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Abstract

In this paper we prove a local Carleman estimate for second order elliptic
equations with a general anisotropic Lipschitz coefficients having a jump at
an interface. The argument we use is of microlocal nature. Yet, not relying
on pseudodifferential calculus, our approach allows one to achieve almost opti-
mal assumptions on the regularity of the coefficients and, consequently, of the
interface.

Ce document prouve les estimations de Carleman locales pour les quations
elliptiques de second ordre avec un coefficient de Lipschitz anisotrope en con-
ditions de sauts linterface. Largument utilis est de nature microlocale. De
plus, en vitant lutilisation du calcul pseudo-diffrentiel, notre approche permet
dobtenir des hypothses quasi optimales sur la rgularit du coefficient et par
consquent sur linterface.
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1 Introduction

Since T. Carleman’s pioneer work [Car], Carleman estimates have been indispensable
tools for proving the unique continuation property for partial differential equations.
Recently, Carleman estimates have been successfully applied to study inverse prob-
lems, see for [Is], [KSU]. Most of Carleman estimates are proved under the assump-
tion that the leading coefficients possess certain regularity. For example, for general
second order elliptic operators, Carleman estimates were proved when the leading co-
efficients are at least Lipschitz [H], [H3]. The restriction of regularity on the leading
coefficients also reflects the fact that the unique continuation may fail if the coeffi-
cients are only Holder continuous in R™ with n > 3 (see examples constructed by
Pli§ [P] and [M]). In R?, the unique continuation property holds for W2 solutions
of second elliptic equations in either non-divergence or divergence forms with essen-
tially bounded coefficients [BJS], [BN], [AM], [S]. It should be noted that the unique
continuation property for the second order elliptic equations in the plane with essen-
tially bounded coefficients is deduced from the theory of quasiregular mappings. No
Carleman estimates are derived in this situation.

From discussions above, Carleman estimates for second order elliptic operators
with general discontinuous coefficients are not likely to hold. However, when the
discontinuities occur as jumps at an interface with homogeneous or non-homogeneous
transmission conditions, one can still derive useful Carleman estimates. This is the
main theme of the paper. There are some excellent works on this subject. We mention
several closely related papers including Le Rousseau-Robbiano [LR1], [LR2], and Le
Rousseau-Lerner [LL]. For the development of the problem and other related results,
we refer the reader to the papers cited above and references therein. Our result is
close to that of [LL], where the elliptic coefficient is a general anisotropic matrix-
valued function. To put our paper in perspective, we would like to point out that
the interface is assumed to be a C'* hypersurface in [LL] and the coefficients are C'*°
away from the interface. Here we prove (Theorem 2.1) a local Carleman estimate for
operator with leading coefficients which have a jump discontinuity at a flat interface
and are Lipschitz continuous apart from such an interface. From this estimate, under



a standard change of coordinates, a Carleman estimate for the case of a more general
CY1 interface follows. The obvious reason of assuming the interface being C'! is that
when we flatten the boundary by introducing a coordinates transform, the Jacobian
matrix of this transform is Lipschitz and hence the coefficients in the new coordinates
remain Lipschitz on both side of the interface (see Remark 2.2). The approach in [LL]
is close to Calderén’s seminal work on the uniqueness of Cauchy problem [Cal] as an
application of singular integral operators (or pseudodifferential operators). Therefore,
the regularity assumptions of [LL] are due to the use of calculus of pseudodifferential
operators and the microlocal analysis techniques.

The aim here is to derive the Carleman estimate using more elementary methods.
Our approach does not rely on the techniques of psuedodifferential operators, but
rather on the straightforward Fourier transform. Thus we are able to relax the regu-
larity assumptions on the coefficients and the interface. We first consider the simple
case where the coefficients depend only on the normal variable. Taking advantage
of the simple structure of coefficients, we are able to derive a Carleman estimate by
elementary computations with the help of the Fourier transform on the tangential
variables. To handle the general coefficients, we rely on some type of partition of
unity. In Section 2 after Theorem 2.1 we give a more detailed outline of our proof.

2 Notations and statement of the main theorem

Define Hy = xg: where RY = {(z,y) € R*' x R|y =2 0} and xgn is the char-
acteristic function of R. Let us stress that for a vector (x,y) of R", we mean
r=(21,...,7,_1) € R and y € R. In places we will use equivalently the symbols
D, V, 0 to denote the gradient of a function and we will add the index z or y to
denote gradient in R*~! and the derivative with respect to y respectively.

Let uy € C(R"). We define

u = H+U+ +H_u_= ZH:I:U:IU
+

hereafter, we denote >~ , ay = ay +a_, and for R ! x R

L(z,y,0)u = Z Hydiv, , (As(z,y)Vaus), (2.1)
-

where
A:I:('Ivy) = {az:'g(x7 y) Zj:l? LS Rnil? y e R (22)

is a Lipschitz symmetric matrix-valued function satisfying, for given constants Ay €
(0, 1], My > 0,

Molz|? < Ac(z,y)z - 2 < Ntz Y(z,y) € R™, V2 € R” (2.3)



and

[As(@’y) = As(z,y)] < Mo(l2" — 2] + |y — y). (24)
We define
ho(x) :== uy (7,0) —u_(x,0), Vo € R" 1 (2.5)
hi(z) = Ay (2,0)Vyyuy(2,0) - v — A_(2,0)Vyyu_(2,0)-v, Vo € R"1 (2.6)
where v = —e,,.

Let us now introduce the weight function. Let ¢ be

o) = { pily) =y + By*/2, y =0, 2.7)

o_(y) =a_y+By*/2, y<O,

where a, a_ and [ are positive numbers which will be determined later. In what
follows we denote by ¢, and ¢_ the restriction of the weight function ¢ to [0, +00)
and to (—oo,0) respectively. We use similar notation for any other weight functions.
For any € > 0 let

€
ws(xay) = go(y) - §|x|2’
and let, for 6 > 0,

Os(@,y) =15 (07", 0 1y) . (2.8)
For a function h € L*(R"), we define

h(é,y) = / h(z,y)e " dr, £€R"
Rn—1
As usual we denote by H'/2(R"~!) the space of the functions f € L?(R"™!) satisfying

[ telierds < .

with the norm

I By = [ (0 IEPI AP 29)

Moreover we define

~ f(@) = F)I? T”
[flij2mn1 = {/Rnl /Rn1 —\x P dydx ,

and recall that there is a positive constant C', depending only on n, such that

“ /Rm ENF(©)1PdE < [f1; oz < C/

Rn

| lellf©rde,



so that the norm (2.9) is equivalent to the norm || f||z2@n-1) + [f]1/2rn-1. We use
the letters C, Cy, C1, - - - to denote constants. The value of the constants may change
from line to line, but it is always greater than 1.

We will denote by B,(x) the ball centered at x € R"~! with radius r > 0. When-
ever z = 0 we denote B, = B,(0).

Theorem 2.1 Let w and Ay(z,y) satisfy (2.1)-(2.6). There ezist o, a—, [3,00,To
and C' dependmg on o, My such that if 6 < oy and ™ > C, then

ZZTs Qk/ s Pe 2T¢My)dxdy+ZZT3 Qk/ | DFus (z, 0) 22950 g

+ k=0 + k=0 ket
+ZT T% 1/2R” 1 +Z (e uy ) (- O)]%/?,R"*1

<C (Z / [£(2,y,0)(us)[* D dudy + (7O h ]}y o
+ +

3

VL) OB s+ 35 [ [P0z [ iyt
’ 53 Rn—1 6 Rn—1

(2.10)
where u = Hyuy + H u_, uy € C*°(R") and suppu C Bsja x [—0109, 67|, ho and hy
are defined in (2.5) and (2.6), respectively, and ¢s is given by (2.8).

Remark 2.2 FEstimate (2.10) is a local Carleman estimate near the flat interface y =
0. As mentioned in the Introduction, one can derive from (2.10) a Carleman estimate
for more general interfaces: if the interface is locally represented by the graph of a
CYY function g(x), the map (z,y) — (z,y — g(x)) flattens the interface and changes
the operator preserving the Lipschitz character of the leading coefficients. Of course,
the weight function in the new Carleman estimates will be changed accordingly.

On the other hand, an estimate like (2.10) is sufficient for some applications such

as the inverse problem of estimating the size of an inclusion by one pair of boundary
measurements [FLVW].

Remark 2.3 Let us point out that the level sets

{(x,y) € Bjja X (=0ro,010)) : ¢5(x,y) = t}

have approximately the shape of paraboloid and, in a neighborhood of (0,0), Oy¢s > 0
s0 that the gradient of ¢ points inward the halfspace R’y . These features are crucial
to derive from the Carleman estimate (2.10) a Hélder type smallness propagation es-
timate across the interface {(z,0) : x € R"'} for weak solutions to the transmission
problem

L(x,y,0)u=> Hiby -V, us + cruy,
ui(z,0) —ug(x,0) =0, (2.11)
A (2,0)V,yus(x,0) - v—A_(2,0)V, u_(z,0) v =0,
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where by € L®(R™,R"™) and cy. € L>®(R™). More precisely if the error of observation
of w is known in an open set of R%, we can find a Holder control of u in a bounded
set of R™. For more details about such type of estimate we refer to [LR1, Sect. 3.1].

The proof of Theorem 2.1 is divided into two steps as follows.

Step 1. We first consider the particular case of the leading matrices (2.2) inde-
pendent of = and we prove (Theorem 3.1), for the corresponding operator L(y,d),
a Carleman estimate with the weight function ¢(z,y) = ¢(y) + sy - =, where s is
a suitable small number and + is an arbitrary unit vector of R®™!. The features
of the leading matrices and of the weight function ¢ allow to factorize the Fourier
transform of the conjugate of the operator L(y,d)u with respect to ¢. So that we
can follow, roughly speaking, at an elementary level the strategy of [LL] for the oper-
ator L(y,d). Nevertheless such an estimate has only a prepatory character to prove
Theorem 2.1, because, due to the particular feature of the weight ¢ (i.e. linear with
respect to x), the Carleman estimate obtained in Theorem 3.1 cannot yield to any
kind of significant smallness propagation estimate across the interface.

Step 2. In the second we adapt the method described in [Tr, Ch. 4.1] to an
operator with jump discontinuity. More precisely, we localize the operator (2.1) with
respect to the x variable and we linearize the weight function, again with respect the
x variable, and by the Carleman estimate obtained in the Step 1 we derive some local
Carleman estimates. Subsequently we put together such local estimates by mean of
the unity partition introduced in [Tt].

3 Step 1 - A Carleman estimate for leading coef-
ficients depending on y only

In this section we consider the simple case of the leading matrices (2.2) independent
of x. Moreover, the weight function that we consider is linear with respect to x
variable, so that, as explained above, the Carleman estimates we get here are only
preliminary to the one that we will get in the general case.

Assume that

As(y) = {ai(y) Zj:l (3.1)

are symmetric matrix-valued functions satisfying (2.3) and (2.4), i.e.,
Nolz)? < Ax(y)z- 2 < Nz, Y ER, Yz € R” (3.2)
[Ax(y) = A (") < Moly' —¢"|, V9" €R. (3:3)

From (3.2), we have
af (y) >N VyeR. (3.4)

nn



In the present case the the differential operator (2.1) became

L(y,0)u := Z Hydiv, ,(AL(y) Ve yus),
+
where u =Y Hyuy, uy € C*(R")

We also set, for any s € [0,1] and v € R* ! with |y] <1

o(z,y) =o(y) +sy-2=H oy + H ¢,

where ¢ is defined in (2.7).
Our aim here is to prove the following Carleman estimate.

(3.6)

Theorem 3.1 There exist 1y, So, 9, C and By depending only on \g, My, such
that for 7 > 19, 0 < s < 59 < 1, and for every w = Y Hywy with suppw C

By X [—719,70], we have that

k=0 +
1
" Z/ 1D w(, 0Nz £ 5 (e we) (-, Ol oo
k= " *

¢ Ly, O)wl*e dudy + [Va (™0 (wy (-, 0) = w_(-,0))]3 jp s
+ [eTqS(.’O)(AJr(O)V:C,war(xa 0)-v—A_(0)Vyyw_(z,0)- V)ﬁ/z,ﬂ%n—l

+ 7'/ 0| AL (0)V,ywy (2,0) - v — A_(0)V,yw_(x,0) - v|*dx
Rn—1

+T3/ 1 @0y, (2,0) — w_(x, 0)|2dx> :
R~

with 8 > By and a4 properly chosen.

(3.7)

3.1 Fourier transform of the conjugate operator and its fac-

torization

To proceed further, we introduce some operators and find their properties. We use
the notation 0; = 0,, for 1 < j <n — 1. Let us denote Bi(y) = {bﬁ,(y) ?;il, the

symmetric matrix such that, for z = (z1, -+, 2,21, 2,) =: (Z, 25),
Bi(y)2' -2 = As(y)z - 2 | e
GNP R Ny

(3.8)



In view of (3.2) we have
MIZ1P < Bi(y)? -2 < A\HY)R, VyeR V2 eR™H (3.9)

A1 < Ag depends only on Ag.
Notice that

i (y)ap, ()

bjtk(y) :ajtk(y)_ n]ai (y) ) j:k:L 7n_1 (310)
Now let us define the operator
n—1 4
Te(y, Op)us = aij( )@-ui. (3.11)
j=1 nn Y

It is easy to show, by direct calculations ([LL]), that
dive, (AL (y)Vayur) = 8y + To)ap, (¥)(0y + To)us + div, (By(y)Vaouy).  (3.12)
Now, let w =), Hiwy, where wy € C5°(R"™). We set
Oo(z) = wy(x,0) —w_(2,0) forxz € R" (3.13)

01(x) == A (0)Vyywy(z,0) - v — A (0)V,w_(2,0)- v forz e R™  (3.14)

where v = —e,,.
By straightforward calculations we get

@ (1) Dy + T (y,02) )w (2, Y) ly=0 =y (9) (8 + T-(y, 00))w—(x,y) |y=o= —b1(2).

(3.15)

In order to derive the Carleman estimate (3.7) we investigate the conjugate op-

erator of L(y,0) with 7 for ¢ given by (3.6). Let v = e™®w and © = e 7*7%v, then
we have

w=e "y = 5 Hye ™y, = E Hie 790,
+ +

and therefore
e™L(y,0)(e %) = ™ ™ L(y, 0) (e D).

It follows from (3.12) that
€Ly, 0)(e7TF0) =Y He[(9, — 7l + T)ay, ()0, — 7 + Tu)ie]
+

+ Z Hidivx (B:t (y) fo}:t) s
+



which leads to
e™L(y,0)(e ™) = ™ e ™ L(y, 0) (e D)
= ™Y HL[(0y — 7y + Ta)ap, (y)(0y — ¢ + Ti) (e 0)]

(3.16)
+ ™ Z Hydivy (B (y)Va(e ™" vy)).
By the definition of T4 (y, 0,), we get that
n—1 ai y
Ta(y:0.)(e 7" 0s) = TN O0s = Tsv0)
‘_1 nn
= TSy T:t (y, 8;2 — TS’)/)Uj:
To continue the computation, we observe that
(O = P+ Taly, 0)am ()@ = 7ok + T, ) )]
—(8y — 7@ + T (y, 0 — 757))afn(y) (8y — 79+ Ti(y, 0 — 7'57))vi
and
e div, (BL(y)Va(e ™ vy )
n—1 n—1 n—1
3.18
- bﬁ(y)@?kvi — 28T bﬁ( )0y, + 877 Z b (Y)Y kv - (3.18)
k=1 k=1 k=1

Combining (3.16), (3.17) and (3.18) yields

e’ L(y,d)(e )
= Z Hy[(0y = 70 + Ty, 8 — 757)) () (0 — 7@y + Ty, Ox — T57) ) V]

n-1
+ ZHi Z bj,c kvi — 28T Z bjk Y)0;v04Yk + S 22 Z bﬁ(y)’yj’ykvi].

7,k=1 7,k=1 j,k=1
(3.19)
Now, we will focus on the analysis of e™*L(y, d)(e""%v). To simplify it, we intro-
duce some notations:

flz,y) =Ly, 0)(e ™), (3.20)
Bilbry) = 3 B € R (3.21)
k=1
(& y) = ——[Bi(&,&y) + 2isTBL (&, 7, y) — ST B (7,7, v)] (3.22)



and

ti(€,y) = nz_l (V) & (3.23)
W= 2 Y
By (3.19), we have
f(&y) = Z HiPyoy, (3.24)
-

where

Pyoy :=(0, — 79l + it (§+itsv,y))an, () (8, — 7@ + it (€ +iTsy,y)) s

- ai:n (y)C:I: (57 y>,ﬁ:|:
(3.25)

Our aim is to estimate f(z,y) or, equivalently, its Fourier transform f(¢,y). In
order to do this, we want to factorize the operators Pi.
For any z = a + ib with (a,b) # (0,0), we define the square root of z,

TP b
2 \/2(a+\/a2+b2)

Vz =

It should be noted that R/z > 0.
We define two operators

Ei=0,+ it (§+itsy,y) — (7oL + (&), (3.26)

Fy =8, + it (£ +itsv,y) — (19 — /(o). (3.27)
With all the definitions given above, we thus obtain that

Py = Eray,(y)Fids — 040, (ajm(y)\/a)’ (3.28)

Po_=F_a,,(y)E_0_+0_0, (a;n(y)\/g__). (3.29)

Let us now introduce some other useful notations and estimates that will be
intensively used in the sequel.

After taking the Fourier transform, the terms on the interface (3.13) and (3.15),
become

M(€) = 04 (€,0) — 6_(€,0) = ers=06y () (3.30)
and
() = —er@0f; (z)
= a,},(0)[0,04(&,0) — Tai 0, (£,0) + it (£ +iTs7,0)04(£,0)] (3.31)

— a,,(0)[0,0_(&,0) — Ta_0_(&,0) +it_ (£ + iTsy,0)0_(&,0)].
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For simplicity, we denote

Vi (€) = an, (0)[0,04(€,0) — Tar 04 (&, 0) + it (€ +1i757,0)0:(§,0)],  (3.32)

so that

Vi(§) = V(&) = m(§). (3.33)
Moreover, we define
L Bi(§7§7y)
mx(&,y) = | Ty
From (3.9) we have
MIEP < Bi(€,6,y) S THEP, Yy eR, VEeR™ (3.34)
and, from (3.3),
|0, B+(&,m,9)| < Mil¢]ln], V& neR™ (3.35)

where M; depends only on A\g and My. In a similar way, we list here some useful
bounds, that can be easily obtained from (3.9) and (3.3).

Xolé] <ma(&y) < AL,

(
|0ym (&, y)| < Malé], (
(& y)| < AL (3.38
10,1+, )| < Msl¢], (
G2 (&, )] < (NoAr) (€] + 5°72), (
10,C+ (&, y) < My(IE]° + 5°77). (3.41

Here Ay = v/ A\gA1, A3 depends only on Ay, while My, M3 and M4 depends only on )\
and M,.

3.2 Derivation of the Carleman estimate for the simple case

The derivation of the Carleman estimate (3.7) is a simple consequence of the auxiliary
Proposition 3.1 stated below and proved in the following Section 3.3 via the inverse
Fourier transform.

Let us define

L:= sup —m+(£,0)

gern—1\{0} M—(&, 0)
Note that, by (3.36), A2 < L < X\;%. Now we introduce the fundamental assumption
on the coefficients a4 in the weight function. As in [LL], we choose positive o, and
a_, such that
o4

L < —. 3.42
o (3.42)

11



This choice will only be conditioned by A\g. These constants will be fixed.
Let us denote

A= (el + )

We now state our main tool.

Proposition 3.1 There exist 1y, o, p, B and C, depending only on Ay and My, such
that for T > 1y, supp0+(&,-) C [—p, pl, s < sp < 1, we have

1 R
;Z 1050+, T2y + Z 1180+ (&, |72 oy
A& ZHUi &3z Ri)+AZIVi |2+ABZ’7& £,0)|

(ZHPH& MLz + Alm (s )|2+A3|770(§)|2) : (3.43)
Here Ry ={y e R : y =2 0}.

Proof of Theorem 3.1. Substituting (3.24) and the definitions of 7y, 7; (see (3.30),
(3.31)) into the right hand side of (3.43) implies

—leé’z@i &Ly +—Z|!8vi £, HLzRiﬁ ZHUi &Ly
+AZ|Vi |2+A32|vi£0

<C (Z\If €N agey + Aler®00, () + A%erat0g, () ) :

(3.44)
Recalling (3.32), it is not hard to see that

AZ 10,05 (£,0))2 < C (AZ VAP + A% \@i(5,0)|2> . (3.45)

+

Since A% > [€[2r2 4 [€]* + 7, |€ + 67 + [€]r2 +7° < CAP, and A® < C/(IE* + 7).

12



by integrating in £, we can deduce from (3.44) and (3.45) that

> 273 * /n | Doy |* + Z[vai(', O a1 + D_[0yv=( Ol o
T

+ k=0

+ 3 s 0) e 1+Z / V01 (z,0)2dz
+

4 ZT/ 10,0 (x,0)[2dx + ZT?’/ (s (z, 0) Pz (3.46)
+ Rnfl ¥ Rnfl

<O (1B + 000 () s + [V (70000 R s

+7‘/ 627¢(x’0)|491|2d$ + 7'3/ 627¢(x’0)|00|2dx) .
Rnfl Rnfl

Replacing vy = €™+ w4 into (3.46) immediately leads to (3.7). O

3.3 Proof of Proposition 3.1

Let k be the positive number

P (1 - LO‘—) (3.47)

2 oy

depending only on \g and M,.
The proof of Proposition 3.1 will be divided into three cases

(A3l
T_ 280

2
me(e0) _ A3l
(1—r)ay = — 255’

m+<£70>
( ~ I—r)ay

Recall that Ay = v/A\gA; (from (3.36)) depends only on \g. Of course, we first choose
a small sqg < 1, depending on \y and M, only, such that

(1—kK)ay — 28

, VE&eR™

A smaller value sy will be chosen later in the proof.
We need to introduce here some further notations. First of all, let us denote by

P), EY, and F}

13



the operators defined by (3.25), (3.26) and (3.27), respectively, in the special case
s = 0. We also give special names to these functions that will be used in the proof:

er(f, y) = &Zn(y)FJr@Jr(ga y)? W (57 y) = a;n(y)E*@* (67 y) (348)
and, for the special case s = 0,
WL (& y) = al, () FY0, (), w(€y) = an,(y)EY0_(&,y). (3.49)
Case 1: Ale]
2

Note that, in this case, we have |¢| < 2);%s,7, which implies
7 <A < VBAPT (3.51)
We will need several lemmas. In the first one, we estimate the difference Pty — P

Lemma 3.2 Let 7 > 1 and assume (3.50), then we have

|Pyiy (&,y) — PYoo(&y)| < Cst[r(aw + 1+ Bly))|o(&,y)| + 10,0(& v)|], (3.52)

where C' depends only on \g and M.

Proof. First, we point out that

o B:I:(gafay)
Ci(f7y)|s:o = W

I

By simple calculations, and dropping + for the sake of shortness, we can write

Po(&,y) — PY0(&,y) = [+ L + I, (3.53)
where
L = (& +ims7,y) — it(€,Y) am(y) (0, — 7@ +it(E + iTsy,y)) D,
L = (8, —7¢ +it(&y))ann(y) (i(& + iTsy,y) — it(£,y))0,
and

]3 = aT:Ltn(y)C:t(§7 y) - Bj:(f, 57 y)
By linearity of ¢ with respect to its first argument (see (3.23)) and by (3.38), we have

(& +iTs7,y) — t& y)| = [tiTsy,y)] < Ag'sT,
which, together with (3.2) and (3.50), gives the estimate
L] < A5G sT{[9,0] + T(ax + BlyIo] + A3 (1€] + sT)lol}
< Cst{|9,0] + [7(ox + Bly]) + s7]lol}, (3.54)

14



where C' depends on A\ only. On the other hand, by linearity of ¢t and by (3.39), we
have

10y (L€ +i7s7,y) = (&, )| = |0, (L(iTs7, y))| < MssT,
which, together with (3.2), (3.3) and (3.50), gives the estimate

|| < Cs7{[0y0] + [r(ax + Blyl) + s7][o]}, (3.55)

where C' depends on Ay and M, only.
Finally, by (3.22), (3.34) and (3.50),

I3 = [2is7BL(€,7,y) — s°7° B (7,7, y)| < Cst? (3.56)

where C' depends only on ). Putting together (3.53), (3.55), (3.54), and (3.56) gives
(3.52). O

Lemma 3.2 allows us to estimate || P20y (€, )|| 12w, instead of || Priy (&, )| 12rys)-
Let us now go further and note that, similarly to (3.28) and (3.29), we have

PJ?@-‘F = Eiafm(y)Fﬂm - 17+ay (a:n(y)er(ﬁ, ?J)),

PYo_ = Foa} (y)E*0_ + 0_0y(a,,, (y)m_(£,y)).

We can easily obtain, from (3.3) and (3.37), that
[P0y — ESat, (y)FLo,| < ClE||oy] (3.57)

and
P — Fat, (y) E%0| < Cléllo-|. (3.58)

where C' depends only on A\g and M,.

Lemma 3.3 Let 7 > 1 and assume (3.50). There exists a positive constant C de-
pending only on Ao and My such that, if sy < 1/C then we have

Alay, (0)FL04 (€, 0)* + Ao (&, 0)* + AM[04 (&, L2, ) + A0 046, ) L2,
< C[|Pyo4 (€, ')H%2(R+) (3.59)

and

—Alay, (0)E20_(&,0)[* = A%[0-(&,0)|* + AY[o_ (&, )72y + A*|0y0- (&, )72
< CP-o-(& )72 ), (3.60)

where supp(- (€,)) < [0, 3] and supp(i-(€,))  [~55.0]
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Proof. Since supp @+(m y) is compact, 04 (&,y) = 0 when |y| is large and the same
holds for the function w9 (¢,y) defined in (3.49). We now compute

1ESw (&I s

=/ Iayw+(€,y)+it+(€,y)w3(€,y)|2dy+/o [Ty + 78y + mi (& y))*[wl (& y) Pdy

0

—2R /OOO[TM + 7By + my (& y)|0% (6 y)[Owi (€, y) +its (Ey)wl (§ y)ldy.  (3.61)

Integrating by parts, we easily get

o / frevy + 78y + map (6,00 (€, )06, 1) + it4 (€, 9 (€, 9)]dy

. (3.62)
= fro+ mu(E O E P + [ [+ 0y 6.l (€ Py
By (3.50) and (3.37), we have that
6+ 8ym+(£, y) > 78 — Ma|é| > 78 — 2750052 My > 73/2 >0 (3.63)

provided 0 < sy < ===2. Combining (3.51), (3.61), (3.62) and (3.63) yields

B2 (6, ) o,y > / fravy + 7By + my (€ )Pl (€, y)Pdy
ray +ma(,0)]lu (€, 0)

> Cipe / W (€, y) Py + CTIALL (E,0)2, (3.64)

where C' depends only on ).
Similarly, we have that

A2 € Mo,y > / 19,04 (6, ) + it (€, )0, (€, y)Pdy
i / frevs + 18y — mep (6,9)P 104 (6,y) Py + [rovs — mep (6,0)]|o (€, 0) 2
+ /0 (7 — Byma (€, )[04 (€, )2 dy. (3.65)

The assumption (3.50) and (3.36) imply
Tag + 7By —my(§y) > Tag = A el > Tag — 2037780 > Ty /2

provided 0 < sy < ‘“4 2 Thus, if we choose

A2 A3
0<30§min{1,6 2 &+ 2},

AMy™ 4
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we obtain from (3.63) and (3.65)

Ol (6, ) Boey > / 10,04 (6, 9) + it (€, )04 (6, ) dy
T / (04 (€, )Py + Al (€, 0) 2 (3.66)

Additionally, we have that

| st + it i €y
= 5/0 (10,04 (&, 9) 1> = 210,01 (&, )|t (&, v) 04 (&, )| + (&, )04 (& »)) dy
> [T (300 - e Pla e ) dy
e [ . B Sl
>5[ oistenPay=xeleR [ loste P (3.6)

for any 0 < ¢ < 1. Choosing ¢ sufficiently small, we obtain, from (3.66) and (3.67),

Ol (€, ) Bage ) > / 00 (€ )fdy+ A% [ 104(€ )P+ Alos(E O, (3.68)

0

where C' depends only on A\g and M,.
Combining (3.64) and (3.68) yields

A? / 0,0 (€, ) + A / [0 (€, 9) 2 4+ A% (€, 0 + Al (€, 0)]2
0 0
<CE2AR (6 ) o,

where C' depends only on \g and My. From (3.52), since supp(04(§,-)) C [0,1/0]
and (3.50) holds, we have

1P (€ ) B,y < 2AIPYOLE ey

o (AZ / 19,04 (6, ) + A* / |@+<5,y>|2) (3.70)

(3.69)

Moreover, by (3.57) and (3.50),

o0

IS (€ M < 212046 My + O30 [ louenlP. (371

Finally, by (3.69), (3.70) and (3.71) we get (3.59), provided s is small enough.
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Now, we proceed to prove (3.60). Applying the same arguments leading to (3.62),
we have that

1F2W2 (&, )17 w

> / [ra 47y = m_(& Pl (€9) Py — [ra = m (€ OILEOF (520

—00

+ / (7B — B,m_ (€ )l (&, y) Pdy.

—00

By (3.36) and (3.50) and since supp(0_(&,-)) C [—57, 0], we can see that

25’

Ta_ + 71y —m_(&y) > Ta_ /2 = M\HE > Tal /2 — 20 tsg > Ta_ /4 (3.73)

provided 0 < sy < 22 (3.72) and (3.73), it follows
0,0 2 a? 5 [ o 2
FZw2 (& ey 2 57 i w2 (&, y)I*dy — Ta|wl (€, 0)[
> o [Py - CALYEOP. (T
0
Arguing as before and recalling (3.51) we obtain (3.60). O

We now take into account the transmission conditions.

Lemma 3.4 Let 7 > 1 and assume (3.50). There exists a positive constant C de-
pending only on A\g and My such that if so < 1/C' then

AZI‘& |2+A3Z|vi§0|2+/\42|lvi ‘|L2Ri)+A22||avi & Nie@s

=< CZ P02 (8, L2y + CAME)” + CA%no(€)I, (3.75)
+

where supp (04 (¢, -)) C [—35, §] with co = min (o, 1).

Proof. It follows from (3.59) and (3.49) that, for some C' depending only on \g and
MOa
Alwg (6 0)* + A0, (&, 0)* < ClIPri4 (€, )72, ) (3.76)

By (3.32), (3.49), (3.36) and (3.38) we easily get

V+<€) = WO+<£7 0) - a:zrn(()) (75t+(77 O) + er(ga 0)>@+(£7 0),

hence

AV < 2AJwg (§,0)]7 + CA%|04 (€, 0)* < CI[Pro4 (&, )72 ry ) (3.77)
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where C' depends only on A\g and M,.
By (3.30) and (3.59), we have that

A[o-(&,0)]* < 2A%04.(&, 0)7 + 2A%[no(§)* < ClIPr04 (€, )| Z2, ) + 28°m0(§)]%

(3.78)
Using the definition of 7, (see (3.31)) and (3.77), we also deduce that

AV (&) <2AV(O)1* + 2Alm (E) P < ClIPyoy (€, ')||i2(R+) +2Am )P (3.79)
Putting together (3.76), (3.77), (3.78) and (3.79) , we then obtain

AgZIUi (€,0 |2+AZ|Vi )I* < ClIPeo4 (& 0)[Za, ) + 2% 0 (€)1 + 2AIm ().

(3.80)
We now use (3.59) and (3.60) and get

AN N0 ema) + A% D 110,04 (&) 12
+ +
<C Y |IPebw (€, )72y + Alwg (£,0)]” + A% (€, 0)]
+
Arguing similarly as we did for (3.77) and using (3.79) and (3.80) we get
A}jmi |mmi+ﬁ§iji@NmRi

SCZHPﬂ:Ui & M izgey) + 28V (O + CA%J0_(€,0)|*
+ (3.81)

<C (Z || P (€, M2y + Alm (€ + A3|770(5)|2> :
n

where C' depends on A\g and M only. The proof is complete by combining (3.80) and
(3.81). O

Since 7 > 1, it is easily seen that (3.75) implies

A? .
AZWi |2+A32|vi £,0) |2+_Z||U:I: Nz + 7Z|I5yvi(§,-)|liz(Ri)
+

<C (Z 1Pe2(8, )22 ey + Alm (&) +A3|’rzo(£)\2> ,
+

(3.82)
where C' depends on Ay and Mj only.
cae €0 . _ Nk
m4\g, 2
— <7< . .
(1—kr)ay — = 25 (383)
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In this case, by (3.36) we have
< Malel

S0

If | <7 (3.84)

In addition, in view of the definition of (i, (3.34), (3.83), and recalling that Ay =
VoA and s < sg, we have that

3
G212 Sxgge (3.85)
It is not hard to see from (3.40), (3.41), (3.84), (3.85) that

10,7/ Ce| < Mslg], (3.86)

where My depends only on \g and My. Moreover, if we set Ry = Ry/(+ > 0 and
Jy = 4/ (s, then (3.86) gives

|0y Bee| + 0y J | < Ms[E]. (3.87)
Using (3.86), we can easily obtain from (3.28), (3.29) that

|Pyi4 (&, y) — Eval, (y)Frop (€, y)| < ClEllo(€,y)] (3.88)

and
|P-0-(&y) — Flan, (y) E-0-(& y)| < ClE][0-(& y)], (3.89)

where C' depends only on A\ and M,.
We now prove the following lemma.

Lemma 3.5 Assume (3.83). There ezists a positive constant C depending only on
Mo and My such that, if 0 < s < C~Y, B> C and T > C, then we have

AV () + a5, (0)/ (8, 0)0. (&, 0)* + A[lag, () Fy i (€ ) 72(e

3.90
<C||Eyah,(y)Fio (&, ')H%?(Rg ( )
and
AIVA(€) + a7, (0) /€4 (&, 0)04 (€, 0) 2 + A%|o. (€, 0)
(3.91)

LAl / [0 (€, ) Py + A? / 10,04 (6, 9)Pdy < ClIPeoy (€, )| o

provided supp(s4 (£, ) C [0, 3].
Proof.

E+w+(£> y) = [ay + ZtJr(g + i7377 y) - 7-90/—1- - \/a]er(f, y) = IS - I4>
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where I3 = Oywy + it (§ +i75y, y)wy — iJiwy and Iy = Tajw, + 7Pyws + Riw,.
Our task now is to estimate

|1 Evwi (&) f2m,) = / | I[*dy +/ [raq + 78y + Ry?|wy [Pdy — 2%/ L1,dy.
0 0 0

(3.92)
We first observe that

o / LT = — / lrevs + 7By + Ry (€010, (s (€,9) )y
0 0
2 / frovs + 78y + R (€9t (s, ) we (6, 9) Py
- / 76+ 0, R (€. )l (€, 9) Py + [ray + Ry (€, 0)]|wy (6,0
2 / [ray + 78y + R, )]te (757, 9) we (6,9) Py

> / 78+ 0,R (€, ) — A3'st(ray + 78y + Ry)llws (€, 9)|2dy

+ [Tay + Ry(€,0)]Jwy (0%,
(3.93
where in the last inequality we have used the fact that Ry > 0. Combining (3.92
and (3.93) yields

1 Erwi (€, )2,
> /0 [(Tay + 7By + Ry)* + 78+ 0,R(§,y) — A3 sT(Tary + 70y + Ry)]lwy (€, ) dy
+ [rag + Ry(£,0)]Jwi (€,0)]?

A% [ A
26 ; |w+(§,y)|2dy+5|w+(§,0)\2

)
)

(3.94)
provided sg is small enough. Formulas (3.32) and (3.27) give

wi(£,0) = Vi (&) + a,,(0)v/ ¢4 (8, 0)04 (€, 0), (3.95)

which leads to (3.90) by (3.94).
We now want to derive (3.91). Let us write

Fyoy = [0y + it (§+iTsv;y) — 79 + /oy =I5 — I,

where I5 = 0,0, + it (§ +iTsv;y)0y +iJ404 and Is = Tay 04 + 70yl — Ry0g.
Thus, we have

1F404 (€ ) T2y

~ o b , S (3.96)
:/ | I dy—l—/ [Tay + 7Py — Ry]7 |04 (&, 9)| dy—2§R/ IsIgdy.
0 0 0
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Repeating the computations of (3.93) and (3.94) yields
1F2 04 (&) T2y

> / I 2dy + / ey + 7By — RyJP[0. (6, y) Py + / (B — 0, |0+ (€. 9)|2dy

—C’ST/O ey + 7By — Ryllog (& y)Pdy + [ray — Ri(€,0)][04(€,0)]*.

(3.97)
We observe that
R — RG + |G+
o 2
and, by simple calculations,
B:I: (ga 57 y)
< R +2—————, 3.98
which gives the estimate
B+ (57 f; y)
R <y = = : 3.99
+<€7 y) = agn (y) m+(§7 y) ( )
From (3.83) and (3.99), we deduce that
Tar — R(€,0) > 717ar —my(£,0) > 1ar — (1 — K)Tay = kTag. (3.100)

On the other hand, using (3.100), (3.87) and (3.84), we can obtain that for y > 0

Tay + 70y — Ri(§y) =tay — Ry(§,0) + 78y — R (&) + R4 (€,0)
>rray +y(78 — CT) > KTay

provided f is large enough. Furthermore, if 0 <y < 1/, then
[ray + 78y — Ry >+ (18 — 0,R,) — Cst|ray + 78y — Ry| > (kTay)?/4 (3.101)

provided s is small enough and 7 is large enough. Now it follows from (3.97), (3.100),
and (3.101) and arguing as in (3.67), that

O||F+@+(fyy)||%2(R+)

> / 18,04 (€, )Py + A / (0 (€, )Py + Al (6,00
0

0

(3.102)

Finally, by (3.88), (3.90), and (3.102), we can easily derive (3.91) provided 5 > C,
7> C and sy < 1/C for some C' depending on Ay and M,. O

Similarly, we can prove that
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Lemma 3.6 Assume (3.83). There ezists a positive constant C depending only on
Mo and My such that, if 0 < so < C~! and 7 > C then we have

— AVZ(€) = a5 (0)V/C-0- (& 0)* + Allag, (W) E-0-(&, ) I72m_

(3.103)
<C||F_a,,(y ) 0= (& )M Te@.

and

0
CAVE) — ap(0)v/C o (€. 0)F — Ao (£, 0) 4+ A3 / o (€. y)|2dy
e (3.104)

0
A / 10,0 (€. 9)2dy < ClIP0_(€. )| Zage .

—00

provided supp(i (&, ) € [~55.0]

Proof. Let w_(§,y) = a,,(v)E_-0_(&,y) = a,,(y)[0y + it_(§ + iTsvy,y) — T¢_ —
V0 (€,y). If we write
~w-(§,y) = I — I,

where

I; = Oyw_+it_(§,y)w_ +iJ_w_
Iy = taw_ +7fyw_+t (787, y)w_ — R_w_,

we have
0 —
1w (&) [2ae. ) > —2R / Lo Idy

_ / e + 78y + t_(rs7.) — R_(€, )10, (w_(£.9))dy

—00

= / [7'/8 + 8yt_ (TS')/, y) - ay}%— (57 y)] |w— (57 y)|2dy

—0o0

= [t-(r57,0) + Ta_ = R_(&,0)]|w-(&,0)”

0
2/ 7[B — Mss — 2Mss50); " |lw- (&, y)*dy — (Ass + o) lw- (€, 0) 7,

—0o0

hence, by (3.84),

0

1P (6B 2 CA [ ool )Pdy = Ol (6, 0)F, (3.105)

—00

provided s is small enough. Since, by (3.32) and (3.26),

w-(£,0) = V_(&) — a,,,(0)4/C_0_(£,0),
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we get (3.103).
To derive (3.104), we denote

E—@—(€7y) = [9 - IlO7

where

Iy = Oy,0_+it_(&y)o- —iJ_0_,

Lo = Ta_0_+7Byv_ +t_(rsv,y)o_ + R_v_.
Observe that if —%= <y < 0 then

Ta_ + 7By +t (tsv,y) + R_ > 71a_ /2 —\;'sT > Ta_ /4 (3.106)
provided sq is small. Furthermore, by choosing again sy small, we can make
T8+ OyR_ + Oyt_(tsv,y) > 7 (B — 2M550A; > — M3s0) > 0. (3.107)
With the help of (3.106) and (3.107), and arguing as in (3.67) we get

CllE-0-(& )2m

P o e [0 ) ) ) (3.108)
> [ iy + 80 [ o6y - Alo- (& 0)
Using (3.103), (3.108) and (3.89), we obtain (3.104) provided 7 is large. O

Lemma 3.7 Assume (3.83). There exists a positive constant C, depending only on
Mo and My, such that if sg < C~1, 8> C and 7 > C then we have

AZH/i |2+A32|Ui (€0) |2+A3Z||Ui ||L2(]Ri +AZ||8 (S )HL2 (Ry)

<C (Z 1Pe2(8, )l Loy + MmO + Ag\m(f)?) )
+

(3.109)
provided supp(0+(¢,-)) C [—35, %] with co = min (a_, 1).
Proof. We obtain from (3.91) that
Aw (€,0)] + A0, (£,0)* < Cl|Pyo4 (€, )||L2 (Ry)" (3.110)
On the other hand,
AV < 2A]wi (€, 0)] + CA%|04.(€,0)* < Cl[Prig (&, >||L2 (Ry)* (3.111)
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Using the definition of 79 and (3.110), we see that

Ao (&, 0)* < 20%10.. (&, 0)* + 20%no()|* < ClIPr04 (&, L2, ) + 2A°%m0(E) .
(3.112)
Summing up (3.110) and (3.112) yields

A?Y [02(&,0)]° < ClIPLoy (€, ) [Faryy + 20°%mo (). (3.113)
+

Likewise, the definition of 7; and (3.111) lead to

AV < ClIPy o, (6, ) Boge) + 2Am (O (3.114)
Putting together (3.111), (3.113), and (3.114), we deduce that
AJZ [04(8,0)* + AZ Ve(©)I* < CIPi4 (& Ii2.) + 28%n0(€)1* + 2AIm ().

(3.115)
Finally, we first use (3.91) recalling that A > 7 > 1, (3.104), and then (3.114), (3.115)
to get that

AP Z 1028, 2oy + AZ 10,02 (& NI

<C Z 1P (& )2y + AV-() = a7, (0)R-(£,0)0- (&, 0)* + A*[0_ (&, 0) [

<C (ZHPivi M@y + Alm(€ )!2+A3|770(§)|2> :

(3.116)
The proof is complete by combining (3.115) and (3.116). 0

We conclude Case 2 by observing that we can write (3.109) in the form

AZM |2+A3Z|vi50|2 A4Z||vi ||L2Ri>+AQZ||avi &N Eam)

<C (Z 1Pe2(8, )l 22y + MmO + Ag\m(f)?) ;
+

(3.117)
where C' depends only on A\g and M,.

Case 3:
m4 (f? 0)

g (3.118)

In this case, we have

20T

S ot Lo (from (3.36), (3.47)).
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From the definition of (4 (see (3.22)) and the inequality

B A
Bi(&,6y) = *r*Be(v,7:9) 2 Ml = A s > el
that holds for sq is sufficiently small, we can derive the estimates

[ Re. > e,
Ry > 22[¢,
| Je| < 4);%sT, (3.119)
0,Gel < My (14+ 2820 6 = M,

| 10,0/Cel < 3] = Mlg.

Lemma 3.8 Assume (3.118). There exist a positive constant C' such that, if so <
C~Y and T > C, then we have

Afwy (€, 0)|2 +A2/ |w+(§,y)|2dy—i—/ |c9yw+(§,y)|2dy < C||E+W+(§7'>||2L2(R+)-
0 0
(3.120)

Furthermore, if supp(0—(§,-)) C [—35,0], then

0 0
AQ/ [0-(&,9)]*dy +/ 10y0-(&,y)Pdy < C||E-0_(&, )| 72y + CAlo-(£,0)%.
(3.121)

Proof. We write
Eiw, = Iy — Ly,

where

I = Oywi + ity (§ y)ws — i wy,
Ly = Tajwy +7Bywy + Riwy + (757, y)wy,

and thus
[ Erw (85 -)] ‘%2(&)

:/ 111 *dy + / [Touy + 78y + Ry + tu (157, y)* |lws (& y)|Pdy — 2%/ L1 115dy.
0 0 0
(3.122)
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We first estimate

—2%/ Illf12
0

- / (76 + 0, R (€, ) + Oyt (757, 9) | (€, 1) Py
+ [ray + Ry (€,0) +ty (757, 0)]|we(&,0)? (3.123)

& A
> —(Mslé| - Masr) / s (&, y) 2y + (m 2 A) e (6,0)
> _CA / (6, 9) Py + CAlws (6, 0),

provided sy is small enough. Combining (3.122) and arguing as in (3.67), we get
(3.120). Likewise, we obtain (3.121). O

Lemma 3.9 Assume (3.118). There exists a positive constants C, depending on
o, My, such that if so < C™', 7> C, and B > C, then, for supp(d.(&,-)) C [0, %],
we have that

A2 o)

T Jo

1 o
e € )Py [ 10,0 (€ )Py < O (IF04(6 B,y + Alo (€ OF)
’ (3.124)

Proof. Write
Foo, = Lz — Iy,

where

Ly = 0,04 + ity (§ y)vy + i 04
Ly = Tay 0y + Tﬁy@—i- — R0y + t_:,_(TS’y, y)@-i-

We have
1F04(€ ) 2wy

- / a2y + / Pl (€ p) Py + [ras — Ry(6,0) + 14 (s, 0)][o (&, 0) .

(3.125)
where p = [-Tay — 70y + Ry —t (757, y) > + (78 — O, Ry + Oyt4 (157, 9)).
We claim that
A2
p=C—. (3.126)
T
By (3.119) and (3.118), we deduce that for 0 <y <1/5
Ry — 1oy — 78y — t(757,y)
(3.127)

A A
>1El = g + 14 A5 s0) = Tl
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provided |£] > Cor = 4\, (ay +14+231s0)7. By (3.127), we can easily obtain (3.126)
in the case of |£| > Cyr with 7 large. On the other hand, when |£| < Cy7, we can
estimate

p>TB—0,Ry + 0yt (1s7,y) > 78 — M7Cor — MzsT > -7 > (3.128)

provided f is big enough. The estimate (3.124) is an easy consequence of (3.125) and
(3.126). O

Lemma 3.10 Assume (3.118). There exist positive constants C' and py, depending
only Ao and My such that if supp(v_(&,-)) C [—p1,0] then

Ao (€, 02 + Ao (&, Magay < CINF-w (€ Bage (3.129)
Proof. From (3.48), we have

Supp(w—(€7 )) C Supp(f}—(gv ))

We first compute
0
R [ lel(Pwody

0 0
:ﬁ/mwu@@—/ Ellra + 78y + t_(rs7y) — R (€ )] ?dy

—00

0
5 ello- (€ 0P + [ [€llR-(&5y) ~ ra- — 8y — t-(rsv. )Py

(3.130)
We want to show that
C.lé| < R_(&y) —Ta_ — 18y —t_(787,9). (3.131)
Assume that (3.131) is true. From (3.130) and (3.131), it follows that
1 0
Sl (€. OP + [ CuléPlu- (€ o)y
0
g%/ €] (Fw_ o (3.132)

C* 0 0
<& [ P wPay + © / FLw_(€,y)%dy,

2 —00 —00

which implies (3.129).
To establish (3.131), we first note that, by simple calculations, we obtain

‘m*(fao) - R*(gao)’ < 08‘5’7
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which can be used to derive for y < 0

R_(&y) —Ta_ — 7By —t_(T57,9)
>m_(£,0) — |[R-(£,0) —m_(£,0)| — |[R_(&,y) — R—(£,0)| — T — A3'7s (3.133)

m_(£,0) = ra_ — C(s + |y])IE].
On the other hand, by the definition of L, (3.36) and (3.118), we can estimate

my(€,0) Loa_ Aok
(3.134)

Combining (3.133) and (3.134) yields (3.131) provided s and |y| are small. O

m_ (57 O) -

(1-— /<c)0ur

Lemma 3.11 Assume (3.118). There exists C, depending only on \g and My, such

that if so < C~ ', 7> C, 8> C, then for supp(v,(,-)) C [0, %] we have

AV (&) + a7, (0)V/ €4 (&, 00 (&, 0)]* + A2 F o4 (&, )|

(3.135)
<C (I1Pv 24 (&, Mgy + 21104 (€ Racey))
Furthermore, if supp(0_(&,-)) C [—p1,0], for p1 as in Lemma 3.10, then
AV_(€) = a,,(0)7/C-(£,0)0-(£,0)]* + N[ E_0_ (&, )72y
(3.136)

<C (I1P-0- (& Mgy + A2 (€ ey -

Proof. Inequality (3.135) follows from (3.120) and (3.88). Similarly, (3.136) follows
from (3.129) and (3.89). O

Lemma 3.12 There exist C, py, depending only on \g and My, such that if so < C71,
T>C, B> C then for supp(v+(&,-)) C [—pa, p2] we have that

AZ|Vi |2+A32‘Ui £,0) |2+_Z|’Ui ||L2(]Ri ZHain ||L2 (Ry)

<C (Z || Pate (& )22y + Alm (€ + A3|770(§)|2> :
: (3.137)

Proof. By (3.119),
Al (0)v/ €4 (8,0)04 (8, 0) + ay, (0)1/ ¢ (€, 0)d(
>Alay, (0)R+(8, 0004 (€, 0) + ap, (0) R (€, 0)01. (6,0
> 207046, 0)

£,0)”
)

| 2
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hence, by (3.30) and (3.33) we have
1
5A3|ﬁ+(£70)|2
<AL (0)V/C i (€,0) + a7 (0)3/C(0- (€, 0) +no>\2
:A|V+ —|—& ( ) C+U+ f O +ann \/_U 5 O -—h = nn\/zn0’2
<4 (AIV; + @5, (0) VG 24 (&, 0)F + AV = a7, (0 ﬁvf (& )2 + Al * + Al ?)

(3.138)
By (3.135), (3.136) and (3.30) we get

A3 [ (€, 0)

+

<C (lepivi MLz@e) + A0+ 2e, ) + Almi(€ )!2+A3|770(§)|2> :

(3.139)
Again from (3.135) and (3.136)
A[VL]?
<2AV; 4 at, (0)1/C 04 (€, 0)* + 2Aar), (0) /€04 (&, 0)
<2V, + a0, (0)3/ €0y (€, 0) 2 + CAPJo (€, 0)|2
SOV, + 0, (0)v/Cy0 (€, 0) 2 + € (AIV- = g, (0)V/C0- (6,0 + Al (€)1 + Amo(©) )
<C (ZHP:HH: & M ieme) + A0+ (E T2y + Alm(€ )|2+A3|770(€)|2> :
(3.140)

By (3.33),
AZM ©Pr<c (ZHPivi &2y + A2N04 (6 )| To@, ) + Alm(é )|2+A3Ino(§)l2) :

(3.141)
Combining (3.121), (3.124), (3.135) (3.136) and (3.139), we deduce that

A4
_ZHUi ||L2 (Ry) ZHa 0+ (€ HL2 (Ry)
<C <A2HF+@+(£7')H%2(R+) + A E_o- (€ )IZ2@ +A3Z\@i(€,0)!2> (3.142)
+

(Z!\Pivi MEaey + A104 (€, 2y + Alm(E )|2+A3|no(§)l2>
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Finally, putting together (3.139), (3.141) and (3.142) yields

AZ|V|2+A3Z!%€0|+—ZI|W& HLzRi—'__ZHU:‘: NLz@e)

<C (Z |[Pros(€, ')||%2(Ri) + Al [P 4 A%[no|* + A? Z |[0£(&, ')||%2(Ri)>
+ i

that gives (3.137) if we take T large enough to absorb the term CA? Y~ [|04(&, )| \%Q(Ri).
0

Now are ready to finish the proof of Theorem 3.1. Combining all cases (3.82),
(3.117), (3.137), we conclude that

A4
AY VAP +AY [02(60))° + ZHa 0+(¢ HLQ(Ri)_'_ ZH%(&')H%%M)
+ + +

<C (Z | Pets (&, M 2@y + Alml® + A3|770|2> :
+

(3.143)
Recall that
Pyiy =(0y — Tl + it (€ + iTsy,y)) am, () (Oy — Tl + it (€ +iTsy,y))0x
— A, (Y)Ce (€, y) 0,

which implies
020, < C (|Prby| + Al0yix] + A2[0]),

where C' depends only on A\ and M.
Therefore, we can derive

1 N
;Z 10502 (&, )72y
+

<C <Z’|Pivi ||L2 (Ry) +_Z||Ui ||L2 ®e) T ZH@ 04 (€ ||L2 Ri)) :

(3.144)
The estimate (3.43) follows directly from (3.143) and (3.144). O

4 Step 2 - The Carleman estimate for general co-
efficients

Having at disposal the Carleman estimate when AL = A, (y), we want to derive it
for A4(x,y). The main idea is to ”approximate” Ay (x,y) with coefficients depending

on y only. For this purpose we will make use of a special kind of partition of unity
introduced in the next section.
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4.1 Partition of unity and auxiliary results

In this section we collect some results on a partition of unity that will be crucial in
our proof. In particular we will carefully describe how this partition of unity behaves
with respect to the function spaces that we use.

For any r > 0 and = € R"!, we define Q,(z) = {y e R" ' : Jy; —a;| < r, j =
1,2,--+ ,n—1}.
Let ¥y € C5°(R) such that

0<1vy<1, suppd C (—3/2,3/2) and vy(t) =1 fort € [-1,1].

Let ¥(z) = Yo(x1) - - - Jo(xp—1), so that

supp ¥ CQ3/5 (0) and Jo(x) =1 for x € Q1(0).
Given u > 1 and g € Z" ', we define
Ty =9g/n
and
Vgu(x) = I(p(z — x4)).
Thus, we can see that

supp Vg, CQs/9 (2g) C Qoyu(y)

and
|Dk19g),u“ S Cluk(XQS/Zu(mg) - XQI/M('IQ))7 k = 0’ 17 27 (41)

where C;] > 1 depends only on n.
Notice that, for any g € Z"1,

card ({g' € Z"" : supp ¥y, NsuppV,, # 0}) =5""". (4.2)

Thus, we can define

D) = Z Jgu>1, z€R™! (4.3)

gezn—1

By (4.1), we get that B
D49, < Copt, (4.4)

where C5 > 1 depends on n.
Define

Ngu(T) = ﬁgﬁu(x)/ﬁu(x)a zeR",

32



then we have that

Dgezn—ilgn =1, € R
Supp g, © Q?’/?u(xg) - Q2/u($g>’ (4.5)
|D*ng ul < O3 Xy )0 (2g),  k=0,1,2,

where C3 > 1 depends on n.

In Section 2 we have recalled the definition of HY2(R"!) and its seminorm
[-]1/2,rn-1, in what follows we will also need the seminorm

2

e = [, [ G ] 40
where Q, = Q,(0).

Lemma 4.1 Let f € C°(R" ') and suppf C Qz,/a for some r < 1. There exists a
positive constant C, depending only on n, such that

c! C
g+ = [ 1@Pds < (FRpens < (g, + 5 | 1F@Pde. (47
Qr Qr

Proof. It follows easily from (2.9) and (4.6), that

[f]?/z,Rnfl =1+ [fﬁ/z,@ra (4.8)

_ 2 2
1_2/ / |f(z) — f(v)] dyd:r:—Q/ / |f(y)] dydz
R0\, Jo, T —y" R*1\Qr J Qg4 |z —y|"

Note that there is a positive constant C,, > 1, depending only on n, such that, for
r e R\ Q, and y € Q3,/4, we have

where

Collal < |z —yl < Culal,
hence, by using Fubini theorem, there is a constant C' depending only on n, such that

c! C
— [ V@Pdy<1<— [ |f(y)lFdy,
Qr Qr

that, together with (4.8), gives (4.7). 0

Proposition 4.1 Let {¢;} ezn-1 be a family of smooth functions such that supps, in
contained in the interior of Qs2,(x,), then

[ Z gg]%/Q,Rnfl <C Z (<) 1/2.Q3 (zq) ) T Z / )‘gg 5 (4.9)

geZn—1 gezZn—1 gezn—1

where C' depends only on n.
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Proof. Let 2’ = px and v’ = py, then

| 2 gezn—15o(2) = D gezn1 o)
2 _ ezn-1 59 ezn—1 5S¢
[zg: §9]1/2,Rn71 = /Rn1 /Rnl 2 = 4 dydx

yl"
2
_lu2n/ / | deznfl gg(xl/,u,) - ;gean gg(y//#’” dy/dl’/.
Rn—1 JRn—1 |$ - y |1’L
In what follows we continue to denote the functions ¢,(x/u) by ¢,(z) and, for any
r = (21, ,x,_1) € R" we denote by ||z|| = max{|z;| : j=1,--- ,n—1}. Note
that suppsy CQgyp (9) = {x € R*™ ||z — g|| < 3/2}.
We write
2
n—1 Sg\L) — n—1 S,
/ / | 2gezn1 55(@) = Lgeznt o)l dedy = I, + I, (4.10)
Rnfl Rnfl xr — y‘n
e Sz 90) ~ Lz s 50)F
n—1 Sg\T) — n—1 S,
[1 ::/ geEZN—1 5g geEZN—1 5g Yy X{lle—pll<1} d:cdy
R2(n—1) [z —y["
2
n—1Sg\L) — n—1 S,
[2 ::/ |ZgEZ 1 g( ) ZQEZ 1 9<y)| X{Hx_y||>1} d:lj'dy
R2(n—1) |z —y[" B

Let us first estimate I5. It is not hard to see that

he [ AT P A D o)
2= R2(n—1) |I—y|n

|2 gezn So(@)?
—4/RQ( . e X{|:c—y||21}dwdy§01/ | Y @),

|x - y|n Rn—1 gEZn_l

X{|lz—y||>13dxdy

where ey =4 [, |y[™"dy.
Now, since we have card ({¢g’ € Z"! : suppsy Nsupps, # 0}) =51, we get

| D w@P <5t Y ()

gEZ”_l gezn—l
so that
L <5 e Z/ 5 (2) Pdz = 5" ¢y Z/ I, ()| 2dzz. (4.11)
geanl Rn—1 gEZn71 QQ(Q)

Concerning I;, we can see that

Lo Do) TugsOf
' R2(n—1) |33 - y’n

| D ez Sg(2) = - cpn so(y)?
<> / / g 7 e X{llo—yll<1ydyda.
Q2(g) JR?—1 -

gezZn—1 v y|n

X{||z—y||<13dzdy
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Let us note that for each x € Q2(g) we have
2 ale)= 3 al)
hezn—1 llh—gll<3

and
dist)|(Q2(9), Q2(h)) > 1, for ||g — hl[ > 5,

where dist).[|(Q2(9), Q2(h)) = min{||z —w|| : 2 € Q2(g), w € Q2(h)}. Therefore, we
have

2
/ | 2 g—al1<3 So' () = 2o grezn— Sgr (U)] dyde
2(h)

|z —y|"

11<Z/

gezn—17 Q2(9) ||h—g||<a

_ / / |2Hg —gl|<3 S (@) — ZHg”—hH<3gg”(y)|2dydx‘

QEZ” L|h—glI<4 o=yl

Now we note that if [|h — g|| <4, y € Q2(h) and = € Q2(g) then we have

Yo =Y W)

lg" —h||<3 llg”—gl|<7
and
Yo o)=Y ).
llg’—g||<3 llg’—glI<7
Thus
2
" S’ \ L) — Gt y
L Y / / 12206 g||<7(g(i ()l dyde
gezn-17Q2(9) || g]|<a [z =yl

<1571 |§g” — g (Y >’2d d
DD - ,m_y,n ydz.

g€Z" =1 [|h—g||<4||g" —g||<T7

Since Q2(h) C Qg(g) when ||h — g|| < 4, by interchanging sums and by using trivial
estimates from above, we obtain

L<it YN / / o9 (2) = sy )|2dydg;
B Q2(9) 7 Qs( ‘w_y‘n

geZ™ 1 ||h—gl|<4[lg" —gl|I<7

2
(] — G/’
<(9-15°)"" ) / / G gn( )l dydzx (4.12)
Rn—1 JRn—1 y|

g// czn— 1

<C > {c {2aan / » r<g~<x>\2dx},
Q2(g

QNEZ” 1

(we used (4.7) in the last inequality) where C' depends on n only. Combining (4.11)
and (4.12), the proof is complete. O
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Proposition 4.2 Let F € C®(R""Y) N HY2(R"1) with supp F C Q3/2,(x,), and let
a be a function satisfying

la(2)] < Ea,  a(z) — a(2’)] < Kol — 2, (4.13)
for z,x,x’ € suppn,, Nsupp F and E,, K, positive constants. Then, there is a
constant C' depending only on n such that,

0P, 0 < C | B2y + Ko™ /Q L IFwPay) . )
Proof. By (4.6),
(2) —a(y)F(y)I
aF)? 2@ / / dxdy
[ 1/2Q (zg) 2 2 (24) |x_y|n
2 Fl(r F 2 F 2 _ 2
of (\a ot o) P, [FOP ) o)1) o,
Q2(33g QQ(wg ‘:C_y‘ ’$—y’

<C E2[F]1/2Q2(xg)+K2 —1/@ ( )|F(y)|2dy

Proposition 4.3 Let f € C*(R" )N HY2(R"™1). Then

S Uty <€ (st [ 150FG). (@19

gezn—1 Rn=

Proof. By (4.6),
2 _ 2
[fngu]l/ZQz (zg) _I+2/ / g (@) |71/ () = J(y) dxdy, (4.16)

[z —yl"
where
=2 R ) ) e ey
QZ (wg QZ (wg

By (4.5),

I< 2C§u2/ / 5 dady < Cu/ |f(y)|*dy. (4.17)

Q2 (zg) 2 (zg) |ZE - y| Q2 (zg)

If we now use (4.2) and add up with respect to g € Z"~! we get (4.15). O

Proposition 4.4 Let f € C=°(R"!)N HY2(R"). Then

YU Vxng,u]?/z,cz%ug) <C (N2[fﬁ/2,Rn1 + /R L (y)|2dy> : (4.18)

gezn—l

We omit the proof that proceeds in the same way as that of Proposition 4.3.
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4.2 Estimate of the left hand side of the Carleman estimate,
I

We are ready to derive the Carleman estimate for general coefficients. In order to
make clear the procedure that we follow let us introduce and recall some notation
and some definitions. Let 0 < § < 1 and define

Ao (2,y) == As(dz, 0y), (4.19)
Ls(z,y,)w = Z Hidiv, , (A% (2, y) Ve ws), (4.20)
+

and the transmission conditions

{Qg(x) = w4 (z,0) —w_(z,0),
01(z) = A% (z,0)V, ws(z,0) - v — A (2,0)V, yw_(z,0) - v.

Next, with z, = g/ g € Z" !, we define

AL (y) = AL (g, y) = A0z, 0y),
£6,g(y7 a)w = Z:I: H:I:divac,y<Aig(y)vx,yw:t)'

It is not hard to observe that
Xolz]2 < A% ()22 < MYzt Wy e R, Vz e R
and
5
|AY () — A% (y)| < Modly' — yl.

Concerning the weight functions, let us introduce the following notation.

he(z) := —e|x]?/2,

H.(z,1y) :=elz — x,4]?/2,

Ve(@,y) = p(y) + he(w),

Veg(2,y) = 0(y) + Vihe(zg) - (x — 24) + he(zy),

where ¢(y) is defined in (2.7). Moreover assume that o, ,a_, [ are fixed positive
numbers such that 8 > £y and \,' < =t in such a way that condition (3.42) is

satisfied by the operator Ls4(y, d) and Theorem 3.1 holds true for such an operator.
Note that

Veg(r,y) — Ye(r,y) = Ho(z,24), (4.21)

so that, trivially,
e < e < 2TV TV i Q (x,). (4.22)
I
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Let us define

k=0 +
1
+ 7_3214/ \Dkwi(x O)|2 271)e (z O)d$
+ ZTQ eTVe( O)wi( 0)]1/2Rn .
+
+ Z[ay@ws’iwi)( 1/2 Rn-1 T Z (™ ws)(- 0)]?/2,11@*17
+

that will be used to estimate the left hand side of (2.10).
In the present subsection we prove that if suppw C U := By s X [=710,70] and if
we choose

7>1/e and p= (e7)"?, (4.24)

then
E(w) < CY 2 cpm1 E(wng,) + CRy, (4.25)

where

(er WZ/ 2750 (0, (, 02 + |V ,ws (2, 0) 2 + 72| (,0)[2)da

and C depends only on \g, M.
Now, in order to obtain (4.25) we estimate from above each term in (4.23). By
(4.5), we can write

wie(r,y) = > wi(z, y)ngu(x). (4.26)

gezn—l

From (4.2), (4.21) and (4.26), we can see that

2
273_%/ | DFw. [2e*™Ve dady
k=0 RY

(4.27)
<C Z ZT?’ 2k/ |DF(win, ) |?e* Voo dady
g€ZN—1 k=0
and )
Z 32k / |D*w, (z, 0)|262w5(x,0) dr
k=0 o (4.28)

<O Y S [ D)o O

EZ" 1 k=0 R™— 1
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where C' depends only on n.
Using (4.9), we obtain

[v:c(er]Ew:t)(V0)]%/2,]}%”—1 = [Vz(eTwe Z lU:tﬁg,u)('vO)]%/Q,R"—l

gezn—1

<C Z [vx(ewsng,uwi)('v O)]%/Q,Qg(mg) + M/ ‘vx(ewsng,uwi)@? 0)|2d37

n— Q2 z
gEZ 1 ﬁ( g)

(4.29)

Since

V(€™ g pws ) (x, 0)
:ewf(gj’o)ngﬂvwwi(x, 0) + ewg(m’o)wivccng,#(x, 0) — (57’x)ew5(z’0)ng#wi(a:, 0),

by (4.2), we have that

S on [V )0l
(4.30)

<c (u [ O 0o g [ o>|2da:) -
Rr—1 Rn—1
Let us now state and prove two useful estimates.

Lemma 4.2 If supp f C Q3/2.(x,), then we have that

[fe < COR jppns < C ([fewg’g("o)]%/2@2/”(%) + M/Q ’f(x)PeZTws(x’o)dﬂ?) :

2/M($g)
(4.31)
and
et s < C ([few**“)J%/z,wag) | |f(:v)!262w5‘””’“)dx> ,
Q2/M(xg)
(4.32)

where C' depends only on n.

Proof. For sake of shortness, we only show the proof of (4.32). The proof of (4.31)
is similar but slightly simpler.
Denote by

F = fe'rwe(.,o)’ a = e (Weg—%=)(-0)
so that suppl’ C Q2/,(z4) and

feeot0) = g F.
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Notice that, by (4.21) (and recalling that e7 = p?), we have

la(z)] < ™Y and |Va(z)| < 2uv/n — 12" for every € Qa/,(zy).

We can now apply Lemma 4.1 and, then, Proposition 4.2 (with £, = ¢! and
K, =2pyv/n — 1e21) and get
[feT¥est 0)]1/2 Rr-1 = [th/z Rn-1
S C <[CLF]%/27Q2/M($Q) + ,LL/ |U/F|2dl‘>
QQ//J,(mg)
<C ([F]%/Q,QZ/H(%) + M/ |F|2d$> ;
QQ/;L(ZQ)
that is (4.32). O
Lemma 4.3
[Ie'”/%:c )/)79 uwi]l/Q Qa/p (z4) < C([ TPe (- )7797Mw:t]%/27@2/“(xg)
1 (4.33)

+ — / |7]g,,uw:|: (1.7 O)‘2€2ﬂbe(:s,0)dx> '
QQ/;L(Ig)

Proof. We apply Proposition 4.2 with a(r) = z and F(x) = ™=@y, (z x,
Since supp w4 (+,0) C By, we have, with the notation of Proposition 4.2, E, =1/
K, =1, so that (4.33) follows. O

g
H_

Let us now estimate >, > 1 [Va (e w2 ) (-, 0)]%/2@;(%) from (4.29).
m

Since

V(€™ g pwa) (2, 0) = €™V (ng w) (2, 0) — (e7a)e™n we (2, 0),

we can deduce from (4.2), (4.31) and (4.33) that

Z [Va:(ewsngwwi)('v0)]%/2,@22(%) <2 Z [ews(.’o)vw(ng,uwi)@0)]?/2,@;(%)
n I

gGZ”*l gGanl
+ 2(eT)? Z [xewf('mng,uwi)(',0)]@2,@2(%)
gezn—1 Z
<C Z [e7¥=9 (0, (nguwi)]l/2622 (2g) + 1 Z / o (g s ) 227 @0 gy
gezn! gezn—1 7 Q2/u(®
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+(€7’)2 Z [ TYe (- 0)779 Mwi)]l/Q Q2 (z4) + I[L 57_ Z / |’]’/g7uwi‘2627"‘/15($,0)d$

gezn—1 gezn—1 Q2/u(zg)

<C Z [eTws’g("O)Vx(ng,uwi)ﬁ/z,cgg(xg)+(57)2 Z [eﬂp&g(.70)ngyﬂwi)]%/2,Qg(xg)
W n

g€Zn71 gEZ"71
—l—,u/ @O 7w (x,0))2dx 4+ (= + ,LL)(€T)2/ 2@ gy, (x, 0)|2d.r)
Rn—1 Rn—1

(4.34)
Combining (4.29), (4.30) and (4.34), and recalling that e7 = p? (and that g > 1) we
have

(ews Zwing,uxw 0)]%/2,]1%”*1 <C Z [ewg’g(.’o)vz(ng,uwixw O)H/z,@;(xg)
g 122

gEZn—l

+ Z [emveat Oy w (-, 0)]%/2,@2(239)_‘_#/ V0|V ywy (x, 0) Pda
m

gezn—1 ket

- u5/ =@ |y (z,0)| d:c)
Rn—1

(4.35)

In a similar way, we estimate the terms [0, ("< >y Wingu) (- 0)3 Jogn—1 and

T2 erv<t0 Y WiNg )7/ e and finally get (4.25). Notice that in deriving (4.25) we
make use of pt = (e7)? < 72

4.3 Estimate of the left hand side of the Carleman estimate,
I1

In this section, we will continue to estimate the upper bound of Z(w) using (4.25).
The task now is to connect the estimate to the operator L(z,y,0) given in (2.1).
To this aim we apply Theorem 3.1 to the function wn,, with the weight function
Vg = 0(y) — ey - &+ £lx,y]?/2. In order to do this we notice that if suppw C 4 :=
Bijs % [—=ro, 7o) and p > 4 then either |z,] < 1 or suppn,, N B2 = 0 so that, in
both the cases, we can apply Theorem 3.1.

By applying (3.7) and by adding up with respect to g € Z"~!, we obtain that

> E(wng) <C >0 (@) +dP) +dS)), (4.36)

g€Zn71 gGanl
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where

dé}; - 1Ls.4(y,0) (wng,u)IQeQwavgdxdy,
Rn
d? —3

gp T /]R » ‘ewg’g(x’o)‘gﬂ;g,u(x)|2dx + [vx(ews’g‘gﬁ;g,u)('v 0)]?/2711@”—17

A= [ N0 o)+ [ D O

where we set

00.9.u(7) = wi (2, 0)ng u(x) — w_(2,0)ny . () = Oo ()0 15 (4.37)

Orig (@) := Ai’g(o)vx,y(erng,u) V= Aég(o)vz,y(w—ng,u) v (4.38)
We will estimate the three terms of (4.36) separately.

Estimate of > ;.. d él,)k

By (2.3), (2.4), (4.5) and (4.19) we obtain that

1 Ls.(y, 0)(weng,u)|
<[Ls(x,y, 0)(wangu)| + |Ls(x,y, 0)(wing) — Ls4(y, 0)(weng,.)|
Nyl L5(, Y, 0) (we)| + Cng u| AL (2, y) — A% (24, y) || D*w |
+CXQ%(xg) (n|Dw| + p?lwl)

Sng,#\ﬁg(x,y,a)(wiﬂ + CXQz(xg) (5/“L_1|D2wi| + :U’|Dw:t‘ + /LzlwiD )
m

which, together with (4.2), (4.22) and (4.24), implies

> dh<0y / ol ) ws )2 2 edady + CRo, (4.39)

geZn 1

where
Ry =0%172 Z/ | D*w.|? ™o = dxdy + 11 Z/ | Dw. |* €272 dady
+ JRY + JRL
+ Z / lw|? 2o dady.
+ JRL

Estimate of > ;.. dé?,)j.
By (4.2) and (4.22),

S / Team0g, () Pde < OF / 2060 () 2dz,  (4.40)
Rnl

gezn—1 Rt
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where C' depends only on n.
Next, we note that V,(e™=96y., ) = €79V 00,4, — TETTV900.4 .
From (4.2), (4.15), (4.32), (4.33), and (4.37), it follows that

Z [vm(ewg’g O0s.0) (- 0>H/2»Q2 (zg)

gezr—1
<C Z [ews(.mvmeO;gwﬁ/ZQQ(zg) + (1¢)*e et 90]1/2 Rn—1 (4.41)
gezn—1 .

+u/ 1 @O 7 gy 2dx + ,u5/ 1ezwe(“":’o)|90|20l:70) :
Rn— Rn—

On the other hand, by (4.15), (4.18) and (4.33), we obtain that

Z [0V 9079;‘]1/2@2(%)

geZn—1

<O ([9ale™O00)R s + 1O s (442)

—l—u/ 1 2@ 0o 2dx + u5/ 1 62”"5(“’0)|90|2d:c) :
R7— R—

Finally, putting together (4.40) and (4.42) yields

> dp<C ( <€T¢600)('70)H/2,R"1+7—3/ 627w8(x’0)|90\2d3?+33>7 (4.43)
Rn—1

EZ” 1
where

R3 = Z <M4[€w5("0)wi('a 0)]%/2,11@—1 + “/ e2T¢s(w,0)|wai(" 0)|2d$
R

+ n—1

+:U’5/ 27-1/;5 (z,0) ‘wi( )Pd:li) .
Rn— 1

Estimate of 3 ;.. d i),

By (4.38) and by straightforward computations we can write 6,4, as

Orgp = 01y + TS + T2 + 1)

g1

(4.44)

where

Jy 1) o =wi AL (02,0)Vayng v —w_A_(02,0)Vayng - v,
J(z) =Tg, M(A-l-(éxgv 0) — Ay (o, O))v:uyw-k v
— Ny u(A_(024,0) — A_(62,0))V, yw_ - v
Jg(iz =w; (AL (dz4,0) — AL (02,0))Vayng - V
—w_(A_(024,0) — A_(6x,0)) Vg - V-
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By (2.3), (2.4) and (4.5),
gl < O s (,0)  Xqy ()
+
‘JQ(?IN S Célu_l Z ‘vx,ywi(aja 0)‘7797;17 (445)
+

|J5§,3/2| < C’élu_l Z |vw,y779,u||wi<$7 0)],
+

where C' depends on \g, My and n. From (4.2), (4.5), (4.22), (4.44) and (4.45), we
have that

S 7 [ e @par <o (- [ jorer et
Rnl ]Rnfl

gEZn 1

+ 0% 12/ Vo ywa (2, 0) PO dg (4.46)

81 + 1% Z/ lw(x,0) e 2”/’6‘30)dai>.

We now turn to the second term of dg?i. We first derive from (4.2), (4.15), and

(4.32) that
Z [ews‘g("0)91779#]%/23"_1

- (4.47)

Rn—1

Again by (2.3), (2.4), (4.2), (4.14), (4.18), (4.32), and (4.45) we get

P /i

gEZn71
<C <M3 Z/ |wa(x,0)2e* ™0 dz + 2 Y e Owy (. 0)]?/2,11@—1) :
+ JR +

We now go to the next term deznfl[671’[}5’9(.70)Jé?/z]%/ZR"*l‘ By (2.3), (2.4), (4.2),

(4.48)

44



(4.5), (4.14), (4.32), (4.33), and (4.45) we have that
DI G/ i A

gezn—l

<C Z Z [eTwe(.,O)ng,M<A:t(5nga O) - Ai((;l’, 0))V$,ywﬂ: . V]%/ZQQ/H(%)
+p Z / ’A:I:((Sl'g, 0) - A:I:((SI, 0)|2|vm,ywi|2627¢5(w70)dm

SCZ T Z [ewg("o)nngx,ywi(-,())]%/27%/“(%)

4+ g€Zn71

4 [ Ve O de 85 [
Rn—l R”_l

<C Z (52,u_2[Vx,y(wie”pe("0))]3/2’]1@71 + 6222 [ewf("o)wiﬁ/;wq
T

lwx(x,0) |262w5($’0)dx)

+52u_1/ 1 |Vx,ywi(x70)|262T¢5("’3’0)dm+52u_172/ |wi(x,0)|262w5($’0)dx)
R R

_ (449)
Now we estimate dezn— [em¥=0( O)Jg u]1 2 Rn-1" As in the previous estimates and
using (4.14), (4.18), and (4.32), we obtain that

Z [eTwE’g("O)Jg(SL)L]l/Q Rn—1

geZn—l
(4.50)
<C (52 Z[ewa(.,o)wi(.70)]%/2&”_1 + 52“2/ |wi(x,0)|262w5(“’0)d$> ,
i + JR

where C' depends on Ay, My and n. Finally, combining (4.46), (4.47), (4.48), (4.49),
and (4.50) implies

Y d¥ <c (7/ 0122 @0 g 4 [T 0,2 +R4> , (4.51)
gEZ”fl Rn— 1
where
Ry :5%22[%,(%6%)(. 0)2 jp s + (12 + 02727 D [y (- 0)]2 s
+

62 12/ ’vmywi z, O)’Q ZTwE(xO)dx

+ (em? + 8% + 2 Z/ lw (x,0)|2e*¥e @0) .
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Consequently, we have from (4.25), (4.36), (4.39), (4.43) and (4.51) that

Z(w) <C (Z / ) |Ls(z,y, 0)(ws)|* Vo= dady + [e70V01]3 5 gns
+ +

+ [Va(€0) (-, O)]2 sy g + 7° / (20| (1) 2z (4.52)

Rn—1

—1—7'/ 62”/’5(9”’0)|61 (x)\zdx + R5) ,
Rnfl

where

R5 :62”_2 Z/ |D21U:|:|2 e?ﬂﬁedxdy + MQ Z/ |Dw3|:|2€27¢5d$dy
+ JRE + JRL
+ #4 Z/ ‘wiyz 62T¢s,id,j1:dy + (p+ 525—1) Z/ |Dw. (z, 0)|2€2T¢6(I,o)dx
Ui + Rn—1

+ pr Z/ wa (2, 0) P’ 0d + (pt + 82727%) D e COw (-, 0)]3 5 o
+

+ 0% Z[D(wiewf)(-, 0)]3 /2 n-1-
+

We now set 6 = ¢ and choose a sufficiently small d; and a sufficiently large 7,
both depending on A, My, n such that if ¢ < §y and 7 > 79, then R5 on the right
hand side of (4.52) can be absorbed by =(w) (defined in (4.23)). In other words, we
have proved that

ZZTS Zk/ |2 Zngdxdy+ZZTS Qk/ k’wi($’0)|262w5(:c,0)dx

+ k=0 + k=0 R
+ ZT 6T¢Ew:‘: 1/2 Rro—1 T Z eV Fwy)( ]%/27]1{”—1 + Z[Vz(ewgwi)(" 0)]?/2,11@—1
+ +

<C (Z /Rn ‘ﬁg(l’,y, a)(wi)‘Q 627w5d$dy + [eﬂps(.’o)elﬁ/gﬂnq + [Vx(ewS@o)(-, 0)]%/2&@71
+ +

+7_3/ |€O|2627"¢J5(:v,0)dx + 7_/ |01|262T¢5(m,0)d$) '
Rn—l Rn—l
(4.53)

Now, applying (4.53) to the function w(z,y) = u(dx,dy), by a standard change of
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variable and multiplying by 6", we have

2
+ k=0 RY
1
+ Z Z 7_3—2k52k—3 / |Dkui (LE, O) ’262¢5(x’0)d$

T k=0 R
+ Z 72672 [eT¢5("0) +(-,0 1/2 Rn—1 + Z et uy)(- 0)]3/2711%"‘1
T

gc( / \L’(x,y,@)(ui)\QeQT‘z’é(’:’y)dmdy+[ew“("o)hlﬁ/zwfl
+ i

3
+[V$(eT¢5ho)(~, 0)]%/2 g1 + T_/ |h0|2627¢5(z,0)dx + T / |h1|262r¢5(m,0)dx 7
’ 53 Rn—1 6 Rn—1

where ¢s 4 is given by (2.8). Since d < 4y, estimate (2.10) follows.
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