min{ 1
2 (8L)−1/αr0,

r0
2 }. In the ball Br0(P ) the boundary

of D can be represented as the graph of a C1,α function ϕ. Let us introduce now
the following change of variable that transform in Br0(P ) ∂D in the x′-axis. For
every r > 0, let Qr(P ) be the cube centered at P , with sides of length 2r and
parallel to the coordinates axes. We have that the ball Br(P ) is inscribed into
Qr(P ). We define

Ψ : Q2r1(P ) → Q2r1(P )(
x′

xn

)
→

(
ξ′ = x′

ξn = xn − ϕ(x′)θ
( |x′|
r1

)
θ
(
xn
r1

) ) ,
where θ ∈ C∞(R) be such that 0 ≤ θ ≤ 1, θ(t) = 1, for |t| < 1, θ(t) = 0, for
|t| > 2 and |dθdt | ≤ 2. Since the C1,α regularity of ϕ, it is possible to verify that
the following inequalities hold:

c−1|x1 − x2| ≤|Ψ(x1)−Ψ(x2)| ≤ c|x1 − x2|,(4.15a)

|Ψ(x)− x| ≤ c

rα0
|x|1+α ∀x ∈ R3,(4.15b)

|DΨ(x)− I| ≤ c

rα0
|x|α ∀x ∈ R3(4.15c)

where c ≥ 1 depends on L and α only. Ψ is a C1,α diffeomorphism from R3 into
itself. Let us define the cylinder Cr1 as Cr1 = {x ∈ R3 : |x′| < r1, |xn| < r1}.
For x, y ∈ Cr1 , we shall denote

(4.16) G̃(x, y) = G(Ψ−1(x),Ψ−1(y)).

G̃(x, y) is solution of

(4.17) div((1 + (a− 1)χ+)B∇G̃(x, y))

+ k2ζ(1− (b− 1)χ+(x))BG̃(x, y) = −δ(x− y),

where B = JJT

det J , with J = ∂ξ
∂x (Ψ−1(ξ)), is of class Cα, B(0) = I and ζ = det J .

Since G+ is solution to

(4.18) div((1 + (a− 1)χ+)G+(x, y))+

k2(1− (b− 1)χ+(x))G+(x, y) = −δ(x, y),
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subtracting (4.18) to (4.17) we obtain that R̃(x, y) = G̃(x, y) − G+(x, y) is
solution to

(4.19) div((1 + (a− 1)χ+)R̃(x, y))

+ k2(1 + (b− 1)χ+)R̃(x, y)

= div((1 + (a− 1)χ+)[B(x)− I]∇G̃(x, y))

+ k2(1− ζ)(1 + (b− 1)χ+)G̃(x, y).

Let L̃, depending on the a priori data, be such that Ω ⊂ BL̃(0), then using the
fundamental solution G+ we get

− R̃(x, y) =

∫
BL̃(0)

(1 + (a− 1)χ+)[B(z)− I]∇xG̃(z, y) · ∇xG+(z, x)dz

+

∫
∂BL̃(0)

[B(z)− I]

[
R̃(x, z)

∂G+

∂ν
(z, y) + G+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z)

+ k2(1− ζ)

∫
BL̃(0)

(1 + (b− 1)χ+)G̃(z, x)G+(z, y)dz+

k2(1−ζ)

∫
∂BL̃(0)

(1+(a−1)χ+)

[
R̃(x, z)

∂G+

∂ν
(z, y) + G+(z, y)

∂R̃

∂ν
(x, z)

]
dσ(z)

Integrals over ∂BL̃(0) are bounded by a constant. Let us split

BL̃(0) = (BL̃(0) r Cr1) ∪ (BL̃(0) ∩ Cr1).

For |x|, |y| ≤ r1/2, in BL̃(0) r Cr1 we are away from the singularity thus
the integrals over BL̃(0) r Cr1 are bounded. Let us evaluate integrals over
BL̃(0) ∩ Cr1 . We have

∣∣∣∣∣
∫
BL̃(0)∩Cr1

(1 + (a− 1)χ+)[B(z)− I]∇xG̃(z, y) · ∇xG+(z, x)dz

∣∣∣∣∣
≤ c

∫
BL̃(0)∩Cr1

|z|α|z − y|−2|z − x|−2dz = I

where c depends on L, α, a and n. We can split I = I1 + I2 where

I1 =

∫
{|z|<4h}∩Cr1

|z|α|x− z|−2|y − z|−2dz,

I2 =

∫
{|z|>4h}∩Cr1

|z|α|x− z|−2|y − z|−2dz.
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Now

I1 ≤
∫
|w|<4

hα|w|αh−2
∣∣x
h
− w

∣∣−2
h−2

∣∣y
h
− w

∣∣−2
h3dw

= hα−1

∫
|w|<4

|w|α
∣∣x
h
− w

∣∣−2∣∣y
h
− w

∣∣−2
dw

≤ hα−1F (ξ, η),

where h = |x− y| and

F (ξ, η) = 4α
∫
|w|<4

|ξ − w|−2|η − w|−2dw

and ξ = x/h and η = y/h. From standard bounds (see, for instance, [Mi, Ch. 2,
§ 11]), it is not difficult to see that

F (ξ, η) ≤ const. <∞,

for all ξ, η ∈ R3, |ξ − η| = 1. Thus

I1 ≤ c|x− y|α−1.

Let us consider now I2. Since |y| = −yn ≤ |x − y| = h, we can deduce |z| ≤
4
3 |y − z| and |z| ≤ 2|x− z| and thus obtain that

I2 ≤ c
∫
|z|>4h

|z|α+1−n+1−ndz ≤ chα−1.

Then we conclude

(4.20) |R̃(x, y)| ≤ c|x− y|−1+α,

for every |x|, |y| ≤ r1/2, where c depends on L, α, k and a only.
We observe that if x ∈ Ψ−1(B+

r1/2
(0)) and y = e3y3, with y3 ∈ (−r1/2, 0)

then

(4.21) c−1|x| ≤ |Ψ(x)| ≤ |Ψ(x)− y| ≤ c|x− y|.

From (4.20) and (4.21) we can conclude

(4.22) |R̃(x, y)| ≤ c|x− y|−1+α.

Now, since

G(x, y)−G+(x, y)

=G(x, y)−G+(x, y) + G+(Ψ(x),Ψ(y))−G+(Ψ(x),Ψ(y))

=R̃(Ψ(x),Ψ(y)) + G+(Ψ(x), y)−G+(x, y),

using Theorem 4.1 of [Li-Vo], the properties of Ψ and (4.22) we obtain

|G(x, y)−G+(x, y)|

≤ c

rα0
|x− y|α−1 +

c

rα0
‖∇G+(·, y)‖L∞(Qr1 )|x−Ψ(x)|

≤ c

rα0
|x− y|α−1 +

c′

rα0
|x− y|1+αh−2

≤ c′′

rα0
|x− y|α−1,
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where c′′ depends on k, α and L only.
We estimate now the first derivative of R. To estimate the first derivative of

R̃ let us consider a cube Q ⊂ B+
r1/4

(x) of side cr1/4, with 0 < c < 1, such that

x ∈ ∂Q. The following interpolation inequality holds:

‖∇R̃(·, y)‖L∞(Q) ≤ c‖R̃(·, y)‖1−δL∞(Q)|∇R̃(·, y)|δα,Q,

where δ = 1
1+α , c depends on L only and

|∇R̃|α,Q = sup
x,x′∈Q,x6=x′

|∇R̃(x, y)−∇R̃(x′, y)|
|x− x′|α

.

Since, from the piecewise Hölder continuity of ∇G and of ∇G+, we have that

|∇R̃(x, y)|α,Q ≤ |∇G̃(x, y)|α,Q + |∇G+(x, y)|α,Q ≤ ch−α−2,

where c depends on L only, thus we conclude

|∇xR̃(x, y)| ≤ c

rη0
h(α−1)(1−δ)h(−α−2)δ =

c

rη0
h−2+η,

where η = α2

1+α . Thus

(4.23) |∇xR̃(x, y)| ≤ c

rη0
|x− y|η−2,

where η = α2

1+α and c depends on L only. Concerning G+ we have

|∇xG+(Ψ(x), y)−∇xG+(x, y)|

= |DΨ(x)T∇G+(·, y)|Ψ(x) −∇xG+(x, y)|

≤ |(DΨ(x)T − I)∇G+(·, y)|Ψ(x)|+ |∇G+(·, y)|Ψ(x) −∇xG+(x, y)|

≤ c

rα0
‖∇G+(·, y)‖L∞(Qr1 )|x−Ψ(x)|+ |∇G+(·, y)|α,Q|Ψ(x)− x|α

≤ c′

rα0
h1+αh−2 +

c

rα
2

0

h−α−2h(1+α)α

≤ c

rα
2

0

h−2+α2

,

where c depends on k, α and L only.

Let us denote by G0
+ the Green’s function of the operator div((1 + (a −

1)χ+)∇).

Proposition 4.2. Let G+ and G0
+ as above, then there exist positive constants

c5, c6 depending on the a priori data such that for every x, y ∈ R3 we have

(4.24) |G+(x, y)−G0
+(x, y)| ≤ c5|x− y|

(4.25) |∇xG+(x, y)−∇xG0
+(x, y)| ≤ c6|x− y|−1

10



Proof. Defining R(x, y) = G+(x, y)−G0
+(x, y), we have that

(4.26) div((1 + (b− 1)χ+)∇R(x, y)) = −k2(1 + ((b− 1)χ+)G+(x, y).

Thus

−R(x, y) = k2

∫
Ω

(1 + (b− 1)χ+)G+(z, y)G0
+(x, z)dz.

Hence for [Li-St-We] we have

|R(x, y)| ≤ C
∫

Ω

|x− z|−1|y − z|−1dz.

Let decompose Ω = B |x−y|
3

(x) ∪B |x−y|
3

(y) ∪ G.

For z ∈ B |x−y|
3

(x) we have that

|y − z| ≥ |y| − |z| ≥ |y| − |z − y| − |x|

≥ |x− y| − |x− y|
3

=
2

3
|x− y|.

Thus∫
B |x−y|

3

(x)

|x− z|−1|y − z|−1dz ≤ 2

3
|x− y|−1

∫ |x−y|
3

0

ρ dρ ≤ c|x− y|2.

Similarly it can be evaluated the integral over B |x−y|
3

(y).

Let us consider now the integral over G. For z ∈ G we have that |z− y| ≥ |x−z|3 ,
then we obtain ∫

G
|x− z|−1|y − z|−1dz ≤ c

∫
G
|x− z|−1|x− z|−1dz

≤ c

∫
ΩrB |x−y|

3

(x)

|x− z|−1|x− z|−1dz

≤ c

∫ 2L̃

|x−y|
3

ρdρ ≤ c1|x− y|−2 + c2.

Let us prove now (4.25). We use the interpolation inequality

‖∇R(·)‖L∞(Q) ≤ ‖R(·)‖1−δL∞(Q)|∇R(·, y)|δα,Q.

As in Proposition 4.1, since

|∇R(·, y)|α,Q ≤ h−α−2,

we obtain
|∇R(x, y)| ≤ ch−2+η ≤ ch−1.

11



5 Proof of Proposition 3.3 and 3.4

Proof of Proposition 3.3. Let us consider f(y, w), where w is a fixed point in
CB. Since f , as a function of y, is a radiating solution of

Lyf = ∆yf + k2f = 0 in CΩD,

then by [Co-Kr, Theorem 2.14], for y ∈ CB we have

f(y, w) =

∞∑
n=0

n∑
m=−n

amn h
(1)
n (k|y|)Y mn (ŷ),

where ŷ = y/|y|, Y mn is a spherical harmonic of order n and h
(1)
n is a spherical

Hankel function of the first kind of order n. Let us consider y such that R <
R1 < |y| < R2. For an integer N , using Schwarz inequality and the asymptotic
behavior of Hankel function (see [Co-Kr, (2.38) pg. 28]) we have[

N∑
n=0

n∑
m=−n

amn h
(1)
n (k|y|)Y mn (ŷ)

]2

≤
N∑
n=0

∣∣∣∣∣h(1)
n (k|y|)
h

(1)
n (kR)

∣∣∣∣∣
2 N∑
n=0

n∑
m=−n

|amn |2|h(1)
n (kR)|2|Y mn (ŷ)|2.

≤ c

N∑
n=0

n∑
m=−n

|amn |2|h(1)
n (kR)|2|Y mn (ŷ)|2,

for some constant c depending on R, R1 and R2. Thus, taking the limit as
N → +∞, we can conclude that

|f(y, w)|2 ≤ c|f(·, w)|∂B |2, ∀ y ∈ BR2
rBR1

,

where c depends on R, R1 and R2. Analogous considerations can be car-
ried on fixing y and varying w. Thus, we can conclude that for all (y, w) ∈[
BR2 rBR1

]2
|f(y, w)| ≤ |f|∂B×∂B | ≤ cε.

For y ∈ Gh, where Gh = {x ∈ G : dist(x,ΩD) ≥ h},

|S1(y, w)| ≤ c
∫
D1

|x− y|−2 ≤ ch−2,

where c = c(L,R). Similarly |S2(y, w)| ≤ ch−2. Then we conclude that

(5.27) |f(y, w)| ≤ ch−2 in Gh.

At this stage we shall make use iteratively of the three spheres inequality
(see [La, Ku]). Let u be a solution of Lu = 0 in G, let x ∈ G. There exist r1, r,
r2, 0 < r1 < r < r2 < R and τ ∈ (0, 1) such that

(5.28) ‖u‖L∞(Br(x)) ≤ c‖u‖τL∞(Br1 (x))‖u‖
1−τ
L∞(Br2 (x)),

12



where c and τ depend on R, r/r2, r1/r2 and L. Applying (5.28) to u(·) = f(·, w),
with x = x ∈ B4R rB3R, r1 = r0/2, r = 3r0/2 and r2 = 2r0 we obtain

‖f‖L∞(B3r0/2
(x)) ≤ c‖f‖τL∞(Br0/2(x))‖f‖

1−τ
L∞(B2r0

(x)),

For every y ∈ Gh, we denote by γ a simple arc in G joining x to y. Let us define
{xi}, i = 1, . . . , s as follows x1 = x, xi+1 = γ(ti), where ti = max{t : |γ(t)−xi| =
r0} if |xi − y| > r0, otherwise let i = s and stop the process. By construction,
the balls Br0/2(xi) are pairwise disjoint, |xi+1 − xi| = r0 for i = 1, . . . , s − 1,
|xs − y| ≤ r0. There exists β such that s ≤ β. An iterated application of the
three spheres inequality (5.28) for f (see for instance [Al-Be-Ro-Ve, pg. 780],
[Al-DB, Appendix E]) gives that for any r, 0 < r < r0

(5.29) ‖f‖L∞(Br/2(y)) ≤ c‖f‖τ
s

L∞(Br/2(x))‖f‖
1−τs
L∞(G).

We can estimate the right hand side of (5.29) by (5.27) and obtain for any r,
0 < r < r0

(5.30) ‖f‖L∞(Br/2(y)) ≤ c(h−2)1−τsετ
s

≤ ch−Aεβ̃ ,

where β̃ = τβ and A = 2(1− β̃). Let O ∈ ∂D1 as defined in (3.6), that is

d(O,D2) = dµ(D1, D2).

There exists a C1,α neighborhood U of O in ∂ΩD with constants r0 and L.
Thus there exists a non-tangential vector field ν̃, defined on U such that the
truncated cone

(5.31) C(O, ν̃(O), θ, r0) =

{
x ∈ R3 :

(x−O) · ν̃(O)

|x−O|
> cos θ, |x−O| < r0

}
satisfies

C(O, ν̃(O), θ, r0) ⊂ G,

where θ = arctan(1/L). Let us define

λ1 = min

{
r0

1 + sin θ
,

r0

3 sin θ

}
, θ1 = arcsin

(
sin θ

4

)
,

G1 = O + λ1ν, ρ1 = λ1 sin θ1.

We have that Bρ1(G1) ⊂ C(O, ν̃(O), θ1, r0), B4ρ1(G1) ⊂ C(O, ν̃(O), θ, r0). Let
G = G1, since ρ1 ≤ r0/2, we can use (5.30) in the ball Bρ1(G) and we can
approach O ∈ ∂D1 by constructing a sequence of balls contained in the cone
C(O, ν̃(O), θ1, r0). We define, for k ≥ 2

Gk = O + λkν, λk = χλk−1, ρk = χρk−1, with χ =
1− sin θ1

1 + sin θ1
.

Hence ρk = χk−1ρ1, λk = χk−1λ1 and

Bρk+1
(Gk+1) ⊂ Bρ3k(Gk) ⊂ Bρ4k(Gk) ⊂ C(O, ν, θ, r0).
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Denoting d(k) = |Gk − O| − ρk = λk − ρk, we have d(k) = χk−1d(1), with
d(1) = λ1(1 − sin θ). For any r, 0 < r ≤ d(1), let k(r) be the smallest integer
such that d(k) ≤ r, that is∣∣ log r

d(1)

∣∣∣∣ logχ
∣∣ ≤ k(r)− 1 ≤

∣∣ log r
d(1)

∣∣∣∣ logχ
∣∣ + 1.

By an iterated application of the three spheres inequality over the chain of balls
Bρ1(G1), . . . , Bρk(r)(Gk(r)), we have

(5.32)

‖f(·, w)‖L∞(Bρk(r) (Gk(r))) ≤ ch−A(1−τk(r)−1)εβ̃τ
k(r)−1

≤ ch−Aεβ̃τ
k(r)−1

,

for 0 < r < cr0, where c, 0 < c < 1, depends on L. Let us consider now f(y, w)
as a function of w. First we observe that

Lwf = 0 in CΩD, for all y ∈ CΩD.

For y, w ∈ Gh, y 6= w, using (3.9)

|S1(y, w)| ≤ c
∫
D1

|x− y|−2|x− w|−2dx ≤ ch−4.

Similarly for S2. Therefore

|f(y, w)| ≤ ch−4 with y, w ∈ Gh.

For w ∈ B4R rB3R and y ∈ Gh, using (5.32), we have

|f(y, w)| ≤ ch−Aεβ̃τ
k(r)−1

.

Proceeding as before, let us fix y ∈ G such that dist(y,ΩD) = h and w̃ ∈
B4R r B3R such that dist(w̃, ∂BR) = R/2. Taking r = R/2, r1 = 3r, r2 = 4r,
w1 = O + λ1ν and using iteratively the three spheres inequality, we have

‖f(y, w)‖L∞(BR/2(w1) ≤ ‖f(y, w)‖τ
s

L∞(BR/2(w̃)‖f(y, w)‖1−τ
s

L∞(G),

where τ and s are as above. Therefore

‖f(y, w)‖L∞(BR/2(w1) ≤ c(h−4)1−τsh−Aτ
s

(εβτ
k(h)−1

)τ
s

≤ c(h−4)1−γh−Aτ
s

(εβτ
k(h)−1

)γ ≤ ch−A
′
(εβτ

k(h)−1

)γ ,

where γ = τβ , with β as above, so 0 < γ < 1 and A′ = Aτs − 4 + γ. Once
again, let us apply the three spheres inequality over a chain of balls contained
in a cone with vertex in O, choosing y = w = hν(O) we obtain

(5.33) |f(y, y)| ≤ ch−A
′
(εβτ

k(h)−1

)γτ
k(h)−1

.

We observe that, for 0 < h < cr0, where 0 < c < 1 depends on L, k(h) ≤
c| log h| = −c log h, so we can write

τk(h) = e−c log h log τ = h−c log τ = hc| log τ | = hF ,
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with F = c| log τ |. Therefore

|f(y, y)| ≤ h−A
′
εBτ

k(h)

= e−A
′ log heBτ

k(h) log ε

= e−A
′ log h+B′hF log ε

Then in (5.33) we obtain

|f(y, y)| ≤ e−A
′ log h+B′hF log ε =

εB
′hF

hA′
.

Proof of Proposition 3.4. Let us define r2 = min{r0, r2}, where r0 is the one of
Proposition 4.1 and r2 will be fixed later. For every x, y such that |x− y| < r,
with 0 < r < r2, the following asymptotic formula holds (cf. Proposition 4.1)

|G1(x, y)−G+(x, y)| ≤ c|x− y|−1+α.

We now distinguish two situations:

1) x ∈ Br ∩ (D1 ∩D2);

2) x ∈ Br ∩ (D1 rD2).

If case 1) occurs then the asymptotic formula (4.14) holds also for G2 since the
hypothesis of Proposition 4.1 are met. From [Al, Lemma 3.1] there exists r2,
depending on the a priori data, such that

(5.34) ∇G1(x, y) · ∇G2(x, y) ≥ c|x− y|−2.

Let us consider case 2). In Br ∩ (D1 r D2) we consider a smaller ball Bρ(0)
with radius ρ where 0 < ρ < min{dµ, r2}. Since the definition of dµ we have
Bρ ∩D2 = ∅. If x and y are in Bρ and denoting by L = ∆ + k2 we have

L (G2(x, y)− Φ(x, y)) = 0 in Bρ

where Φ is the fundamental solution of the Helmholtz equation, with the bound-
ary condition

[G2(x, y)− Φ(x, y)]|∂Bρ ≤ cρ
−1.

Thus by maximum principle

|G2(x, y)− Φ(x, y)| ≤ c1ρ−1 ∀x, y ∈ Bρ

and by interior gradient bound

|∇G2(x, y)−∇Φ(x, y)| ≤ c2ρ−2 ∀x ∈ Bρ/2,∀ y ∈ Bρ.

Thus using Lemma 3.1 of [Al], in Bρ/2(O) we obtain the formula formula

(5.35) ∇G1(x, y) · ∇G2(x, y) ≥ c|x− y|−2 − c4ρ−2.
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Let us consider h < r2/2 and 0 < r < r2. Then we have∣∣∣∣∫
D1

∇G1(x, y) · ∇G2(x, y)dx

∣∣∣∣
=

∣∣∣∣ ∫
D1∩Br(O)

∇G1(x, y) · ∇G2(x, y) +

∫
D1rBr(O)

∇G1(x, y) · ∇G2(x, y)

∣∣∣∣
≥

∣∣∣∣ ∫
D1∩Br(O)

∇G1(x, y) · ∇G2(x, y)

∣∣∣∣− ∣∣∣∣ ∫
D1rBr(O)

∇G1(x, y) · ∇G2(x, y)

∣∣∣∣
The first integral can be estimated as follows∣∣∣∣ ∫

D1∩Br(O)

∇G1(x, y) · ∇G2(x, y)dx

∣∣∣∣
=

∣∣∣∣ ∫
(D1∩D2)∩Br(O)

∇G1(x, y) · ∇G2(x, y)dx

+

∫
(D1rD2)∩Br(O)

∇G1(x, y) · ∇G2(x, y)dx

∣∣∣∣
≥

∣∣∣∣ ∫
[(D1∩D2)∩Bρ(O)]∪[(D1rD2)∩Bρ]

∇G1(x, y) · ∇G2(x, y)dx

∣∣∣∣
−
∣∣∣∣ ∫
[(D1rD2)∩Br(O)]rBρ

∇G1(x, y) · ∇G2(x, y)dx

∣∣∣∣
In conclusion, choosing ρ = h and using (5.34), (5.35) and (3.9) we obtain

|S1(y)| ≥ c1
∫

[(D1∩D2)∩Bρ(O)]∪[(D1rD2)∩Bρ]

|x− y|−2dx

− c2
∫

[(D1rD2)∩Br(O)]rBρ

|x− y|−1|x− y|−1dx− c3
∫

D1rBr(O)

|x− y|−1|x− y|−1dx

≥ c4h−2 − c5d−2
µ − c6.
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