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The generation of energetic electron bunches by the interaction of a short, ultraintense
(I > 1019 W=cm2) laser pulse with “grating” targets has been investigated in a regime of ultrahigh
pulse-to-prepulse contrast (1012). For incidence angles close to the resonant condition for surface plasmon
excitation, a strong electron emission was observed within a narrow cone along the target surface, with
energy spectra peaking at 5–8 MeV and total charge of ∼100 pC. Both the energy and the number of
emitted electrons were strongly enhanced with respect to simple flat targets. The experimental data are
closely reproduced by three-dimensional particle-in-cell simulations, which provide evidence for the
generation of relativistic surface plasmons and for their role in driving the acceleration process. Besides the
possible applications of the scheme as a compact, ultrashort source of MeV electrons, these results are a
step forward in the development of high-field plasmonics.
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Surface plasmons [1,2], also named surface waves, are
electromagnetic (EM) modes localized at the interface of
different media which allow local field confinement and
enhancement. Surface plasmons are the core of the vibrant
research field of plasmonics [3], with applications ranging
from light concentration beyond the diffraction limit [4], to
biosensors [5] and plasmonic chips [6]. The extension of
plasmonics into the regime of high fields, where nonlinear
and relativistic effects arise, is largely unexplored. An
example is provided by the multiterawatt laser-driven
excitation of unipolar surface plasmons by transient charge
separation [7,8], with potential application to the generation
of intense THz pulses [8,9].
In the optical or near-infrared frequency range, surface

plasmons can be excited by laser light incident on a sharp
material interface having a periodic modulation, e.g., a
grating, to allow phase matching. However, most experi-
ments so far have been restricted to intensities below
1016 W=cm2 [10] because of the prepulses inherent in
high-power laser systems which can lead to an early
disruption of the target structuring. The development of
devices for ultrahigh contrast pulses [11,12] now allows
us to explore the interaction with targets structured on a
submicrometric scale at laser intensities high enough for
the electron dynamics to become relativistic [13,14].
In particular, a strong increase of the cutoff energy of
protons accelerated from the rear surface of grating targets
was observed and related to surface plasmon-enhanced

absorption [15]. While a detailed theory is still lacking for
nonlinear and relativistic surface plasmons, numerical
simulations also showed surface plasmon-related effects
in this regime [16,17], including electron acceleration at
weakly relativistic intensities [18] and, more recently,
surface plasmon-enhanced high harmonics [19] and
synchrotron radiation [20] in gratings.
In this Letter, we demonstrate that relativistic surface

plasmons accelerate high-energy electrons along a grating
surface.Theaccelerationprocess is related to twobasicsurface
plasmonproperties, i.e., the subluminal phasevelocity and the
longitudinal field component. The energy and number of
electrons in gratings irradiated at an incidence angle close to
the resonant value for surface plasmon excitation are strongly
enhanced with respect to flat targets. At intensities
I ¼ 5 × 1019 W=cm2, corresponding to a relativistic para-
meter a0 ≃ 5 [where a0 ¼ ðIλ2=1018 Wcm−2 μm2Þ1=2 and λ
is thelaserwavelength]theelectronemissionwasconcentrated
in a narrow conewith energy spectra peaking at 5–8MeVand
reaching up to ∼20 MeV.
The basics of surface plasmon generation and electron

acceleration may be described as follows. At high laser
intensities (I > 1018 W=cm2) a solid target is ionized within
one laser cycle, thus the interaction occurs with a dense
plasma. Assuming a dielectric function εðωÞ ¼ 1 −
ω2
p=ω2 ≡ 1 − α (where ωp is the plasma frequency) the

phase velocity of a surface plasmon is vp ¼ ω=k ¼ cðα −
2Þ1=2=ðα − 1Þ1=2 where k is the surface plasmon wave vector
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and α > 2 holds. The condition for resonant excitation of a
surface plasmon on a periodically modulated target (grating)
by an incident EM wave [1,2] of the same frequency is
λ=λg ¼ ð1 − αÞ1=2=ð2 − αÞ1=2 − sinðϕiÞ where λg is the
grating period and ϕi is the angle of incidence. Notice that
these equations neglect the effects of finite temperature and
nonsteplike density profiles [21] as well as of collisions and
possible relativistic nonlinearities [22]; thus, in principle the
resonance could be expected at somewhat different angles.
Electron acceleration up to relativistic energy by the

longitudinal surface plasmon field requires the phase
velocity vp to approach c in order to minimize dephasing;
thus, α ≫ 1 is required as expected for a solid-density
plasma and optical frequencies. The basic process may be
described similarly to the well-known acceleration in wake
plasma waves [23], but with the difference that the trans-
verse field component of the surface plasmon (i.e., the field
component perpendicular to the wave vector) pushes an
electron on the vacuum side, so that the process is two
dimensional and eventually the electrons are emitted at an
angle with respect to the surface plasmon propagation
direction. In a frame L0 moving with velocity vp ¼ vpŷ
with respect to the laboratory frame L, the surface plasmon
field is electrostatic in the vacuum region (x > 0) and can
be derived from the potential

Φ0 ¼ −
ESP

k0
e−k

0x sin k0y0; ð1Þ

where k0 ¼ k=γp, γp ¼ ð1 − v2p=c2Þ−1=2 ¼ ðα − 1Þ1=2, and
ESP is the amplitude of the longitudinal surface plasmon
field (Ey) in L. In the L0 frame the process is simply
described as the electron going down the potential energy
hill −eΦ0. Because the evanescent field component
E0
x ¼ −∂xΦ0, electrons are predominantly accelerated

towards the vacuum side with velocity almost normal to
the x ¼ 0 surface. The condition of “optimal” injection
corresponds to an electron placed initially in L0 at the top of
the potential hill (x0 ¼ 0, y0 ¼ π=2k0) with v0y ¼ 0, i.e., with
an initial velocity vp in L. Such an electron will acquire in
L0 the energy W0 ¼ eESPγp=k. If aSP ≡ eESP=meωc ∼ 1
then W0 ≫ mec2. In this limit, the energy momentum
in L0 is p0

μ ≃ ðW0;W0=c; 0; 0Þ and thus pμ ≃
ðγpW0;W0=c; γpW0=c; 0Þ in L. The final energy Ef and
emission angle ϕe are given by

Ef ≃ eESPγ
2
p

k
≃mec2aSPα; tanϕe ≡ px

py
≃ γ−1p : ð2Þ

Thus, strongly relativistic electrons (Ef ≫ mec2) are emit-
ted at small ϕe, i.e., close to the target surface. The
acceleration length la ≡ Ef=eESP ≃ λα=2π, showing that
electrons may reach the highest energy over a few microns.
For linear conversion of the laser pulse into the surface
plasmon, aSP ∝ a0 is expected. Notice, however, that for
high amplitudes aSP may be limited by wave breaking
effects.

The experiment was carried out at the CEA Saclay Laser
Interaction Center (SLIC) facility with the UHI100 laser
system (see Ref. [24] for a preliminary presentation of the
experimental results). The laser pulse had 0.8 μm wave-
length, 25 fs duration, and 2.3 J energy before compression.
A double plasma mirror [25] yielded a pulse contrast ∼1012
managing∼50% energy loss. The pulse was focused with P
polarization using an off-axis f=3.75 parabola in a focal
spot of ≃4 μm FWHM containing ∼60% of the total
energy in the 1=e2 spot diameter, which lead to an average
intensity of ∼5 × 1019 W=cm2. Focal spot optimization
was performed with an adaptive optical system. The
schematic view of the experimental setup is shown in
Fig. 1. A compact CMOS-based spectrometer, specifically
designed for this experiment, was mounted on a motorized
tray able to change the angle ϕspec within the range 0°–60°
from the tangent, while remaining aligned to the interaction
center. The entrance lead pinhole had a diameter of 500 μm
and was placed at 8 cm from the interaction point. A pair of
permanent magnets dispersed the electrons on the large
(49.2 × 76.8 mm2) triggered 12bit CMOS with 48 μm
pixel size. The energy detection range was ∼2–30 MeV.
A scintillating Lanex screen (16 × 5 cm2) was used to
collect the electron spatial distribution in the angular range
ϕ ¼ 0°–90°. The screen was placed with an angle of 45°
with respect to the target and its center was at 8 cm from the
interaction point. The green light emitted by the Lanex was
selected using a 546 nm band-pass filter and recorded by a
12bit CCD. When in use, the Lanex screen excluded the
electron spectrometer. In addition to the electron diagnos-
tics, a Thomson parabola was used to detect protons
emitted along the rear target normal, as in a previous
experiment [15]. The proton energy cutoff was used as a
reference to optimize the target position.
The grating targets were produced at Czech Technical

University, Prague by heat embossing of Mylar™ foils
using a metallic master. Mylar was chosen considering its
high damage threshold for prepulses. In the following we
show results obtained with targets with a resonant angle

FIG. 1. Schematic view of the experimental setup. The 2D top
view (left) shows the position of the diagnostics. The 3D sketch
(right) shows the adopted convention for the angles ϕ and θ.
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of ≃30°, i.e., λg ¼ 2λ having assumed ωp ≫ ω. The
average thickness was 10 μm and the peak-to-valley depth
of the grooves 0.25 μm. Flat foils with the same average
thickness were used for comparison. In a limited number of
shots, gratings with a resonance angle of 15° (λg ¼ 1.35λ)
and 45° (λg ¼ 3.41λ) were also used, obtaining similar
results.
Figure 2 shows the spatial distribution of the electrons

for both gratings irradiated at angles near resonance and the
flat foils. The emission from the flat foil is rather diffused,
with a local minimum in correspondence of the specular
reflection direction, as if electrons were swept away by the
reflected pulse. The signal is maximum in an annular region
around the hole. In contrast, for a grating at resonance the
emission is strongly localized on the plane of incidence
(θ ∼ 0°). The maximum intensity of the electron signal (in
units of 1/sr) is close to the target tangent and is ∼10 times
larger than the maximum intensity observed for flat targets
at the same angle of incidence. Two minima (“holes” in the
image) are observed in the directions of specular reflection
and first-order diffraction of the laser pulse (evidence of
grating diffraction of the high-intensity pulse, which con-
firms the survival of the grating during the interaction, was
also found in previous measurements [15]). Local bending
of the target or nonexact perpendicularity of the grating
grooves to the plane of incidence may result in shot-to-shot
fluctuations of the direction of maximum emission.
Depending on the individual foil, the average angular shift
in θ was in the 1°–5° range. An optimization of target
design and alignment is foreseen to eliminate the fluctua-
tions. The amount of charge accelerated in the collimated
bunch along the target surface was estimated from the
absolute calibration of the Lanex screen, resulting on

average in 100� 15 pC, spread in a 8.5° full angle cone.
As a comparison, the overall emission from the flat foil
around the specular reflection (m ¼ 0) was estimated in a
square region (35° full angle in ϕ and θ), resulting in
about 60 pC.
The energy spectra were obtained placing the spectrom-

eter at ϕspec ¼ 2°. The angle of incidence ϕi was varied
from 20° to 52°. Figure 3 shows spectra obtained for
ϕi ≥ 30°, as for smaller angles no signal above the noise
level was collected. The aforementioned fluctuations of the
direction of the electron beam lead to a shot-to-shot
variability of the intensity of the signal. Nevertheless,
the most intense signals are detected only close to the
resonance angle (∼30°). Moreover, spectra collected at 30°
and 35° are characterized by higher maximum energies
and a peculiar distribution with a dip at lower energies
(3–4 MeV) and a broad peak at 5–8 MeV, and a high-
energy tail extending up to ∼20 MeV. Electron spectra
above the noise level from flat targets at ϕspec ∼ 2° were not
observed for any incidence angle. Spectra obtained for
ϕi ¼ 30° and changing ϕspec in the 1°–35° range showed a
similar shape in all positions of the spectrometer when
ϕspec ≲ 20°. The signal monotonically decreased in inten-
sity with respect to ϕspec and was visible up to ϕspec ≃ 30°,
in agreement with the signal collected on the Lanex screen.
3D simulations were performed for flat targets at ϕi ¼

30° and for gratings at ϕi ¼ 30°; 35°; 40°. For computa-
tional feasibility, the target thickness was lt ¼ 1λ and the
electron density was ne ¼ 50nc (where nc ¼ πmec2=e2λ2

is the cutoff density), while the other parameters corre-
sponded to the experimental ones. The simulations were
performed on 16 384 cores of the FERMI supercomputer
using the open-source, particle-in-cell code “PICCANTE”
[26,27]. The numerical box size was 80λ × 80λ × 60λ,
wide enough for the boundaries not to affect the results.
A resolution of 70 × 51 × 34 points per λ and 50 particles
per cell were used.

FIG. 2. Images on the Lanex screen for simple flat target (top)
and for grating target (bottom), both irradiated at ϕi ¼ 30°
incidence. A 3 mm Al foil was placed in front of
the screen to filter out electrons with energy E < 1.2 MeV.
The parabolic dashed lines give the local θ angle corresponding to
the position on the screen. In order to highlight the features of
the signals, the upper panel has been amplified 2× compared
to the bottom image. The right end (Φ > 72°) of the bottom image
has been amplified too (4×) to bring out the first-order diffraction
minimum.

FIG. 3. Electron spectra collected with the detector at 2° from
tangent direction, for several pulse incidence angles (from 30° to
52°). In the upper panels, all the collected shots are shown and a few
of them are highlighted in color, while the others are plotted in light
grey to show the shot-to-shot variations.
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Figure 4 shows a snapshot of a 3D simulation of a
grating irradiated at the resonance angle in the same
geometry of Fig. 1. The electric field component Ex is
represented together with the isosurface corresponding to
the electron density. A surface plasmon propagating along
the −ŷ direction is excited. Figure 5(a) shows the simulated
electron energy spectra dN=dE at ϕspec ¼ 2° for the flat
target irradiated at ϕi ¼ 30° and for gratings at
ϕi ¼ 30°; 35°; 40°. With respect to the gratings, the signal
for the flat target is much weaker and the energy cutoff is
∼10 times lower. The spectrum for the grating at ϕi ¼ 30°
shows the peculiar shape observed for ϕi ¼ 30°; 35° in the
experiment (Fig. 3), while for larger ϕi the low energy dip
disappears, as for ϕi ≥ 40° in the experiment. Figure 5(b)
compares the spectra obtained in 2D and 3D simulations,
showing that details such as the broad peak with low energy
dip are reproduced only in 3D. The angular distribution on
the screen Fig. 5(c) also reproduces the experimental data
(Fig. 2) including the hole in the specular reflection
direction.
The 3D simulation also shows a correlation between

electron energy and the emission angle. Electrons at
energies lower than the peak value are emitted at some
angle with respect to the propagation direction of the
surface plasmon, so that the 3D spectrum integrated over
the whole range of θ resembles the 2D case. This is
consistent with interpreting the fluctuations in the energy
spectra (Fig. 3) as related to those in the electron beam
direction.
In the simulation, aSP ≃ 1 showing that the surface

plasmon is relativistic. Inserting such a value and α ¼
50 in Eq. (2) we obtain a maximum energy Ef ≃ 25 MeV
and ϕe ≃ 8°, in fair agreement with the observations

considering the simplicity of the model. 2D simulations
show that Ef ∝ a0 for a0 ≲ 10 while the scaling is slower
for higher a0, presumably due to nonlinear effects. Details
of the spectrum will be dependent on the distribution of
injection velocities. The Supplemental Material [28]
includes movies from 2D simulations showing the accel-
eration of electrons along the surface. In a very recent work
[29], self-injection and phase locking of electrons in the
surface plasmon wave is studied with a test-particle
approach.
The proposed scheme, with further optimization, may

provide an intense ultrashort electron source in the MeV
range, with characteristics not easily attainable with other
techniques and potential applications including photoneu-
tron generation [30,31] or ultrafast electron diffraction
[32–34]. The study of relativistic surface plasmons may
be further pursued in various schemes inspired by ordinary
plasmonics, such as tapered waveguides for energy con-
centration and field amplification [35,36], and exploiting
various target structurings including optically controlled
transient gratings [37]. Such development of high field
plasmonics will open new possibilities for the control and
manipulation of ultraintense laser pulses and their inter-
action with matter.
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FIG. 4. 3D particle-in-cell simulation snapshot of laser-grating
interaction, showing the electric field component Ex and an
isosurface highlighting the target at time t ¼ 35λ=c after the
beginning of the interaction. Only the z < 0 region of the
simulation box is shown in order to highlight the field distribu-
tion. In the upper part of the picture, the distribution of Ex is
related to the diffracted pulse, while that in the lower part
corresponds to a surface plasmon propagating in the −ŷ direction.

FIG. 5. Analysis of 3D simulations at time t ¼ 45λ=c after the
beginning of the interaction. (a) Simulated spectrum dN=dE at
ϕspec ¼ 2° for flat (F) targets and for gratings (G) at different
values of the incidence angle ϕi. Particles with x < −0.125 (the
average surface position of the target), jϕ − 2j > 0.5° or jθj >
0.5° are filtered out. (b) Comparison of spectra between 2D and
3D simulation for a grating target irradiated at ϕi ¼ 30°.
(c) Electron angular distribution d2N=dϕdθ for a grating
irradiated at 30°. Particles with x < −0.125 or kinetic energy
Ek < 1 MeV are filtered out.
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