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ABSTRACT

This paper introduces the mig framework: an Open MPI
extension to transparently support the migration of appli-
cation processes, over different nodes of a distributed High-
Performance Computing (HPC) system. The framework
provides mechanism on top of which suitable resource man-
agers can implement policies to react to hardware faults, ad-
dress performance variability, improve resource utilization,
perform a fine-grained load balancing and power thermal
management.
Compared to other state-of-the-art approaches, the mig

framework does not require changes in the application code.
Moreover, it is highly maintainable, since it is mainly a self-
contained solution that has required a very few changes in
other already existing Open MPI frameworks. Experimen-
tal results have shown that the proposed extension does not
introduce significant overhead in the application execution,
while the penalty due to performing a migration can be prop-
erly taken into account by a resource manager.

CCS Concepts

•Software and its engineering→Checkpoint / restart;
Multiprocessing / multiprogramming / multitask-
ing; •Computing methodologies → Parallel comput-
ing methodologies; •Computer systems organization
→ Distributed architectures;
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1. INTRODUCTION
Given the evolution of High-Performance Computing (HPC)

systems and silicon technology, modern and future parallel
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systems must deal with two major concerns: the increasing
number of computing nodes, thus CPU cores, and the end
of Dennard’s scaling [1], with the following issues related to
power dissipation. These two aspects are posing new chal-
lenges in terms of performance scaling and effective nodes
utilization, power and thermal management, reliability and
fault-tolerance.

Concerning reliability and fault-tolerance, the Mean Time
Between Failures (MTBF) of current supercomputing sys-
tems is already way below 100 hours [2, 3, 4]. This means
that the availability of fault-tolerance techniques is particu-
larly crucial to guarantee the safe execution of long-running
workloads. In this regard, a very common solution is to
exploit Checkpoint/Restart (C/R) based approaches, where
the execution state of the application is periodically saved
(checkpoint) so that, in case of fault, it can be resumed
(restart) from the last consistent state.

An alternative to C/R is to migrate the execution of the
application from a faulty to a more reliable set of nodes.
This is a versatile technique since a system can benefit from
task migration support, not only to react to faults, but also
for resource management purposes, e.g. load balancing.

Furthermore, we must consider that the effective exploita-
tion of an extremely parallel HPC system requires suitable
programming models (e.g., MPI). These need to be prop-
erly supported by a run-time resource manager in charge of
driving the task placement (scheduling and mapping) over
the wide set of available computing resources. It turns out
that, if the resource manager can rely on a migration mech-
anism, it can also dynamically change the computing nodes
assignment during the execution of the applications. This
opens up a wide range of possibilities. For instance we can,
not only react to faults, but also adapt the computing re-
sources assignment to time varying application performance
requirements. Moreover, the application load can be bal-
anced among the system nodes, in order to level down the
power consumption and the temperature peaks. Ultimately,
introducing task migration support in HPC systems enables
the implementation of solutions to address all the aforemen-
tioned challenges.

In this paper we describe the mig framework, an Open
MPI extension that introduces a novel process migration
mechanism that is as transparent as possible with respect to
applications and other Open MPI internals. The proposed
framework implements a system-level migration schema based
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on the idea of grouping the MPI application processes be-
longing to the same node into multiple migratable entities.
The group size can be set at launch time by the run-time
resource manager taking into account that, as shown in Sec-
tion 4, the overhead can consequently vary. This schema
allows us to perform fine-grained migrations, i.e., to migrate
parts of a single application onto a different nodes, where
the migrated processes execution is then resumed.
The paper is structured as follows: Section 2 reviews pre-

vious works proposing task/process migration solutions for
Open MPI or HPC systems. Section 3 describes the mig

framework along with the changes introduced in the Open
MPI framework and needed to support the module. Section
4 reports the results of a set of experiments aiming at eval-
uating the overheads introduced by mig. Finally, Section
5 presents some final remarks and possible future develop-
ments.

2. RELATED WORKS
Several C/R approaches for parallel applications have al-

ready been proposed and implemented [3]. Most of the C/R
implementations rely on Berkley Lab’s Checkpoint/Restart
kernel-space tool (BLCR) [5] and the libckpt user-space li-
brary [6].
C/R based approaches usually adopt the following schema:

1) synchronization of the application processes execution to
reach a global consistent state; 2) application execution state
saving (checkpoint); and 3) application execution resuming.
In case of fault, all the running processes are killed and
the application is restarted resuming the state from the last
checkpoint.
C/R mechanisms can be managed either at application

or system-level. In the former case, also known as user-
level, the application itself is in charge of synchronizing the
execution of its processes and performing the checkpoint.
This is typically done by calling suitable library functions.
In the latter case, instead, this task is accomplished by the
run-time system that controls the application life-cycle, e.g.
the resource manager or the run-time programming model
support (e.g., MPI runtime).
Hursey et al. [7] extend the Open MPI stack with ad-

ditional layers that provide C/R capabilities in a network
agnostic fashion. The application processes can be stopped
and then restarted on a different set of nodes potentially
characterized by a different network topology. This solu-
tion introduces notable code dependencies between inter-
nal Open MPI frameworks. Moreover, it induces significant
overheads: copying the process state images on an external
storage server, becomes in fact a real bottleneck for the sys-
tem. This drawback, along with the poor maintainability of
the software, led the Open MPI developers to disable these
additional layers since Open MPI version 1.7.
The common limitation of C/R based approaches is the

overhead introduced by performing periodical checkpoint,
which is done during the entire application lifespan. In some
use cases this overhead impacts dramatically, even doubling
the execution time of the applications [4]. A further prob-
lem is that this side-effect increases exponentially with the
system size, i.e. the number of computing nodes. Consid-
ering a large HPC system with thousands of nodes and not
negligible power supply costs, the overhead must be evalu-
ated not only in terms of time, but also in terms of energy
consumption [8].

For these reasons, an alternative approach to stop and
resume the execution of parallel applications relies on task
migration techniques. Such techniques can be classified on a
granularity basis. Task migrations in fact can be performed
either at virtual-machine, container or process-level. The
first two classes are very common because executing MPI
applications over virtual machines and containers simplifies
the workload management, other than providing isolation
guarantees. However virtual machines also have a significant
impact on the application performance, especially for I/O
intensive workloads[9]. The lack of shared memory commu-
nication between processes on different virtual machines in-
deed has been considered an important inefficiency since the
beginning of virtualization’s use in HPC environments[10].
Although many approaches have been proposed to mitigate
this problem, the significant overhead persists even today,
inducing an increment of latency by a factor up to 16x for
communication intensive operations [11].

The third class, i.e. process-level migration, allows us
to potentially achieve a higher utilization of the system re-
sources, with respect to virtualization based approaches.
Concerning this class, the most promising solution has been
proposed by Wang et al. [2]. The basic idea of the authors is
to try to minimize the number of C/R by using a proactive
approach: health monitoring of the computing node state
and migration of all the running processes on a different
node, in case of imminent fault prediction. Their approach
reduces the number of performed C/R with respect to pe-
riodical checkpoint based techniques. However this solu-
tion requires to synchronize all the running processes into a
global consistent state, before stopping and migrating them
to a new node; which can represents a problems in case of im-
minent faults. The approach was implemented in LAM/MPI
(predecessor of Open MPI) using the BLCR tool.

According to previous works, we can argue that the main
issues to be tackled when dealing with processes migration
in HPC systems are:

• Design an easy to maintain migration framework;

• Enable migration support without introducing changes
in the application code;

• Enable the possibility of migrating just part of the ap-
plication, i.e. a subset of processes;

• Do not bound the migration overhead to the synchro-
nization of the processes execution into a global con-
sistent state;

• Provide interfaces to allow a resource manager to drive
the processes migration according to smart policies.

The solution we propose addresses all the aforementioned
issues: 1) it is a process-level migration mechanism whose
granularity can be tuned by the resource manager; 2) it
does not require any change to the application code; 3) the
migration is almost completely transparent with respect to
the application execution; and 4) migration can be triggered
by a resource manager through a suitable API.

We implemented our proposed task migration approach
as a not invasive Open MPI additional framework, that we
called mig.
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Figure 1: The architecture of Open MPI modules
and interaction with the resource manager

3. DESIGN AND IMPLEMENTATION
In this work we present the Open MPI framework with

a mean to perform process migration. What triggers mi-
grations is not addressed, but we assume that a resource
manager is in charge of determining when the migration of
some processes is necessary, e.g. because a fault has been
detected (or predicted) or because a rescheduling has been
triggered.
The idea is that the resource manager could indeed signal

a migration request to the Open MPI runtime by sending
a (source node, destination node) pair via the already
existent socket channel. Then, the Open MPI runtime, in
particular the mig framework, performs the sequence of ac-
tions needed to actually migrate the application processes.
We use the Checkpoint/Restore In Userspace (CRIU) tool

[12] in order to perform the checkpoint/restore of the execu-
tion of the processes. CRIU is a recent C/R tool, developed
by the OpenVZ team, that is gaining a lot of interest in
PaaS-level virtualization environments [13]. The big advan-
tage of CRIU is that the required kernel-space changes have
been already integrated in the Linux kernel. Its use therefore
does not require any extra module: the checkpoint and the
restore operations are completely performed in user-space,
making it a portable solution. This, together with the very
active developers community, motivated us to choose this
tool for implementing the C/R functionalities in our migra-
tion framework.

3.1 Open MPI architecture
Open MPI is an MPI implementation based on a Modular

Component Architecture (MCA) [14]: the main functional
parts of Open MPI are divided in frameworks. Each frame-
work contains one or more components. Depending on user
selection and system capabilities, at run-time each compo-
nent can be enabled or not.
The frameworks are grouped in three layers: Open MPI

(OMPI), that provides the application-level API over the
runtime environment; Open Run-Time Environment (ORTE),
that is the underlying subsystem controlling the life-cycle of
each application process; OPAL, that is an utility library.
The overall architecture is shown in Figure 1.
The mpirun command is used to launch an MPI applica-

tion. The node from which an application is started is called
Head Node Process (HNP) and manages the entire program
execution. When an Open MPI application is launched,

mpirun starts the ORTE daemons – called orted – which
is in charge of controlling the life-cycle of the processes to
spawn on the local node. Instances of ORTE daemon can
also be started on remote nodes. The set of available nodes
is provided to ORTE through the Resources Allocation Sub-
system (ras) framework. Communications between HNP
and remote daemons go through a set of ORTE frameworks,
respectively listed in descending order of network services
they offer: plm (Process Lifetime Management), rml (Run-
time Messaging Layer) and oob (Out Of Band).

Application-level messaging is managed by OMPI subsys-
tems: pml (P2P Management Layer) catches MPI calls and
forwards it to one of the active btl (Byte Transfer Layer)
components – e.g., TCP, shared memory, InfiniBand. Dur-
ing the application startup each point-to-point channel is
assigned to the fastest btl component depending on the
availability.

3.2 Open MPI extension
At the time of writing, Open MPI is composed of more

than 50 frameworks, each of them having between 1 to 10
components. For this reason we decided to add the migra-
tion support reducing as much as possible the impact on
other frameworks. This choices is not only dictated by the
need of reducing overheads, but also of limiting the intro-
duction of hard-to-maintain code. As previously reported,
Hursey’s work was indeed rapidly removed from the main-
line repository of Open MPI, because it was too demanding
to maintain. Here we will detail the frameworks involved in
our work:

• ras (part of ORTE): it provides the communication
channel between the Open MPI runtime and the re-
source manager. Currently, Open MPI uses this frame-
work only in the application initialization, to get the
full list of available nodes. We extended the ras API to
allow the resource manager to send migration requests
during the applications execution and to be notified
about the status of the requests.

• mig (part of ORTE): it is the framework we imple-
mented to enable the migration mechanisms. The pro-
vided functionalities are controlled by rason behalf of
the resource manager. mig is in charge of coordinating
the migration phases via plm, basically routing com-
mands to the ORTE daemon instances involved. mig is
also responsible of performing checkpoint/restore and
of sending the process status image to the destination
node. Just like other frameworks in Open MPI, mig
is composed of a base component, containing the code
implementing the common functionalities, and a spe-
cialized component for C/R based on CRIU. In this
way, adding the support for a new C/R mechanism
only requires the addition of a new component and
does not introduce further changes in the framework
core.

• oob (part of ORTE): the “out-of-band” framework pro-
vides the low-level API for the communication between
HNP ⇔ orted, and orted ⇔ its child processes. The
current Open MPI implementation includes TCP as
the only transport layer for ORTE daemons inter- com-
munication. This framework contributes to the process
migration by managing the opening and closure of the



Figure 2: The migration phases

pending TCP socket connections towards the migrat-
ing ORTE daemon instance.

• plm (part of ORTE): high-level HNP ⇔ orted com-
munication framework. We implemented the protocol
necessary to coordinate the ORTE daemon instances
in the base component. We also added the ssh call
that spawns the orted-restore daemon on the desti-
nation node. This daemon is in charge of resuming the
processes execution once the checkpoint image transfer
is completed.

• btl (part of OMPI): this is the application-level peer-
to-peer communication framework. In our work we
modified the TCP component to manage the open-
ing/closure of the TCP socket connections among mi-
grating application processes.

Multiple ORTE daemon instances

The Open MPI default behaviour is to instantiate a single
ORTE daemon (orted) for each allocated node of the HPC
system, so that each orted manages all the processes run-
ning on its node. Our migration approach consists in moving
an ORTE daemon and all the processes it is managing from
the current node to another one. This means that the migra-
tion approach works at orted-level granularity. Therefore,
at node level, grouping Open MPI processes of the same
applications on top of multiple ORTE daemons allows us
to migrate just a subset of the application processes. We
modified the framework in order to let the resource man-
ager specify how many daemon instances to start on each
node, thus implicitly selecting the migration granularity.
The major overhead introduced by running multiple ORTE

daemon instances on the same node is due to the lack of
shared memory communication between processes managed
by different daemon instances. However, if the resource
manager does not require to split processes in multiple ORTE
daemon instances then no extra overhead is introduced in
the application execution.

3.3 CRIU
As argued above, the CRIU library is used in the corre-

sponding C/R component of the mig framework to perform
checkpoint/restart of a single ORTE daemon execution and
its children, i.e. the Open MPI application processes.

The checkpoint stage – called dump in CRIU – freezes
the processes execution and creates a collection of binary
files containing the processes state. In this collection we can
distinguish three categories of files: inventory, image, and
auxiliary. CRIU stores the meta-data needed to perform the
restore in inventory and auxiliary files. The image files are
instead the memory dump of the processes and contain all
the OS-level information, such as file descriptors, file-system
mount-points, signal masks and ghost files1.

The restart stage – called restore in CRIU – reads the
binary files previously generated by the dump stage and
restarts the frozen processes. This operation is not straight-
forward if the restore occurs on a node different from where
the checkpoint has been performed: program executable, li-
braries and data files must be in fact present and identical
in the destination node. Moreover, remote file-systems must
be mounted and the process identification numbers (PIDs)
must be available because the processes cannot change their
PIDs after the restore. Given that, there is no guarantee
about the fact that the PIDs of the migrating processes have
not been already assigned on the destination node, we ex-
ploited the Linux Namespaces, a feature of the Linux Kernel
[15] that allows us to isolate a set of processes in a detached
environment via the unshare system call. In order to do
this, the orted-restore executes the following C call:

unshare(CLONE_NEWNS | CLONE_NEWPID)

where the CLONE_NEWNS flag detaches the mount names-
pace and the CLONE_NEWPID flag detaches the PID names-
pace; hence, orted-restore and its children share the new
private namespaces.

The orted-restore daemon becomes then the init pro-
cess (PID=1) in the new empty PID namespace of the des-
tination node and can restart the application processes with
the original PIDs from the source node. The isolated mount
namespace is necessary to remount the /proc directory in
order to match the new process identifier configuration. At
this point, the ORTE daemon instance and its children can
be safely restarted.

1In Linux, files may not have a name, e.g., unlink-ed but
still opened files, shared memory files and over-mounted
paths.



Figure 3: Sequence diagram migration messages ex-
change

3.4 Migration phases
In this section we describe in detail how the proposed

migration mechanism is structured. We have divided the
migration procedure in five phases: 1) Coordination stage;
2) CRIU dump; 3) Process state migration; 4) CRIU restore;
and 5) Finalization stage. This schema is shown in Figure
2.

Coordination Stage

The coordination stage starts when the mig framework on
the Head Node Process receives from ras a migration request
specifying a source and a destination node.
The mig framework spawns an orted-restore daemon on

the destination node, which is therefore able to receive the
migrating ORTE daemon. Then, via plm, the framework is-
sues a MIGRATION_PREPARE command to all the ORTE dae-
mon instances running over the system, broadcasting the in-
formation related to the migration request. When the ORTE
daemon instances receive the command, they notify the re-
quest to their children (the application processes) using the
signals provided by Linux-OS2.
The signal handler, implemented in the OMPI library, in-

tercepts the MIGRATION_PREPARE signal/command. The btl
TCP component of the processes that are not migrating per-
forms the following actions: 1) caching of any future send
request towards the migrating processes; 2) terminating any
ongoing data transmission (send() system calls) towards the
migrating processes; 3) flushing the transmission buffer; and
4) performing a shutdown system call on the transmission-
side of the TCP socket.
After that, the processes send back an acknowledgement

to their own ORTE daemon instances, ensuring that no fur-
ther transmissions will be performed towards the frozen pro-
cesses. In turn, the ORTE daemons forward the acknowl-
edgement to the Head Node Process. This synchronization
protocol, which is depicted in Figure 3, is involved in all the
subsequent phases.

2Open MPI developers have planned to release the pmix
framework, which allows the ORTE daemon to communi-
cate via Unix sockets to its children. Our approach will be
changed accordingly

CRIU Dump

Once all the ORTE daemon instances are aware of the mi-
gration request, the Head Node Process can issue the MI-

GRATION_EXEC command and effectively start the migration
procedure. When an application process receives the MIGRA-
TION_EXEC command, it waits until all the in-flight packets
have been received by the destination side. At this point,
all the TCP connections towards processes involved in the
migration can be safely closed, and an acknowledgment can
be sent back to the ORTE daemon.

When the migrating ORTE daemon receives the acknowl-
edgment, it uses the API provided by the CRIU library to
perform the checkpoint of its execution status. The check-
point outcome, i.e. the generated process dump, is stored
in a temporary directory. Following the Open MPI common
practice, the temporary directory is set to /tmp. However, a
problem may arise if /tmp is mounted in the main memory
(most common case) and the amount of memory available is
not enough to store the dump. To address this issue, the user
or the resource manager can specify a different directory.

Process State Migration

As previously described, the outcome of the CRIU check-
point (or dump), i.e. the process dump, is a collection of
files. To simplify the transfer of such files over the network,
the next step is to create an archive containing such files
and optionally compress it. For brevity we are going to call
the checkpoint archive ‘’image”.

Generally, the decision of compressing or not the archive
requires the evaluation of the trade-off between compression
time and transfer time savings due to compression. This
task can be in charge of the resource manager, which should
consider several factors, e.g. network bandwidth, network
traffic, image size, shared memory occupation (see Section
4.2) and disk performance.

The image is now ready to be moved to the destination
node. This can be achieved according to two strategies:
1) using a TCP connection between source an destination
node; 2) using a Network File System (NFS). At the time of
writing, we do not have a storage unit with NFS available
for testing, therefore we selected the TCP based option to
transfer the image between nodes.

CRIU Restore

When the orted-restore daemon running on the destina-
tion node receives – and possibly decompresses – the image
coming from the source node, it restarts the ORTE daemon
and its children processes using the CRIU API. Since the
C/R approach of CRIU is totally transparent to the (frozen)
processes, after the restart we need to send a signal to the
restored ORTE daemon to advise it that a node migration
has occurred. Accordingly, the ORTE daemon reopens the
connection to the Head Node Process and sends the MIGRA-
TION_DONE message.

Finally, the Head Node Process broadcasts the MIGRA-

TION_DONEmessage to all the other ORTE daemons and pro-
cesses using the same synchronization protocol previously
described.

Finalization Stage

When all the processes have received the MIGRATION_DONE

message, the migration procedure enters the Finalization



Class

Benchmark A B C D

IS 64 256 1024 16793

MG 128 128 1024 8294

BT 2 8 32 518

LU 2 8 32 518

SP 2 8 32 518

Table 1: Problem data sizes [MB] for each class and
benchmark considered.

stage. In this phase, to minimize the overhead, the migrated
processes reopen the connections towards other processes
only if needed. This happens if there are packets waiting in
the buffer or if the application has new data to transmit.
Once again, it is worth underlying that the entire migra-

tion procedure is performed without the awareness of the
application, which only experiences a network delay in the
communication towards migrating processes.
Moreover, the performance degradation is additionally mit-

igated by having all the nodes not involved in the migra-
tion still communicating between each other. In such a
way, we avoid using complex algorithms to reach a global
consistent state. This is another key advantage of our solu-
tion, since in application-level C/R schemes the coordination
phase presents several problems on both user and framework
sides [16].

4. EVALUATION
This section includes the results of a set of experimental

tests performed to evaluate the overhead introduced by the
exploitation of the proposed process migration mechanism.
In this regard, we distinguished between two types of over-
head: 1) performance loss due to the execution of multiple
ORTE daemons on the same node; and 2) time require to
actually perform processes migration.
The former overhead results from splitting the control of

the application processes execution under different ORTE
daemons. Accordingly, some processes cannot rely any more
on shared memory to communicate with each other, even if
they are running on the same node. In such cases, we need to
use TPC/IP connections for inter-process communication,
which has been shown to be less performing than shared
memory [17]. The second overhead type instead is the time
lost to complete all the migration procedure described in the
previous section.
The following subsections are focused on the evaluation of

each of the aforementioned overhead types. We tested the
sustainability of our approach by triggering migration re-
quests during the execution of some state-of-the-art bench-
mark applications on a small distributed computing system.

4.1 ORTE daemons granularity overhead
To evaluate the overhead introduced by splitting the con-

trol of the MPI processes among multiple ORTE daemon
instances, we used a computing node equipped with two
Intel Xeon E5-2640 octa-core hyper-threaded CPUs, with
128GB of RAM per CPU (NUMA). As common in HPC en-
vironments, we disabled Hyper-Threading, remaining with
16 cores at our disposal. The running operating system was

Benchmark Class # orted Overhead %

IS

B

2 4.68

4 5.18

8 4.85

16 4.85

C

2 2.21

4 2.68

8 2.64

16 2.64

D

2 0.87

4 0.96

8 0.79

16 0.64

MG

B

2 1.28

4 4.36

8 1.73

16 3.24

C

2 2.25

4 0.62

8 0.88

16 1.57

D

2 1.13

4 1.25

8 1.79

16 1.50

Table 2: Static overhead of IS and MG kernel with in-
creasing migration granularity, i.e. increasing num-
ber of ORTE daemons, compared with single ORTE
daemon case.

CentOS 6.7 with updated Linux kernel version 3.18.
For the experimental evaluation we executed applications

from the NAS Parallel Benchmarks suite (NPB) [18]. We
selected IS, MG kernels and BT, SP, LU pseudo-applications.
The pseudo-applications are system solvers. The IS ker-
nel is a balanced computation-communication benchmark,
while MG is a workload focused on short and long distance
communication.

The kernels have been executed specifying input classes B,
C, D, which determine the problem size, as shown in Table
1. For the pseudo-applications, instead, we did not consider
class D since the completion of the execution would require
too much time using the systems at our disposal. Finally,
we excluded the class A because the problem size would have
been too small, leading to very short executions.

We executed the pairs (benchmark, class) spawning 16
processes for each benchmark execution. We selected the
number of ORTE daemons controlling the MPI processes
according to different granularities: 1, 2, 4, 8, 16. Each
ORTE daemon instance had therefore to manage 16, 8, 4,
2 or 1 MPI processes respectively. In particular, the case
of single ORTE daemon instance is a standard execution of
unmodified Open MPI and we took it as a reference result
in the overhead evaluation.

We measured the execution time of each tuple (bench-

mark, class, granularity), starting after the MPI_Init

call and stopping before the MPI_Finalize call. The time
needed to spawn the ORTE daemons and the processes are



Figure 4: Execution time of each benchmark when running 16 processes using a number of ORTE daemons
that ranges from 1 to 16.

Benchmark Class # orted Overhead %

BT

B

2 0.92

4 0.93

8 0.93

16 1.17

C

2 0.31

4 0.29

8 0.45

16 0.60

SP

B

2 1.90

4 2.83

8 3.72

16 4.12

C

2 0.31

4 0.40

8 0.52

16 0.79

LU

B

2 2.92

4 4.37

8 5.42

16 6.10

C

2 0.73

4 1.63

8 2.19

16 2.48

Table 3: Static overhead of BT, SP, and LU kernel
compared with single ORTE daemons case.

therefore not considered. We repeated the test 20 times to
obtain a significant statistics. It turned out that we experi-
enced an average standard deviation below 1% of the total
execution time.
The overall results are shown in Figure 4. The global

trend is that the overhead increases sub-linearly with re-
spect to the number of ORTE daemon instances, while it
decreases as the problem size increases. The sub-linear in-
crease of the overhead can be explained by the fact that,
once there are at least two ORTE daemon instances, the
TCP/IP communication between MPI processes on different
instances becomes the bottleneck for communication laten-
cies; adding more ORTE daemon instances to the existing

ones does not tend to further degrade performance. The
decrease of the overhead in case of increasing problem size,
conversely, is due to the fact that increasing problem size
means that more time is spent on computing data; there-
fore, the time spent in communication – which is where the
overhead applies – decreases in percentage.

Looking at the data summarized in Table 2 for IS and
MG, and in Table 3 for the pseudo-applications, we can state
that the ORTE daemons granularity poorly affects the ap-
plication execution time. Considering all the test cases, we
can observe indeed that the percentage of time loss remains
in the 0− 5.x% range.

4.2 Migration overhead
We characterized the migration overhead by running the

benchmarks on two nodes connected via Gigabit Ethernet,
both equipped with two Intel Xeon E5-2640 CPU, 128GB of
RAM per CPU (NUMA) and keeping the Hyper-Threading
disabled.

In the experimental migration scenario, we launched two
ORTE daemon instances per node, each one managing 4 out
of the 16 application processes. The resource manager trig-
gered the migration requests after 25 seconds of execution.

To better observe the composition of the migration over-
head, we divided the migration time, isolating seven contri-
butions. We considered the time required by each of the five
migration phases previously described in 3.4, plus two ad-
ditional contributions: 1) the time required to encapsulate
the CRIU process dump into the archive and 2) the time
to extract the dump from the archive after the migration.
With the exception of the Coordination and the Finalization
phases, the other contributions are expected to be strongly
dependent on the problem size, in particular on the image
transfer time. In this regard, we evaluated the possibility of
introducing the compression of the image generated by the
CRIU checkpoint before proceeding with the transfer. In
such a case, a decompression step is obviously required on
the destination node, before resuming the execution of the
processes. To this purpose, we used the GZIP compression
algorithm [19].

In Figure 6, we can see how the compression is effective in
reducing the size of the checkpoint image to transfer. This
because of the shared memory implementation. Open MPI
in facts allocates over 100MB of unused shared memory as
ghost files initialized as zeros. The consequence is that com-
pression is very effective in such cases, resulting in image



Figure 5: Process migration time composition with respect to the input problem size. Top images: migrations
without image compression. Bottom figures: migration with image compression.

sizes scaled down to 22 − 38% with respect to the original
sizes. In case of bigger datasets instead – like the C class
– this phenomenon is less evident, with compressed image
sizes resulting the 45− 65% of the original sizes.
The composition of the migration overhead is highlighted

in Figure 5. If the compression is not applied (top figures),
the time required to transfer the process image over the net-
work dominates the whole migration process (80 − 90% of
the time) independently of the benchmark and of the class
of input data. The contributions due to the synchroniza-
tion stages (Coordination and Finalization) and the time
needed for doing checkpoint/restore with CRIU are instead
negligible.
Conversely, when the compression is applied (bottom fig-

ures), the transfer time is reduced, but a new overhead con-
tribution is introduced. The time spent to perform image
compression/decompression is not negligible. We can ob-
serve indeed an overall percentage value comparable to the
transfer time (40−50%) for the compression, plus a 10−15%
for the decompression.
Figure 7 provides an overview of the measured migration

times, comparing the cases with image compression against
cases where no compression is applied. For the IS and MG

benchmarks, where hundreds of MB of data must be moved,
the compression represents a penalty. Conversely, for BT,
LU and SP, where data size is a few MB, break-even points
can be found. Generally, we can state that resource man-

ager should be in charge of choosing whether apply com-
pression or not, taking into account application properties,
input data size, node capabilities and network parameters
(e.g., topology, bandwidth, etc. . . ). The mig framework is
then driven accordingly.

Please note that these tests were performed on two com-
putational nodes connected via Gigabit Ethernet. Most re-
cent HPC systems connect nodes using InfiniBand, which is
much faster than Ethernet. It follows that, in the average
case, we do not expect compression to be needed, because
transfer time will usually be in the range of seconds rather
than of tens of seconds. In our experimental set-up, as shown
in the results, the time required to interrupt the execution
of a set of processes, to migrate them to another node and
to resume their execution is not negligible and may require
tens of seconds.

5. CONCLUSIONS
In this paper we introduced a novel approach to support

process migration in the Open MPI framework. The ap-
proach is based on handling the execution of multiple ORTE
daemon instances, which can be thought of as the smallest
migratable unit. This is performed transparently to the ap-
plication and the non-involved Open MPI frameworks and
components.

Compared to other state-of-the-art solutions, one of the
major advantages of our approach is the maintainability.



Figure 7: IS, MG and BT, SP, LU migration overhead with respect to the input problem size. Migrations using
image compression (dashed lines (C)) can be compared to migrations without image compression.
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Figure 6: Process checkpoint image after GZIP com-
pression for each benchmark, with respect to the
input data class

The extension introduced in the Open MPI runtime in fact
has a minimal impact on the other Open MPI frameworks.
Furthermore it does not require any change on the applica-
tions code.
Moreover, the mig framework does not rely on any virtu-

alization layer. This constitutes a gain in terms of perfor-
mance with respect to approaches based on virtual machine
allocation. In this regard, our proposal allows us to per-
form fine-grained migrations, since the resource manager can
dedice between migrate an entire application or a subset of
its processes. This feature also increases the controllability
of the workload execution.
Additionally, a third party agent (a resource manager)

can be the entity responsible of controlling the migration
at system-level, hence lifting the application from the bur-
den of inferring conditions for which a migration is worth
considering.
Through experimental tests, we shown how the overhead

due to grouping the application processes on top of several
ORTE daemons can be considered negligible. Conversely,

stopping and resuming the processes execution on different
nodes, introduces an overhead dependent on the specific ap-
plication, its input data size, the network and the node ca-
pabilities. As a consequence, a resource manager can play
a key role to evaluate when a migration is worth to be per-
formed.

The major limits of the proposed process migration mech-
anism are in similar to those of the other C/R based systems:
the nodes of HPC systems must be homogeneous, i.e. the
operating system (with kernel version), libraries version and
application binaries must be perfectly identical. Moreover,
performing the checkpoint with CRIU requires administra-
tion level permissions (root user in Linux) in all the nodes.
As a future work, we may allow ORTE daemons to spawn
application processes without such a requirement.

From the MPI communication standpoint, the lack of In-
finiBand support is currently the most important missing
feature. However the development of this component is cur-
rently ongoing.

Overall, we can state that the work presented in this pa-
per is the first process-level migration feature developed for
Open MPI whose control is kept at system-level (resource
manager) and that does not require the code of applications
to be changed.

We propose this migration framework to enable new flex-
ible resource management and fault-tolerance strategies on
HPC systems running Open MPI based applications. In this
regard, we aim at developing future works using the Bar-
beque Run-Time Resource Manager (BarbequeRTRM) [20]
to implement policies exploiting the mig framework.
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