
ESAIM: M2AN 42 (2008) 443–469 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an:2008012 www.esaim-m2an.org
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Abstract. In this paper we introduce and analyze some non-overlapping multiplicative Schwarz meth-
ods for discontinuous Galerkin (DG) approximations of elliptic problems. The construction of the
Schwarz preconditioners is presented in a unified framework for a wide class of DG methods. For
symmetric DG approximations we provide optimal convergence bounds for the corresponding error
propagation operator, and we show that the resulting methods can be accelerated by using suitable
Krylov space solvers. A discussion on the issue of preconditioning non-symmetric DG approximations
of elliptic problems is also included. Extensive numerical experiments to confirm the theoretical results
and to assess the robustness and the efficiency of the proposed preconditioners are provided.
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1. Introduction

Based on a totally discontinuous finite element space, the first discontinuous Galerkin (DG) method was
proposed in the seventies for the numerical approximation of hyperbolic problems by Reed and Hill [32], and
independently, in the context of elliptic and parabolic equations in [3,20]. For a while, the use of DG methods
was partially abandoned mainly due to the much larger number of degrees of freedom they require compared
with continuous Galerkin finite element methods. However, the numerous and advantageous properties of DG
methods (e.g., tremendous flexibility in terms of mesh design and choice of shape functions, easy treatment of
non-conforming meshes, straightforward design of hp-adaptivity strategies and weak approximation of boundary
conditions) have motivated in recent years a renewed interest in DG approximations. In particular, the develop-
ment of DG methods for elliptic problems has undergone a rapid development (see, e.g., [2,4,5,7,17,18,33,36]).
In spite of the active development of these methods, its practical utility is still very much limited by the size of
the resulting algebraic linear systems of equations. A direct factorization of such systems might not be a viable
option, and the use of iterative methods, such as Krylov space methods (conjugate gradients (CG), generalized
minimal residual (GMRES), etc.) can result in a very slow convergence. As a consequence, the development
of efficient solvers has started very recently to receive substantial attention, particularly, in connection with
domain decomposition (DD) methods [1,12,22,27] and multigrid techniques [11,13,19,24,26].
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We focus here on Schwarz DD methods, that provide a very natural way to construct preconditioners that
can be accelerated by Krylov space methods. The key idea is that, instead of solving one huge problem on
a domain, it could be convenient (or necessary) to solve many smaller problems on single subdomains. The
selection of the local problems has to be done to ensure the fast convergence of the method. To provide global
interaction between the subregions and to improve the convergence in case of many subdomains, it also necessary
to introduce a global coarse solver (with very few degrees of freedom per subdomain). We remark that, while
Schwarz methods are by now well developed and understood for classical discretization methods [31,35,37,38]
(see also [29,30] for practical applications), very few works are devoted to DG approximations [1,12,22,27], all
from the last five years.

In this paper we propose and study some new multiplicative non-overlapping Schwarz preconditioners for
the algebraic linear systems of equations arising from a wide class of DG approximations of elliptic problems.
Following with the research started in [1], we provide a unified framework for the construction and analysis of
multiplicative Schwarz preconditioners, which really share the features of the classical Schwarz methods. As
in [1], we focus on the h-version of DG approximations, but here we also allow for the use of non-matching grids.
In contrast to classical (conforming) discretization methods, some freedom in the definition of the local solvers
arises due to the lack of continuity constraints across the element interfaces inherent to DG approximations.
While in [22,27] the local solvers are defined as the restriction of the global bilinear form to each subdomain,
we define the local solvers as the corresponding DG approximation of the continuous problem, but set in the
subdomain. These two approaches, which coincide in the conforming case, are no longer the same in the DG
framework. From our approach, the resulting local solvers turn out to be approximate rather than exact, as
those used in [22,27]. This implies that a local stability property, that provides a one-sided measure of the
approximation properties of the local bilinear forms, has to be shown.

For symmetric DG approximations, our analysis follows the abstract convergence theory of multiplicative
Schwarz methods [8]. To complete the analysis, the presence of approximate local solvers implies the need of a
technical assumption on the size of the penalty parameter which does not seem to be required in practice, as
our numerical experiments indicate. For all the DG schemes stabilized by penalizing the jumps of the discrete
solution across neighboring elements, we show that the energy norm of the error propagation operator is strictly
less than one, and we exploit this result to prove that our preconditioner can be indeed accelerated with the
GMRES iterative solver. Since the multiplicative Schwarz method is non-symmetric even for symmetric DG
approximations we also present the corresponding symmetrized preconditioner and provide a bound for the
condition number of the resulting preconditioned matrices, which allows us to conclude that the symmetrized
multiplicative method can indeed be accelerated with the CG iterative solver. To the best of our knowledge
this is the first time that a multiplicative preconditioner for DG approximations is considered. Furthermore,
due to the close relation between multiplicative Schwarz and multigrid methods [38,41] (both are product type
iterative methods), the construction and analysis presented here might throw some new light in the research of
multigrid preconditioners for DG approximations, a field where few contributions [11,13,19,24,25] can be found
so far.

Following with the research initiated in [1], we also discuss the issue of preconditioning the non-symmetric
NIPG [33] and IIPG [18] approximations with multiplicative Schwarz methods. We examine the possible use of
two different, but “related”, existing theories for analyzing the observed convergence of the proposed product
iterative methods: the abstract theory of multiplicative Schwarz methods for non-symmetric problems originally
carried out by Cai and Widlund in [15], and the Eisenstat et al. GMRES convergence theory [21]. In both
cases we provide numerical negative answers. On the one hand, while the lack of symmetry of the NIPG and
IIPG schemes might in principle suggest the extension/adaptation of the abstract theory of [15], we numerically
demonstrate that such a theory cannot be applied for the analysis of our preconditioners. The underlying
reason is related to the “size” of the skew-symmetric part of the Schwarz operators; namely it is not a low
order compact perturbation of the symmetric part as the theory of [15] requires. On the other hand, we also
demonstrate that the Eisenstat et al. GMRES convergence theory [21], generally advocated in the analysis of
Schwarz methods, cannot be applied to explain the observed convergence of the proposed preconditioners.
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The construction and analysis of iterative methods for the solution of the linear systems of equations arising
from non-symmetric DG methods is nowadays attracting special attention. Very recently, in [9] the authors
overcome the main difficulty of this issue by considering a new weakly over-penalized version of the original NIPG
method (see [10] for the details on the DG scheme), and prove the convergence of a multigrid method for this
new DG discretization. By overpenalizing the method, the authors circumvent the lack of adjoint consistency,
and succeed in proving the required L2-error estimates for carrying out the analysis of the multigrid scheme. It
is worth noticing that, for the method proposed in [10], the skew-symmetric part of the operator turns out to be
a low order compact perturbation of the symmetric part. Therefore, the issue of analyzing iterative methods for
the original NIPG and IIPG schemes remains an open problem. Also, the construction and analysis of Schwarz
methods for this new non-symmetric DG scheme surely merit some further research.

We wish to note that, after we were submitting the paper, a new theory for non-stagnation of the GMRES
method has came out [34]. The issue of exploring this less restrictive GMRES convergence theory, deserves
without doubt further investigation and will be the subject of a future research.

Extensive numerical experiments are presented to confirm the convergence results, which also show the good
performance and scalability (that is the independence of the convergence rate on the number of subdomains)
of the proposed preconditioners. Also, we numerically compare the proposed preconditioners with the additive
version studied in [1], and we show that, although the multiplicative preconditioner is less parallelizable, it
is far faster than the additive one. We also address numerically the effect of the selection of the subdomain
partition on the performance of our preconditioners. For that purpose we have considered two elliptic problems
with a discontinuous diffusion matrix, and an anisotropic diffusion matrix. In both cases, the performance of
the proposed preconditioners does not deteriorate. Furthermore, in the anisotropic case, we show that a clever
ordering favours and speed up substantially the convergence of the product iterative method.

The paper is organized as follows. In Section 2 we set up our notation and briefly recall the unified framework
for DG approximations of elliptic problems given in [4]. In Section 3 we provide a unified framework for the
construction of the Schwarz preconditioners. The convergence analysis for symmetric DG approximations is
given in Section 4; while in Section 5 we discuss the issue of preconditioning non-symmetric DG methods.
Numerical experiments on conforming meshes and on meshes with hanging-nodes are provided in Section 6.
Finally, in Section 7 we draw some conclusions.

2. Discontinuous Galerkin discretization

In this section, we introduce the model problem we will consider, set up some notation, and, following [4],
briefly review the discontinuous finite element approximation of second order elliptic problems and the theoret-
ical tools we shall require.

We consider the following model problem

−∆u = f in Ω, u = 0 on ∂Ω, (2.1)

where Ω ⊂ R
d, d = 2, 3, is a smooth convex domain or a convex polygon or polyhedron and f is a given function

in L2(Ω).

Remark 2.1. We point out that, in spite of considering a simplified model problem, the results presented
here also apply to more general second order elliptic operators in divergence form, with possibly discontinuous
coefficients (see Sect. 6.3). Furthermore, with slightly minor changes, other kinds of boundary conditions could
also be considered, e.g., non-homogeneous Dirichlet and/or Neumann boundary conditions1.

1In the case of Neumann boundary conditions prescribed on the whole boundary ∂Ω some compatibility conditions on the source
term need to be assumed to ensure the well-posedness of the problem.
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2.1. Notation

Throughout the paper, C and c are used to denote generic positive constants that may not be the same at
different occurrences but that are always mesh-independent. The notation x ≈ y means that there exist positive
constants c and C such that c x ≤ y ≤ C x.

Meshes and traces. Let Th be a shape-regular (not necessarily matching) partition of Ω into disjoint open
elements T such that Ω = ∪T∈Th

T where each T ∈ Th is an affine image of a fixed master element T̂ , and where
T̂ is either the open unit d-simplex or the open unit hypercube in R

d, d = 2, 3. Denoting by hT the diameter
of the element T ∈ Th, we define the mesh size h = maxT∈Th

{hT }.
An interior face of Th (if d = 2, “face” means “edge”) is the (non-empty) interior of ∂T+ ∩ ∂T−, where

T + and T− are two adjacent elements of Th, not necessarily matching. Similarly, a boundary face of Th is the
(non-empty) interior of ∂T ∩ ∂Ω, where T is a boundary element of Th. We denote by E I and E B the sets
of all interior and boundary faces of Th, respectively, and set E = E I ∪ E B . We will use the convention that∫

E ϕds =
∑

e∈E

∫
e ϕds.

We introduce the local mesh size function h ∈ L∞(E ) defined as follows: h(x) = min{hT+ , hT−}, for x in the
interior of ∂T + ∩ ∂T−, and h(x) = hT , for x in the interior of ∂T ∩ ∂Ω. We shall refer to Th as the “fine” mesh
and we shall always proceed under the assumption that the local mesh size has bounded variation, i.e., there
exists a constant C > 0 such that

C−1 hT− ≤ hT+ ≤ ChT− , (2.2)

for all T± ∈ Th such that the interior of T + ∩ T− in non empty. Roughly speaking, we avoid the mesh to be
indefinitely refined in only one part of the domain. We also assume there exists C > 0 such that for all T ∈ Th

and for all e ∈ E , hT ≤ C he, where he is the diameter of e ∈ E .

Finite element spaces. For a given partition Th of Ω and an approximation order �h ≥ 1, we define the
discontinuous finite element spaces Vh and Σh as

Vh = {v ∈ L2(Ω) : v|T ∈ M�h(T ) ∀T ∈ Th}, Σh = {σ ∈ [L2(Ω)]d : v|T ∈ [M�h(T )]d ∀T ∈ Th},

where M�h(T ) is either the space P�h(T ) of polynomials of degree at most �h on T , for T a triangle or a tetra-
hedron, or Q�h(T ) for T a parallelogram or a parallelepiped, and where Q�h(T ) is the mapping to T of Q̂�h(T̂ )
(i.e., polynomials of degree at most �h in each variable on T̂ ).

Trace operators. Let e ∈ E I be an interior face shared by two elements T + and T− with outward normal
unit vectors n±, respectively. Denoting by v± and τ± the traces of piecewise smooth scalar and vector-valued
functions v and τ , respectively, taken from the interior of ∂T±, we define the following jump and weighted
average operators

[[v]] = v+n+ + v−n−, [[τ ]] = τ+ · n+ + τ− · n−,

{{v}}δ = δv+ + (1 − δ)v−, {{τ}}δ = δτ+ + (1 − δ)τ−, δ ∈ [0, 1].

For δ = 1/2, we drop the subindex and simply write {{·}}. On a boundary face e ∈ E B, we set {{v}}δ = v,
[[v]] = vn, {{τ}}δ = τ and [[τ ]] = τ · n.

Finally, we define the local lifting operators (see [4,14]) re : [L2(e)]d −→ Σh and le : L2(e) −→ Σh by∫
Ω

re(φ) · τ dx = −
∫

e

φ · {{τ}} ds,

∫
Ω

le(q) · τ dx = −
∫

e

q [[τ ]] ds ∀ τ ∈ Σh. (2.3)
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Table 1. Numerical fluxes on interior faces, theoretical requirement on α∗ = mine∈E αe for
stability and symmetry of the corresponding bilinear form.

Method û(u) σ̂(σ, u) Stability condition Symmetry

SIPG [3] {{u}} {{∇hu}} − αeh−1 [[u]] α∗ > α̃ Yes
BRMPS [6] {{u}} {{∇hu}} + αe {{re([[u]])}} α∗ > α̃ Yes

SIPG(δ) [36] {{u}}(1−δ) {{∇hu}}δ − αeh−1 [[u]] α∗ > α̃ Yes
NIPG [33] {{u}} + [[u]] · nT {{∇hu}} − αeh−1 [[u]] α∗ > 0 No
IIPG [18] {{u}} + 1/2 [[u]] · nT {{∇hu}} − αeh−1 [[u]] α∗ > α̃ No

BMMPR [14] {{u}} {{σ}} + αe {{re([[u]])}} α∗ > α̃ Yes
LDG [17] {{u}} − β · [[u]] {{σ}} + β · [[σ]] − αeh−1 [[u]] α∗ > 0 Yes

2.2. Discontinuous Galerkin approximations

By introducing the auxiliary flux variable σ = ∇u, rewriting problem (2.1) as a first order system of equations,
and following [4], the primal discontinuous Galerkin (DG) formulation reads as follows: find uh ∈ Vh such that,

A(uh, vh) =
∫

Ω

fvh dx ∀ vh ∈ Vh, (2.4)

where

A(uh, vh) =
∫

Ω

∇huh · ∇hvh dx +
∫

E

[[û − uh]] · {{∇hvh}} ds +
∫

E I

{{û − uh}} [[∇hvh]] ds

−
∫

E

{{σ̂}} · [[vh]] ds −
∫

E I

[[σ̂]] {{vh}} ds. (2.5)

Here ∇h denotes the elementwise application of the operator ∇, and û(uh) and σ̂ = σ̂(σh, uh) are the scalar
and vector numerical fluxes, respectively. Their definition as suitable linear combinations of averages and jumps
of uh and σh determines the different DG methods (see [4] and Tab. 1 above). The stability of the DG methods
is achieved by penalizing the jumps of uh over each face e ∈ E . As a consequence, the resulting bilinear forms
contain a stabilization term S(·, ·) that is either Sh(·, ·) or Sr(·, ·) defined as

Sh(uh, vh) =
∑
e∈E

αe

∫
e

h−1 [[uh]] · [[vh]] ds, Sr(uh, vh) =
∑
e∈E

αe

∫
Ω

re([[uh]]) · re([[vh]]) ds ∀uh, vh ∈ Vh, (2.6)

where αe > 0 is a parameter independent of the mesh size. We define α∗ = mine∈E αe and α∗ = maxe∈E αe,
and assume that α∗ ≥ α∗ ≥ 1 and α∗ ≈ α∗.

In Table 1 we collect the definitions of the numerical fluxes on internal faces for the DG methods considered
in this paper. On boundary faces, the definition modifies according to [4], Section 3.4 (in particular, for the
LDG method, β = (0, 0)T on E B). To ensure stability, some of the DG methods require α∗ = mine∈E αe

sufficiently large, i.e., α∗ > α̃ (see the summary in Tab. 1).

2.3. Theoretical tools

In this section we recall the basic tools we shall require in the analysis of our multiplicative Schwarz methods.
From now on, since no confusion might arise, we drop the subindex h in the discrete functions belonging to Vh

and Σh.
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We refer to [16] for a local inverse inequality that holds true for piecewise polynomials of a given order,
and to [3] for a trace inequality that holds true for (regular enough) piecewise functions. We also recall that
the inverse and trace inequality constants only depend on the shape regularity of the partition Th and, for the
inverse inequality, on the polynomial approximation degree.

For the analysis of our two-level multiplicative Schwarz methods for symmetric DG approximations we
consider the norm induced by the bilinear form A(·, ·), i.e.

‖v‖2
A = A(v, v) ∀ v ∈ Vh. (2.7)

Observe that, for all the symmetric DG methods, provided the penalty parameter is taken so as to ensure the
coercivity of A(·, ·) (see Tab. 1), A(·, ·) does indeed define an inner product and ‖·‖A is a norm. Moreover,
continuity and stability w.r.t. the norm ‖·‖A are straightforwardly derived for all symmetric DG approximation,
by using the definition of A(·, ·) and the standard Cauchy-Schwarz inequality

(i) Continuity: |A(u, v)| ≤ ‖u‖A‖v‖A for all u, v ∈ Vh;
(ii) Coercivity: A(v, v) = ‖v‖2

A > 0 for all v ∈ Vh, v �= 0.
For the non-symmetric NIPG and IIPG methods, since A(·, ·) is not longer symmetric, it does not define an
inner product. Therefore, we shall consider instead the inner product defined by the symmetric part of A(·, ·)
(and its induced norm), i.e.,

a(u, v) =
A(u, v) + A(v, u)

2
, ‖v‖2

a = a(v, v) ∀u, v ∈ Vh. (2.8)

We wish to stress that, although ‖v‖a = ‖v‖A for all v ∈ Vh (since a(v, v) = A(v, v)), when dealing with non-
symmetric DG approximations, we shall rather use the notation ‖·‖a to emphasize that only the symmetric part
a(·, ·) of A(·, ·) defines an inner product. The issue of preconditioning non-symmetric DG methods is discussed
in Section 5.

3. Multiplicative Schwarz methods

In this section, we present our two-level algorithms for the family of the DG methods including both symmetric
and non-symmetric schemes. We start by setting some notation and introducing the assumptions on the
partitions. Then we describe the two-level algorithms in an abstract general form and from the algebraic point
of view.

3.1. Non-overlapping partitions, local and coarse solvers

Let {TNs , Ns > 0} be a family of partition of the domain Ω into Ns non-overlapping subdomains, i.e.,
TNs = {Ωi, i = 1, . . . , Ns} with Ω =

⋃Ns

i=1 Ωi, and let {TH , H > 0} and {Th, h > 0} be the families of coarse and
fine partitions (possibly with hanging nodes) with global mesh sizes H and h, respectively. We assume that
they are nested, i.e.,

TNs ⊆ TH ⊆ Th. (3.1)
For each subdomain Ωi of TNs , i = 1, . . . , Ns, we denote by Ei the set of all faces of E (recall that E is the set
of faces of the fine partition Th) belonging to Ωi; we also set

E I
i = {e ∈ Ei : e ∩ ∂Ωi = ∅} , E B

i = {e ∈ Ei : e ∩ ∂Ωi ∩ ∂Ω �= ∅} , Γi = {e ∈ Ei : e ⊂ ∂Ωi \ ∂Ω} ,

and observe that Ei = E I
i ∪ E B

i ∪ Γi.

For i = 1, . . . , Ns, we define the local spaces

V i
h =

{
v ∈ L2(Ωi) : v|T ∈ M�h(T ) ∀T ∈ Th, T ⊂ Ωi

}
, Σi

h = [V i
h ]d,
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where M�h is defined as before. The prolongation operators RT
i : V i

h −→ Vh are defined as the classical inclusion
operators from V i

h to Vh, and the restriction operators Ri, are defined as the transpose of RT
i with respect to

the L2-inner product. For vector-valued functions RT
i and Ri are defined componentwise. Notice also that,

Σh = RT
1 Σ1

h ⊕ . . . ⊕ RT
1 ΣNs

h and Vh = RT
1 V 1

h ⊕ . . . ⊕ RT
Ns

V Ns

h .

For i = 1, . . . , Ns, we define the local solvers by considering the DG approximation of the model problem (2.1)
but restricted to Ωi, that is

− ∆ui = f |Ωi on Ωi, ui = 0 on ∂Ωi.

Hence, in view of (2.5), the local bilinear forms Ai : V i
h × V i

h −→ R are defined by:

Ai(ui, vi) =
∫

Ωi

∇hui · ∇hvi dx +
∫

Ei

[[ûi − ui]] · {{∇hvi}} ds +
∫

E I
i

{{ûi − ui}} [[∇hvi]] ds

−
∫

Ei

{{σ̂i}} · [[vi]] ds −
∫

E I
i

[[σ̂i]] {{vi}} ds, (3.2)

here ûi and σ̂i are the local numerical fluxes. Their definition is given in terms of the corresponding definition of
the global numerical fluxes û and σ̂; those determining the global DG method. That is, on internal faces e ∈ E I

i ,
the definition of ûi and σ̂i coincides with that of û and σ̂ on interior faces (see Tab. 1), and, on boundary
faces e ∈ E B

i ∪Γi, they are defined as û and σ̂ on boundary faces. Notice that, each e ∈ Γi is in fact a boundary
face for the local partition, but an interior face for the global partition. See [1] for further details on the relation
between the local and global numerical fluxes.

From the definition of the local solvers, it turns out that our local solvers are approximate, in the sense that
A(RT

i ui, R
T
i ui) �= Ai(ui, ui). This is in contrast with the methods proposed in [12,22,27] where exact local

solvers were employed. As a consequence, in our convergence analysis a local stability property (see Lem. 4.3
and Cor. 4.4 below) will be required.

The last step is the construction of the coarse solver. For a given approximation order �H , 0 ≤ �H ≤ �h, the
coarse spaces are defined as

V 0
h ≡ VH =

{
v ∈ L2(Ω) : v|D ∈ M�H (D) ∀D ∈ TH

}
, Σ0

h ≡ ΣH = [V 0
h ]d.

In view of (3.1), it follows that V 0
h ≡ VH ⊆ Vh and Σ0

h ≡ ΣH ⊆ Σh. The prolongation operator RT
0 : V 0

h −→ Vh

is defined as the natural injection operator from V 0
h to Vh, and, as before, R0 is defined as the transpose of RT

0

with respect to the L2-inner product. For vector-valued functions RT
0 and R0 are defined componentwise. We

define the coarse solver A0 : V 0
h × V 0

h −→ R as the restriction of A(·, ·) to V 0
h × V 0

h , i.e.,

A0(u0, v0) = A(RT
0 u0, R

T
0 v0) ∀u0, v0 ∈ V 0

h . (3.3)

We refer to [1] for further details.

3.2. Algebraic formulation and algorithmic aspects

In this section we describe our two-level multiplicative Schwarz algorithms in the variational framework given
in [28] and from the algebraic point of view.

For i = 0, . . . , Ns, we define the following projection-like operators

Pi = RT
i P̃i : Vh −→ RT

i V i
h ⊂ Vh, (3.4)
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where the operators P̃i : Vh −→ V i
h are defined by

Ai(P̃iu, vi) = A(u, RT
i vi) ∀ vi ∈ V i

h . (3.5)

The coercivity of the local and coarse bilinear forms Ai(·, ·) guarantees that the operators P̃i (and therefore Pi)
are well defined. The multiplicative Schwarz operator we propose is defined by

Pmu = I − (I − PNs)(I − PNs−1) . . . (I − P0), (3.6)

where I : Vh −→ Vh is the identity operator. Following [8,38], the multiplicative Schwarz method consists in
replacing the discrete problem Au = f by the equation Pmuu = g, with an appropriate right hand side g. We
note that, even for the symmetric DG approximations, the corresponding operators Pmu are non symmetric,
and therefore a suitable iterative solver as the generalized minimal residual (GMRES) method has to be used
for solving the resulting linear systems of equations. This is in contrast with the situation encountered for the
additive Schwarz operator proposed in [1] and defined as

Pad =
Ns∑
i=0

Pi, (3.7)

which turns out to be symmetric for all symmetric DG methods and non-symmetric for non-symmetric DG ap-
proximations. Nevertheless, following [38], a symmetrized version of the multiplicative Schwarz operator (3.6)
can be defined as follows:

P sym
mu = I − (I − P ∗

0 ) . . . (I − P ∗
Ns−1)(I − P ∗

Ns
)(I − PNs)(I − PNs−1) . . . (I − P0), (3.8)

where, for i = 0, . . . , Ns, P ∗
i is the adjoint operator of Pi with respect to the inner product A(·, ·) for symmetric

DG methods, and with respect to a(·, ·) for the non-symmetric NIPG and IIPG approximations. It is clear that
for the symmetrized multiplicative Schwarz method, a linear solver designed for symmetric linear systems as
the conjugate gradient (CG) method can be used as an acceleration method.

Now we present our multiplicative Schwarz method from the algebraic point of view. Denoting by A ∈ R
n×n,

with n = dim (Vh), the matrix representation of the bilinear form (2.5), the algebraic formulation of (2.4) is
given by Au = f, where f ∈ R

n and u ∈ R
n are the coefficient vectors on the right hand side of (2.4) and of

the unknown u, respectively. For i = 0, . . . , Ns, we set ni = dim (V i
h). For each local space, let Ai ∈ R

ni×ni

be the matrix representation of the local bilinear forms defined in (3.2) and let A0 ∈ R
n0×n0 be the matrix

representation of the coarse bilinear form defined in (3.3). For i = 0, . . . , Ns, let RT
i ∈ R

n×ni and Ri ∈ R
ni×n

be the matrix representation of the prolongation and restriction operators RT
i and Ri, respectively. Then, the

matrix representation of the projection-like operators defined in (3.4) is given by

Pi = RT
i A−1

i RiA ∈ R
n×n, i = 0, . . . , Ns. (3.9)

The multiplicative Schwarz operator (3.6) can be written as the product of a suitable preconditioner, namely
Bmu, and A, the former involving only the prolongation operators RT

i , the restriction operators Ri and the
local operators A−1

i . More precisely,

Pmu = I − (I − PNs)(I − PNs−1) . . . (I − P0) = BmuA, (3.10)

where I ∈ R
n×n is the identity matrix. Analogously, for the additive Schwarz operator (3.7), we have

Pad =
Ns∑
i=0

Pi = BadA.
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We wish to stress that in our computations the preconditioner Bmu has not been built explicitly. In fact, the
iterative solver used for the solution of the resulting linear system usually requires a routine that compute the
action of the preconditioner on a generic vector. The following algorithm describes how to compute the action
of the preconditioner Bmu on a generic vector x ∈ R

n.

Algorithm 3.1. Action of the multiplicative Schwarz preconditioner Bmu on a generic vector x ∈ R
n.

function z = Bmux

z = RT
0 A−1

0 R0x;

for i = 1, . . . , Ns

z = z + RT
i A−1

i Ri(x−Az);
end

A similar algorithm can be written for the symmetrized multiplicative Schwarz method (3.8), by taking
into account that the matrix representation of the operator P ∗

i is given by P∗
i = A−1

s PT
i As, where As is

the matrix representation of the symmetric part of A(·, ·), i.e., As = (A + AT )/2. Clearly, whenever the
underling DG scheme is symmetric, As = A and the identity (3.9) gives P∗

i = A−1(RT
i A−1

i RiA)T A = Pi.
We point out that, while the application of the additive preconditioner (3.7) does not involve any product with
the original matrix A, for the multiplicative preconditioner (3.6) (and also for its symmetrized version (3.8))
a product with A is required for the application of each local component (see Algorithm 3.1). Notice that,
while the additive Schwarz preconditioner can be viewed as a block Jacobi preconditioner, the multiplicative
one corresponds to a block Gauss-Seidel preconditioner. That is, the local solvers are performed sequentially,
rather than in parallel, and consequently the multiplicative Schwarz preconditioner is not as parallelizable as the
additive one. However, as we will show in the numerical experiments (see Sect. 6), the multiplicative Schwarz
method is far faster than the additive one. Finally, we note that due to the different iterative solver required in
each case (GMRES for the multiplicative preconditioner and CG for the additive preconditioner) each iteration
in the multiplicative method is slightly more expensive than in the additive one.

4. Convergence analysis for symmetric DG approximations

In this section, following the abstract framework introduced in [8,38] (see also [37]), we present the analysis
of the multiplicative Schwarz methods for symmetric DG approximations stabilized with the term Sh(·, ·).

4.1. Preliminary results

We start by revising some key results proved in [1], for both symmetric and non-symmetric DG approxima-
tions, in the case of conforming grids. Their extension to non-matching grids is straightforward and we omit
the details for the sake of brevity. We also include some preliminary results that we will need in our analysis.

Proposition 4.1 (stable decomposition [1]). Let A(·, ·) be the bilinear form of a stable and consistent DG
method. For any u ∈ Vh, let u =

∑Ns

i=0 RT
i ui, ui ∈ V i

h , i = 0, . . . , Ns, where u0 ∈ V 0
h = VH is defined by

u0|D =
1

meas(D)

∫
D

u dx ∀D ∈ TH ,

and u1, . . . , uNs are determined (uniquely) by u − RT
0 u0 = RT

1 u1 + . . . + RT
Ns

uNs. Then,

Ns∑
i=0

Ai(ui, ui) ≤ α∗C2
0A(u, u),
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where α∗ = maxe∈E αe, and

C2
0 = O

⎛⎝max
D∈TH

diam(D)
minT∈Th

T⊂D
diam(T )

⎞⎠ ·

Remark 4.2. Whenever the fine and coarse partitions are globally quasi uniform, i.e., HD ≈ H for all D ∈ TH ,
and hT ≈ h for all T ∈ Th, the stable decomposition constant C2

0 given in Proposition 4.1 can be rewritten in
a more simple way as C2

0 = O(H/h).

For symmetric DG approximations, Proposition 4.1 guarantees that the following (strictly positive) lower
bound on the minimum eigenvalue of the additive Schwarz operator Pad (3.7) can be derived

A(Padu, u) ≥ 1
α∗C2

0

A(u, u) ∀u ∈ Vh. (4.1)

Next, result ensures that a local stability property which provides a one-sided measure of the approximation
properties of the local bilinear forms holds true.

Lemma 4.3 (local stability [1]). Let A(·, ·) be the bilinear form of a stable and consistent DG method. Then,
there exists Cω > 0 such that, for all ui ∈ V i

h

A(RT
i ui, R

T
i ui) ≤ ωAi(ui, ui), ω = 1 + Cω , i = 1, . . . , Ns, (4.2)

with Cω defined as

Cω = C

(
Cre +

1
√

α∗

)
, (4.3)

where C only depends on the inverse and trace inequality constants and, for the LDG method, on an upper
bound of the function β which enters into the definition of the numerical fluxes. Moreover, Cre �= 0 only for the
DG methods in which the stability term involves the local lifting operators re(·) defined in (2.3).

As a consequence of Lemma 4.3, we have the following result.

Corollary 4.4. Let A(·, ·) be the bilinear form of a stable and consistent DG method stabilized by means
of Sh(·, ·). Then, there exists α > 0 such that if α∗ = mine∈E αe > α,

A(RT
i ui, R

T
i ui) ≤ ωAi(ui, ui) ∀ui ∈ V i

h , i = 1, . . . , Ns,

with ω ∈ (1, 2).

Proof. From (4.2) we get
A(RT

i ui, R
T
i ui) ≤ (1 + Cω)Ai(ui, ui) ∀ui ∈ V i

h ,

with Cω defined as in (4.3). By hypothesis, since we are considering DG methods stabilized by means of Sh(·, ·),
Cre = 0 and Cω = C/

√
α∗. Let α ≥ C2; then, if α∗ > α, Cω < 1, and therefore

A(RT
i ui, R

T
i ui) ≤ (1 + Cω)Ai(ui, ui) = ωAi(ui, ui),

with 1 < ω < 2. �
Remark 4.5. As in the classical Schwarz theory [8], our convergence analysis relies upon the hypothesis that
the local stability constant ω ∈ (0, 2) (see Lem. 4.8 below). This implies that we have to restrict ourselves to all
the symmetric DG approximations stabilized by means of Sh(·, ·) for which, by adding a technical hypothesis
on the size of the penalty parameter, we can guarantee ω ∈ (1, 2). We point out that such a restriction is only
technical and it is not required in practice as we will show by numerical experiments in Section 6. Furthermore,
for the DG methods stabilized by means of Sr(·, ·), the hypothesis ω ∈ (1, 2) can never be satisfied even by
increasing the size of the penalty parameter.
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Remark 4.6. We wish to stress that, the restriction on the size parameter given in Corollary 4.4 is moderate.
In fact, as stated in Lemma 4.3, the constant C can be easily seen to depend only on the trace and inverse
inequality constants, and, for the LDG method, on an upper bound of the function β which enters into the
definition of the numerical fluxes.

For symmetric DG approximations, the following strengthened Cauchy-Schwarz inequalities hold. For 1 ≤
i, j ≤ Ns, there exist constants 0 ≤ εij ≤ 1, such that

|A(RT
i vi, R

T
j vj)| ≤ εijA(RT

i vi, R
T
i vi)1/2A(RT

j vj , R
T
j vj)1/2 ∀ vi ∈ V i

h ∀ vj ∈ V j
h . (4.4)

Let ρ(E) be the spectral radius of E = {εij}1≤ i,j≤ Ns , it can be shown that ρ(E) ≤ 1 + Nc, where Nc is the
maximum number of adjacent subdomains that a given subdomain can have. By using the standard Cauchy-
Schwarz inequality together with (4.4) and Lemma 4.3, it easily follows

A
(

Ns∑
i=1

Piv, v

)
≤ A

(
Ns∑
i=1

Piv,

Ns∑
i=1

Piv

)1/2

A(v, v)1/2 ≤ ω ρ(E)A(v, v) ∀ v ∈ Vh. (4.5)

Next, we prove a result for the projection-like operators Pi defined in (3.4). We first notice that, for all the
symmetric DG approximations, the operators Pi are self-adjoint with respect to A(·, ·); in fact, by using the
symmetry of A(·, ·) and the definition (3.4) of Pi, we get

A(Piu, v) = A(v, RT
i P̃iu) = Ai(P̃iv, P̃iu) = A(u, RT

i P̃iv) = A(u, Piv), i = 0, . . . , Ns. (4.6)

Lemma 4.7. Let A(·, ·) be the bilinear form of a symmetric DG method. For i = 0, . . . , Ns, let Pi be the
projection-like operators defined in (3.4). Then, for all u, v ∈ Vh,

A(Piu, v) ≤A(Piu, u)1/2A(Piv, v)1/2, i = 0, . . . , Ns (4.7)

A(Piu, Pjv) ≤ω εijA(Piu, u)1/2A(Pjv, v)1/2, i, j = 1, . . . , Ns (4.8)

where ω is the local stability constant given in Lemma 4.3 and, for i, j = 1, . . . , Ns, εij are the entries of the
correlation matrix E and, therefore, εij = 1 if ∂Ωi ∩ ∂Ωj �= ∅ and εij = 0 otherwise.

Proof. The self-adjointness (4.6) of Pi, the definitions (3.4) and (3.5) of Pi and P̃i, respectively, together with
the standard Cauchy-Schwarz inequality, lead to

A(Piu, v) = Ai(P̃iu, P̃iv) ≤ Ai(P̃iu, P̃iu)1/2Ai(P̃iv, P̃iv)1/2 = A(u, Piu)1/2A(v, Piv)1/2.

By using again (4.6) we reach (4.7). Similarly, the definition (3.5) of P̃i together with the strengthened Cauchy-
Schwarz inequalities (4.4), Lemma 4.3, the definition (3.5) and the identity (4.6) yield

A(Piu, Pjv) = A(RT
i P̃iu, RT

j P̃jv) ≤ εijA(RT
i P̃iu, RT

i P̃iu)1/2A(RT
j P̃jv, RT

j P̃jv)1/2

≤ ω εijAi(P̃iu, P̃iu)1/2Aj(P̃jv, P̃jv)1/2 = ω εijA(u, Piu)1/2A(v, Pjv)1/2.

By using the identity (4.6) we reach (4.8), and the proof is complete. �
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4.2. Convergence results

Following the abstract framework introduced in [8,38], we present our convergence results.
We start by introducing the A-norm of the projection-like operators Pi,

‖Pi‖A = sup
v∈Vh
v �=0

‖Piv‖A
‖v‖A

, i = 0, . . . , Ns,

and observe that, thanks to Lemma 4.3, ‖Pi‖A ≤ ω. For i = 0, . . . , Ns, we define, the i-th level error propagation
operator by

Ei = (I − Pi)(I − Pi−1) . . . (I − P1)(I − P0). (4.9)

By setting E−1 = I, it is straightforward to see that, for j = 0, . . . , Ns,

Ej−1 − Ej = PjEj−1, (4.10)

which, after summation from j = 0 up to j = i, gives

I − Ei =
i∑

j=0

PjEj−1 = P0 +
i∑

j=1

PjEj−1. (4.11)

Theorem 4.9, below, provides an estimate for ‖ENs‖A from which the convergence of the multiplicative Schwarz
method (3.6) follows. For its proof we shall use the following result given in [8] which we report for the sake of
completeness.

Lemma 4.8. Let A(·, ·) be the bilinear form of a symmetric DG method stabilized by means of the opera-
tor Sh(·, ·), and let α∗ = mine∈E αe > α, with α > 0 defined as in Corollary 4.4. Then,

(2 − ω)
Ns∑
i=0

A(PiEi−1v, Ei−1v) ≤ ‖v‖2
A − ‖ENsv‖2

A ∀ v ∈ Vh, (4.12)

where ω is the local stability constant given in Corollary 4.4.

Proof. The identity (4.10) and the self-adjointness of Pi give

A(PiEi−1v, Ei−1v) = ‖Ei−1v‖2
A −A(Eiv, Ei−1v) = ‖Ei−1v‖2

A −A(Eiv, [Ei + PiEi−1]v)

= ‖Ei−1v‖2
A − ‖Eiv‖2

A −A(Eiv, PiEi−1v)

= ‖Ei−1v‖2
A − ‖Eiv‖2

A −A(Ei−1v, PiEi−1v) + A(PiEi−1v, PiEi−1v),

that implies
2A(PiEi−1v, Ei−1v) = ‖Ei−1v‖2

A − ‖Eiv‖2
A + A(PiEi−1v, PiEi−1v).

The last term on the right hand side can be directly estimated by using the definition (3.4) of Pi, Corollary 4.4,
the definition (3.5) of P̃i and the self-adjointness of Pi

A(PiEi−1v, PiEi−1v) ≤ ωAi(P̃iEi−1v, P̃iEi−1v) = ωA(PiEi−1v, Ei−1v).

Then, (4.12) follows after a summation from i = 0 up to i = Ns. �

We next show the main result of this section.
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Theorem 4.9. Let A(·, ·) be the bilinear form of a symmetric DG method stabilized by means of the opera-
tor Sh(·, ·), and let α∗ = mine∈E αe > α, with α > 0 defined as in Corollary 4.4. Let Pmu be the multiplicative
Schwarz operator defined in (3.6), and let ENs be the corresponding error propagation operator. Then,

‖ENs‖2
A ≤ 1 − 2 − ω

α∗C2
0 (1 + 2 ω2(Nc + 1)2)

< 1, (4.13)

where C2
0 is the stable decomposition constant given in Proposition 4.1, α∗ = maxe∈E αe, ω is the local stability

constant given in Corollary 4.4 and Nc is the maximum number of adjacent subdomains a given subdomain
might have. Hence, the spectral radius of ENs is strictly less than one, and the multiplicative Schwarz method
converges.

Proof. For i > 0, the identity (4.11), the self-adjointness of Pi and Lemma 4.7 lead to

A(Piv, v) = A(Piv, Ei−1v) + A(Piv, P0v) +
i−1∑
j=1

A(Piv, PjEj−1v)

= A(v, PiEi−1v) + A(v, PiP0v) +
i−1∑
j=1

A(Piv, PjEj−1v)

≤ A(Piv, Ei−1v) + A(Piv, P0v) + ω

i−1∑
j=1

εijA(Piv, v)1/2A(PjEj−1v, Ej−1v)1/2

≤ A(Piv, v)1/2

⎡⎣A(PiEi−1v, Ei−1v)1/2 + A(PiP0v, P0v)1/2 + ω

i−1∑
j=1

εijA(PjEj−1v, Ej−1v)1/2

⎤⎦
≤ A(Piv, v)1/2

⎡⎣A(PiP0v, P0v)1/2 + ω
i∑

j=1

εijA(PjEj−1v, Ej−1v)1/2

⎤⎦ ,

where, in the last step, we have used that ω ≥ 1. Now, cancel the common factor, square both sides and use
the inequality (a + b)2 ≤ 2 a2 + 2 b2 to obtain

A(Piv, v) ≤ 2A(PiP0v, P0v) + 2 ω2

⎡⎣ i∑
j=1

εijA(PjEj−1v, Ej−1v)1/2

⎤⎦2

.

Next, by summing over i = 1, . . . , Ns and extending the sum on j up to Ns (note that it will only increase the
right hand side), we get

Ns∑
i=1

A(Piv, v) ≤ 2
Ns∑
i=1

A(PiP0v, P0v) + 2 ω2
Ns∑
i=1

⎡⎣ Ns∑
j=1

εijA(PjEj−1v, Ej−1v)1/2

⎤⎦2

. (4.14)

The first term on the right hand side can be bounded directly by using estimate (4.5):

2
Ns∑
i=1

A(PiP0v, P0v) ≤ 2 ω2ρ(E)A(P0v, P0v) ≤ 2 ω2ρ(E)2A(P0v, P0v),

where we have also used that ρ(E) ≥ 1, so that ρ(E)2 ≥ ρ(E). Denoting by x the vector of components
A(PjEj−1v, Ej−1v)1/2, the second term on the right hand side in (4.14) can be written as 2 ω2(Ex)T (Ex),
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and therefore, it is straightforward estimated by noting that (Ex)T (Ex) ≤ ρ(E)2xT x. Finally, by adding the
term A(P0v, v) = A(P0E−1v, E−1v) to both sides of (4.14), we obtain

Ns∑
i=0

A(Piv, v) ≤ (1 + 2 ω2ρ(E)2)
Ns∑
i=0

A(PjEj−1v, Ej−1v).

Estimate (4.1) together with the upper bound (4.12) from Lemma 4.8 give

1
α∗C2

0

‖v‖2
A ≤

Ns∑
i=0

A(Piv, v) ≤ 1 + 2 ω2ρ(E)2

2 − ω

(
‖v‖2

A − ‖ENsv‖2
A
)
.

Then, (4.13) follows from the estimate ρ(E) ≤ Nc + 1. �

Remark 4.10. Theorem 4.9 guarantees that the multiplicative Schwarz preconditioner can indeed be accel-
erated with the GMRES method. Indeed, it is easy to see that the two sufficient conditions of the GMRES
convergence theory of Eisenstat et al. (see [21]), usually advocated in the analysis of Schwarz methods, are
straightforwardly satisfied. According to [21], the GMRES method applied to the preconditioned system does
not stagnate (i.e., the iterative method makes some progress in reducing the residual at each iteration step)
provided that the symmetric part of Pmu is positive definite and Pmu has a bounded norm. Hence, by setting

cp(Pmu) = inf
v∈Vh
v �=0

A(v, Pmuv)
A(v, v)

, Cp(Pmu) = sup
v∈Vh
v �=0

‖Pmuv‖A
‖v‖A

, (4.15)

we have to show that cp(Pmu) > 0 and Cp(Pmu) is bounded. In view of Theorem 4.9, the upper bound for
Cp(Pmu) follows directly from its definition:

‖Pmu‖A = ‖I − Emu‖A ≤ 1 + ‖Emu‖A .

To prove the positive definiteness of the operator Pmu, we have to show that there exists a constant K0 > 0
such that

A(Pmuv, v) = A((I − ENs)v, v) ≥ K0 A(v, v) ∀ v ∈ Vh. (4.16)
By the definition of ‖ENs‖A, we have A(ENsv, v) ≤ ‖ENs‖A A(v, v), and so

A(v, v) −A(ENsv, v) ≥ (1 − ‖ENs‖A) A(v, v).

Then, (4.16) holds true with K0 = 1 − ‖ENs‖a which is positive thanks to Theorem 4.9.

As a direct consequence of Theorem 4.9, following [38], we can guarantee the convergence of the symmetrized
multiplicative Schwarz method.

Corollary 4.11. Let A(·, ·) be the bilinear form of a symmetric DG method stabilized by means of the opera-
tor Sh(·, ·), and let α∗ = mine∈E αe > α, with α > 0 defined as in Corollary 4.4. Let P sym

mu be the symmetrized
multiplicative Schwarz method defined in (3.8), and let Esym

Ns
be the corresponding error propagation operator.

Then,

‖Esym
Ns

‖A ≤ 1 − 2 − ω

α∗C2
0 (1 + 2 ω2(Nc + 1)2)

< 1,

where C2
0 is the stable decomposition constant given in Proposition 4.1, α∗ = maxe∈E αe, ω is the local stability

constant given in Corollary 4.4 and Nc denotes the maximum number of adjacent subdomains that a given
subdomain might have.
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Proof. Let E∗
Ns

bet the adjoint of ENs with respect to the A(·, ·)-inner product, and let Esym
Ns

be the error
propagation operator corresponding to P sym

mu . Then, the proof easily follows by observing that Esym
Ns

= E∗
Ns

ENs

is symmetric with respect to the A(·, ·) inner product, and so

‖Esym
Ns

‖A = ‖E∗
Ns

ENs‖A = ‖ENs‖2
A. �

The last result guarantees that there is no qualitative difference in the convergence properties between the
multiplicative Schwarz method and its symmetrized version.

Remark 4.12. Since P sym
mu is self-adjoint with respect to A(·, ·), we can use the Rayleigh quotient characteri-

zation of the extreme eigenvalues, i.e.,

λA
min(P sym

mu ) = min
v∈Vh
v �=0

A(P sym
mu v, v)

A(v, v)
, λA

max(P sym
mu ) = max

v∈Vh
v �=0

A(P sym
mu v, v)

A(v, v)
·

The spectral condition number of P sym
mu is given by κ(P sym

mu ) = λA
max(P sym

mu )/λA
min(P sym

mu ). Corollary 4.11 allows
us to provide the following bound on the condition number for the symmetrized multiplicative Schwarz method:

κ(P sym
mu ) ≤

α∗C2
0

(
1 + 2 ω2(Nc + 1)2

)
2 − ω

· (4.17)

In fact, an upper bound for λA
max(P

sym
mu ) follows from the definition of P sym

mu and the fact that A(·, ·) is positive
definite

λA
max(P sym

mu ) = max
u∈Vh
u�=0

A((I − E∗
Ns

ENs)v, v)
A(v, v)

= 1 − min
v∈Vh
v �=0

A(ENsv, ENsv)
A(v, v)

≤ 1.

A (strictly positive) lower bound for λA
min(P sym

mu ) can be proved by using Corollary 4.11

λA
min(P sym

mu ) = min
v∈Vh
v �=0

A((I − E∗
Ns

ENs)v, v)
A(v, v)

= 1 − max
v∈Vh
v �=0

A(ENsv, ENsv)
A(v, v)

≥ 2 − ω

α∗C2
0 (1 + 2 ω2(Nc + 1)2)

·

The above estimate combined with the previous one gives (4.17).

5. The issue of preconditioning non-symmetric DG methods

In this section we discuss the issue of preconditioning non-symmetric DG approximations of the model
problem (2.1) with the multiplicative Schwarz preconditioner introduced in Section 3. Since our discrete bilinear
forms are no longer symmetric, one might consider the extension or “adaptation” of the available theory of
multiplicative Schwarz methods for non-symmetric problems originally carried out by Cai and Widlund in [15].
We shall demonstrate by means of numerical computations not only that such a theory cannot be applied, but
also that the GMRES convergence theory of Eisenstat et al. [21] fails to explain the convergence of the proposed
preconditioners. The results we present are inspired by and complete those in [1].

We start by recalling the primal bilinear form of the non-symmetric NIPG and IIPG methods:

A(u, v) =
∫

Ω

∇hu · ∇hv dx − (1 − γ)
∫

E

[[u]] · {{∇hv}} ds −
∫

E

{{∇hu}} · [[v]] ds + Sh(u, v) ∀u, v ∈ Vh,
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where γ = 2, 1 for the NIPG and IIPG methods, respectively, and where Sh(·, ·) is defined as in (2.6). The
corresponding symmetric and skew-symmetric parts are given by

a(u, v) =
∫

Ω

∇hu · ∇hv dx +
(γ − 2)

2

{∫
E

[[u]] · {{∇hv}} ds +
∫

E

{{∇hu}} · [[v]] ds

}
+ Sh(u, v) ∀u, v ∈ Vh,

s(u, v) =
γ

2

∫
E

[[u]] · {{∇hv}} ds − γ

2

∫
E

{{∇hu}} · [[v]] ds ∀u, v ∈ Vh,

respectively. We consider the inner product defined by the symmetric part a(·, ·) and its induced norm ‖ · ‖2
a =

a(·, ·) (see (2.8)). The following bound can be easily shown for the skew-symmetric part (see [1]),

|s(u, v)| ≤ γ

2

∣∣∣∣∫
E

[[u]] · {{∇hv}} ds

∣∣∣∣+ γ

2

∣∣∣∣∫
E

{{∇hu}} · [[v]] ds

∣∣∣∣ ≤ Css
γ√
α∗

‖u‖a ‖v‖a , (5.1)

where Css is a constant depending only on the shape regularity of the mesh and the polynomial degree.

Remark 5.1. We have already noticed that ‖v‖a = ‖v‖A for all v ∈ Vh. However, to emphasize that only the
symmetric part of A(·, ·) defines an inner product, throughout this section we will denote the norm by ‖ · ‖a.

5.1. Applicability of the abstract theory of Cai and Widlund [15]

The general framework developed in [15] provides an upper bound (strictly less than one) of the norm of
the operator Emu by studying the positive definiteness of the symmetrized multiplicative operator P sym

mu . Such
a bound implies that the spectral radius of the error propagation operator, ρ(ENs), is strictly less than one,
and therefore, a simple Richardson iteration applied to the preconditioned system converges. More precisely,
by recalling that P ∗

i is the adjoint operator of Pi with respect to the inner product defined by a(·, ·) (i.e.,
a(Piu, v) = a(u, P ∗

i v) ∀u, v ∈ Vh), the symmetrized operator P i is generally defined as

P i = Pi + P ∗
i − P ∗

i Pi = (I − P ∗
i )(I − Pi), i = 0, . . . , Ns.

From the definition (4.9) of the i-th level error propagation operator, it is straightforward to see that

I − E∗
Ns

ENs =
Ns∑
i=0

E∗
i−1P iEi−1 = P sym

mu . (5.2)

Then, thanks to the above identity, to prove that ‖ENs‖a < 1, it is enough to show that the symmetrized
multiplicative operator is “sufficiently” positive definite. In view of the results shown in [1], we have done some
numerical computations demonstrating that the minimum eigenvalue of P sym

mu , i.e.,

λa
min(P sym

mu ) = min
v∈Vh
v �=0

a(P sym
mu v, v)

a(v, v)
,

might be negative in non pathological cases. In Table 2 we show the estimates of λa
min(P sym

mu ) obtained on
unstructured triangular meshes with �h = �H = 1, and with αe = α = 1 (left) and αe = α = 10 (right) for
all e ∈ E . More computations (not reported here, for brevity) that confirm the results reported in Table 2,
were done for different mesh configurations, different polynomial approximation degrees and higher values of
the penalty parameter. From identity (5.2), whenever λa

min(P sym
mu ) < 0, it follows that ‖ENs‖a > 1, which would

imply that we cannot conclude that ρ(ENs) < 1.
A closer inspection reveals that the theory is far from being optimal mainly due to two reasons. The first one

is related to the bounds for the convergence rates of GMRES which are far from being sharp. The second relies
on a required assumption on the “size” of the non-symmetric part of the problem, namely s(·, ·). In particular,
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Table 2. Estimate of λa
min(P sym

mu ). NIPG method: �h = �H = 1, Ns = 16, unstructured
triangular grids.

α = 1 α = 10

H ↓ h → h0 h0/2 h0/4 h0 h0/2 h0/4
H0 –1.2651 –2.6841 –3.8467 0.4357 0.0696 –0.1030

H0/2 – –1.4082 –3.5500 – 0.3937 0.1100
H0/4 – – –1.5699 – – 0.3966

Table 3. Estimate of cp(Pmu). NIPG method: �h = �H = 1, unstructured triangular grids.

α = 1 α = 10

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 0.1583 –0.0948 –0.2744 –0.3797 0.3370 0.1124 0.0190 –0.0237
H0/2 – 0.0970 –0.2104 –0.3828 – 0.3427 0.1273 0.0383
H0/4 – – 0.0883 –0.1956 – – 0.3278 0.1208
H0/8 – – – 0.0254 – – – 0.2927

to apply the theory it is necessary to show that the non-symmetric part of the bilinear form s(·, ·) is “small”
with respect to the symmetric, positive definite part a(·, ·). In our case, from estimate (5.1), one might deduce
that the skew-symmetric and symmetric parts are about the same order, unless some extra conditions were
imposed on the penalty parameter (e.g., by taking the penalty parameter as a function of h−1).

Remark 5.2. Similarly, one can conclude that the approach introduced in [39,40] does not apply to this
problem.

5.2. Applicability of the Eisenstat et al. GMRES convergence theory [21]

Since in the numerical experiments our multiplicative Schwarz method is accelerated with the GMRES
iterative solver, to develop the convergence analysis of the proposed preconditioners one might consider instead
the direct application of one of the available GMRES convergence bounds. The estimate by Eisenstat et al. [21]
is particularly well suited for Schwarz methods [37]. Such a bound guarantees the non-stagnation of the GMRES
method provided the symmetric part of the operator is positive definite and the norm of the operator is uniformly
bounded. More precisely, by setting as in (4.15)

cp(Pmu) = inf
v∈Vh
v �=0

a(v, Pmuv)
a(v, v)

, Cp(Pmu) = sup
v∈Vh
v �=0

‖Pmuv‖a

‖v‖a

·

One needs to ensure that cp(Pmu) > 0 and that Cp(Pmu) is bounded. While the second condition can be easily
proved, the first one cannot be guaranteed. Indeed, as we demonstrate by numerical computations, cp(Pmu)
might be negative. In Table 3 we display the computed values of cp(Pmu) obtained with the same test case
addressed before. Notice that cp(Pmu) < 0 whenever the fine grid becomes small enough, even if GMRES applied
to the preconditioned systems does not stagnate and in fact converges in few iterations. As a consequence, the
results in Eisenstat et al. [21] cannot be directly employed to theoretically justify the convergence observed in
our numerical experiments (see Sect. 6).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Initial coarse (top) and fine (bottom) refinements on Cartesian grids, structured
triangular grids, unstructured triangular grids and non-matching Cartesian grids, respectively,
on a 4 subdomains partition.

6. Numerical results

In this section we present some two-dimensional numerical experiments to demonstrate the theoretical results
of the previous sections.

The subdomain partitions of the domain Ω = (0, 1) × (0, 1) consist of Ns non-overlapping squares, with
Ns = 4, 16 (see Fig. 1 where the case Ns = 4 is shown). We have tested our Schwarz methods on matching
and non-matching Cartesian grids, and on structured and unstructured triangular grids. The initial coarse and
fine refinements for all the considered triangulations are depicted in Figure 1 (top and bottom, respectively).
We have denoted by H0 and h0 the corresponding initial coarse and fine mesh sizes. We have considered
m successive global uniform refinements of these initial grids so that the resulting mesh sizes are Hm = H0/2m

and hm = h0/2m, respectively, with m = 0, 1, 2, 3. All experiments have been carried out with different
polynomial approximation degrees for both the fine mesh space (�h = 1, 2) and the coarse mesh space (�H =
0, 1, 2). For the sake of simplicity, in all the tests we have taken αe = α for all e ∈ E . To solve the linear
systems, we have used either the (non restarted) GMRES or the CG iterative solvers with (relative) tolerance
set to 10−9, allowing for a maximum of 300 iterations (for the non-preconditioned systems we have admitted at
most 800 iterations). All computations have been performed in Matlab.

In Sections 6.1 and 6.2 we investigate the performance of the proposed Schwarz preconditioners for symmetric
and non-symmetric DG approximations, respectively. In both sections, f is chosen so that the exact solution
of the model problem (2.1) (with non-homogeneous boundary conditions) is given by u(x, y) = exp(xy). In
Section 6.3, we report some numerical experiments carried out with a more general second order elliptic equation
with a discontinuous diffusion matrix and well as anisotropic diffusion matrix.

6.1. Symmetric DG approximations

We first address the scalability of the proposed multiplicative Schwarz method, that is the independence
of the convergence rates on the number of subdomains. In Table 4 we have reported the GMRES iteration
counts for the SIPG method (α = 10) on the two different subdomain partitions (Ns = 4, 16, respectively) by
using piecewise bilinear polynomials both for the fine and coarse mesh spaces (�h = �H = 1) on structured
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Table 4. BmuAu = Bmuf: GMRES iteration counts. SIPG method (α = 10): �h = �H = 1,
structured triangular grids.

N = 4 N = 16

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 10 15 21 29 10 14 20 27

H0/2 – 9 13 18 – 9 12 18
H0/4 – – 8 11 – – 7 11
H0/8 – – – 7 – – – 6

# iter(A) 96 189 368 x 96 189 368 x

Table 5. BmuAu = Bmuf: GMRES iteration counts. SIPG method (α = 2 and α = 4):
�h = �H = 1, Cartesian grids.

α = 2 α = 4

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 22 27 37 51 22 31 44 61

H0/2 – 21 26 35 – 21 29 41
H0/4 – – 21 26 – – 21 29
H0/8 – – – 20 – – – 20

# iter(A) 42 75 145 282 53 103 199 388

triangular grids (see Figs. 1(b)–1(f)). The dashes indicate that TH ⊆ Th and therefore it is meaningless to build
the preconditioner. The crosses in Table 4 (and in the rest of the section) indicate that we were not able to
solve the non-preconditioned system due to excessive GMRES memory storage requirements. As predicted by
Theorem 4.9, our preconditioner is practically insensitive to the number of the subdomains, and, by refining
both the fine and the coarse meshes while keeping the ratio H/h constant (the entries in the diagonals of the
tables), the iteration counts remain almost unchanged. It can be also seen that, for fixed H we observe an
asymptotic behaviour O(1/

√
h), and for fixed h, the computed convergence behaviour is slightly better than

O(
√

H). In all our computations we have observed that, when h0/H0 = 2, that is when H = h (see Fig. 1),
the coarse solver turns out to be an exact solver for the whole problem, and only one iteration is needed for
convergence. Since this is a purely academic case, it is not reported here.

Having already discussed the issue of scalability of the proposed preconditioner, the rest of the numerical
experiments of this section have been carried out on a Ns = 16 subdomain partition. In Table 5 we report
the GMRES iteration counts obtained with the SIPG method (α = 2 and α = 4, respectively) on Cartesian
grids and by choosing �h = �H = 1. Our computations indicate that the minimum value α̃ (see Tab. 1) that
guarantees the stability of the scheme is approximately 1.4; therefore, α = 2 is very close to the limit case. The
results in Table 5 confirm that our preconditioner performs according to the theory also in these cases.

Next, we address the performance of the multiplicative preconditioner for DG methods with higher order
polynomial approximation degrees. In Table 6 we have reported the GMRES iteration counts for the LDG
method (α = 1, β = [0.5, 0.5]T ) with �h = �H = 2, and with �h = 2 and �H = 1, respectively, on Cartesian
grids. Notice that, by choosing �h = �H = 2 our preconditioner performs better than with �h = 2 and
�H = 1. The results reported in Table 6 show that, our preconditioner performs well also for small values
of the penalty parameter α, confirming that the hypothesis on the size of α required by Theorem 4.9 is only
technical and it is not needed in practice. * as already observed in the previous experiments, for fixed H ,
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Table 6. BmuAu = Bmuf: GMRES iteration counts. LDG method (α = 1, β = [0.5, 0.5]T ):
�h = 2, Ns = 16, Cartesian grids.

�H = 2 �H = 1

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 12 16 21 28 22 30 40 53
H0/2 – 9 12 16 – 17 23 32
H0/4 – – 7 8 – – 16 21
H0/8 – – – 5 – – – 13

# iter(A) 112 210 403 x 112 210 403 x

Table 7. BmuAu = Bmuf: GMRES iteration counts. SIPG method (α = 10): �H = 0,
Ns = 16, structured triangular grids.

�h = 1 �h = 2

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 25 35 47 66 45 63 87 116

H0/2 – 28 38 53 – 50 70 95
H0/4 – – 30 41 – – 54 74
H0/8 – – – 30 – – – 45

# iter(A) 96 189 368 x 185 357 688 x

the observed convergence behaviour seems to be of order O(1/
√

h), and, for fixed h, it seems to be slightly
better than O(

√
H).

Now we investigate the effect of the choice of a piecewise constant coarse mesh space VH (�H = 0). In
Table 7 we have reported the results obtained with the SIPG method (α = 10) on structured triangular grids
with �h = 1 and �h = 2. For fixed H , a convergence behaviour of order O(

√
h−1) is clearly observed, while, for

fixed h, a convergence behaviour of order O(
√

H) seems to be achieved only asymptotically. Such a behaviour is
similar to that observed in [1,22] for the additive Schwarz preconditioner (3.7) with a piecewise constant coarse
solver (see also Tab. 9, below). Results carried out with the LDG method on Cartesian grids (not reported
here, for the sake of brevity), confirm the convergence behaviour observed with the SIPG method.

Next, we present a comparison between the multiplicative Schwarz method (3.6) and its additive version (3.7)
introduced in [1]. As we have already noticed, for symmetric DG methods the additive Schwarz precondi-
tioner (3.7) is symmetric and therefore, the resulting preconditioned linear systems could be solved with the
CG method which is considerably cheaper (in terms of computational costs) than the GMRES iterative solver.
However, in order to present a fair comparison, we have solved all the preconditioned linear systems with the
GMRES iterative solver. The following numerical experiments have been carried out on non-matching grids (see
Figs. 1(d)–1(h)). In Table 8 we compare the iteration counts obtained with �h = �H = 1; the analogous results
carried out with �h = 1 and �H = 0 are shown in Table 9. In both cases, the multiplicative Schwarz method is far
faster than the additive one and, when using �h = �H = 1, the observed convergence behaviour is in agreement
with the theoretical results given Theorem 4.9. Concerning the results obtained with �h = 1 and �H = 0, for
fixed H , a convergence behaviour of order O(1/

√
h) is clearly achieved with both preconditioners, while, for

fixed H , the multiplicative Schwarz preconditioner seems to perform slightly better than the additive one.
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Table 8. BmuAu = Bmuf and BadAu = Badf: GMRES iteration counts. SIPG method
(α = 10): �h = �H = 1, Ns = 16, non-matching Cartesian grids.

BmuAu = Bmuf BadAu = Badf

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 13 20 30 42 43 64 94 133

H0/2 – 10 16 24 – 47 68 97
H0/4 – – 9 14 – – 48 69
H0/8 – – – 8 – – – 48

# iter(A) 277 538 x x 277 538 x x

Table 9. BmuAu = Bmuf and BadAu = Badf: GMRES iteration counts. SIPG method
(α = 10): �h = 1, �H = 0, Ns = 16, non-matching Cartesian grids.

BmuAu = Bmuf BadAu = Badf

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 45 64 89 122 90 128 182 264

H0/2 – 47 66 91 – 103 149 215
H0/4 – – 46 63 – – 119 174
H0/8 – – – 44 – – – 134

# iter(A) 277 538 x x 277 538 x x

Table 10. Bsym
mu Au = Bsym

mu f: condition number estimates and CG iteration counts.
SIPG method (α = 10), �h = �H = 1, Cartesian grids.

κ(Bsym
mu A) CG # iter(Bsym

mu A)

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 5.2 10.4 21.2 43.1 13 21 29 37
H0/2 – 4.8 9.4 18.7 – 11 17 23
H0/4 – – 4.7 9.4 – – 10 15
H0/8 – – – 4.5 – – – 9
κ(A) 2.7 e+02 10 e+03 4.2 e+03 1.7 e+04 # iter(A) 77 155 303 592

Now, we present a set of numerical experiments carried out with the symmetrized version of the multiplicative
Schwarz operator P sym

mu defined in (3.8). In Table 10 we have reported the condition number estimates and
CG iteration counts computed with the SIPG method (α = 10) by choosing �h = �H = 1 on Cartesian grids.
The numerical estimate of the condition number has been obtained by exploiting the analogies between the
Lanczos technique and the CG method; in fact, a tridiagonal matrix can be built in the CG code with the
property that, during the iterative procedure, the approximation of the extreme eigenvalues of Bsym

mu A becomes
better and better (see [23], Sects. 9.3 and 10.2 for more details). Clearly, the numerical results reported in
Table 10 confirm the theoretical condition number estimate given in (4.17). These results can be compared
with the ones given in [1], Table 9, and show that κ(P sym

mu ) is much smaller than κ(Pad).
Now we present some results obtained with the BRMPS method [6] which is a DG method stabilized by means

of the operator Sr(·, ·) (see (2.6)) and to which our analysis does not apply. In Table 11 we show the GMRES
iteration counts obtained with the BRMPS method (α = 10) on Cartesian grids with �h = 1, 2 and �H = 1.
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Table 11. BmuAu = Bmuf: GMRES iteration counts. BRMPS method (α = 10): Ns = 16,
Cartesian grids.

�h = 1, �H = 1 �h = 2, �H = 1

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 18 28 38 54 28 40 54 73
H0/2 – 15 23 32 – 23 33 44
H0/4 – – 12 20 – – 20 28
H0/8 – – – 11 – – – 17

# iter(A) 83 167 325 630 161 313 602 x

Table 12. BmuAu = Bmuf: GMRES iteration counts. NIPG method (α = 1): �h = �H = 1,
Cartesian grids.

N = 4 N = 16

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 9 12 15 18 12 13 16 20

H0/2 – 9 11 13 – 9 11 14
H0/4 – – 8 10 – – 8 10
H0/8 – – – 7 – – – 7

# iter(A) 33 61 117 225 33 61 117 225

In both cases, the multiplicative preconditioner seems to perform very well, and the observed convergence
behaviour is similar to the one observed with all the DG methods covered by our theoretical analysis.

6.2. Non-symmetric DG approximations

This section is devoted to show some numerical experiments carried out with the proposed multiplicative
preconditioner for non-symmetric DG approximations of the model problem (2.1). We shall show that, although
the available theory of Schwarz methods and the GMRES convergence theory of Eisenstat et al. [21] cannot
be used to explain the convergence of the proposed preconditioners, they do indeed converge when accelerated
with the GMRES and they are also scalable.

As in the previous section, we first address the scalability of the proposed multiplicative preconditioner. In
Table 12 we have reported the iterations counts obtained on Cartesian grids with the NIPG method (α = 1)
and with �h = �H = 1 on a Ns = 4 (left) and Ns = 16 (right) subdomain partition. It can be observed that the
multiplicative preconditioner seems to be scalable.

Throughout the rest of the section, we set Ns = 16. Since the NIPG method is stable for any α > 0, we
have tested our preconditioner with α = 0.1, 0.2. The results obtained on Cartesian grids with �h = �H = 1 are
shown in Table 13. As it can be clearly observed, our preconditioner performs well also by choosing α < 1.

Now we discuss the performance of the proposed preconditioner for DG approximations with higher order
polynomial approximation degrees. The results reported in Table 14 have been carried out with the NIPG
method (α = 1) on structured triangular grids. We have set �h = 2 and in Table 14 we have compared the
GMRES iteration counts obtained with �H = 2 and with �H = 1. We observe that, in both cases, the number
of iterations do not increase as we decrease both h and H keeping their ratio constant. Furthermore, as for
symmetric DG approximations (see Sect. 6.1), the proposed preconditioner behaves better with equal order
polynomial approximation degree, i.e., �h = �H = 2, than with �h = 2 and �H = 1.
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Table 13. BmuAu = Bmuf: GMRES iteration counts. NIPG method (α = 0.1 and α = 0.2):
�h = �H = 1, Cartesian grids.

α = 0.1 α = 0.2

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 57 59 57 63 48 46 46 53

H0/2 – 47 46 50 – 35 37 42
H0/4 – – 41 47 – – 32 37
H0/8 – – – 40 – – – 31

# iter(A) 40 60 107 208 36 57 109 211

Table 14. BmuAu = Bmuf: GMRES iteration counts. NIPG method (α = 1): �h = 2,
Ns = 16, structured triangular grids.

�h = 2, �H = 2 �h = 2, �H = 1

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 11 13 16 17 16 19 23 30

H0/2 – 9 11 13 – 13 16 20
H0/4 – – 7 9 – – 12 14
H0/8 – – – 5 – – – 11

# iter(A) 119 222 426 x 119 222 426 x

Table 15. BmuAu = Bmuf: GMRES iteration counts. NIPG method (α = 1): Ns = 16,
unstructured triangular grids.

�h = 1, �H = 0 �h = 2, �H = 0

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 25 32 43 54 26 37 52 74
H0/2 – 27 34 44 – 30 42 61
H0/4 – – 26 35 – – 33 48
H0/8 – – – 27 – – – 35

# iter(A) 54 94 192 x 122 225 459 x

Next, we study the effect of using a coarse mesh space VH made of piecewise constants (�H = 0) on the
performance of our multiplicative Schwarz method. In Table 15 we compare the results obtained with the
NIPG method (α = 1) on unstructured triangular grids with �h = 1 and �h = 2. Similar conclusions as for
symmetric DG approximations (see Sect. 6.1) can be drawn: for fixed H , the convergence behaviour seems to be
O(1/

√
h), while, for fixed h, a convergence behaviour of order O(

√
H) seems to be achieved only asymptotically.

Such a behaviour was already observed in [1] with the additive Schwarz preconditioner.
Finally, we present a numerical comparison between our multiplicative Schwarz method and the addi-

tive one (3.7) proposed in [1], which, in this case, is non-symmetric as well since we are dealing with non-
symmetric DG schemes. Results in Table 16 have been carried out with the NIPG method (α = 1) on
non-matching Cartesian grids (see Figs. 1(d)–1(h)). More precisely, in Table 16 we compare the GMRES
iteration counts for the multiplicative and the additive Schwarz preconditioners, respectively, with �h = �H = 1.
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Table 16. BmuAu = Bmuf and BadAu = Badf: GMRES iteration counts. NIPG method
(α = 1): �h = �H = 1, Ns = 16, non-matching Cartesian grids.

BmuAu = Bmuf BadAu = Badf

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8
H0 11 13 17 21 28 30 36 46

H0/2 – 9 12 14 – 26 30 36
H0/4 – – 8 10 – – 26 29
H0/8 – – – 7 – – – 25

# iter(A) 113 217 x x 113 217 x x

(a) (b)

Figure 2. Test case with u(x, y) = cos(2πx) cos(2πy). Figure 2(a): the discontinuous perme-
ability coefficient κ. Figure 2(b): the elevation plot of the source term f(x, y).

Clearly, the proposed multiplicative Schwarz method outperforms the additive one, in the sense that it is more
than twice faster (recall that, in terms of the computational cost the multiplicative preconditioner is more ex-
pensive). We have repeated the same set of experiments with �H = 0; the numerical results (not reported here)
confirmed that also with a piecewise constant coarse solver the multiplicative Schwarz preconditioner is twice
faster than the additive one.

6.3. Discontinuous and anisotropic diffusion matrices

We let Ω = (0, 1) × (0, 1), and we consider the following diffusion problem

− div(K∇u) = f in Ω, u = g on ∂Ω,

where K is a symmetric 2×2 matrix whose entries are bounded, piecewise continuous, strictly positive coefficients.
In the first test case, we have taken u(x, y) = cos(2πx) cos(2πy), and K = κI, where κ is a piecewise

constant positive coefficient with a discontinuity between four regions of Ω (checkerboard domain) chosen as in
Figure 2(a); the load f (cf. Fig. 2(b)) and the boundary conditions are set accordingly. We have aligned the
subdomain partition with the discontinuities of the diffusion coefficient κ as shown in Figure 2(a).

In Table 17 we have reported the GMRES iteration counts obtained on Cartesian grids for the LDG method
(α = 1, β = [0.5, 0.5]T ) with �h = �H = 1 and with �h = �H = 2. As expected, we observe that the presence of
a discontinuous diffusion coefficient does not deteriorate the numerical performance of our preconditioner, and
the expected convergence rates are attained.
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Table 17. BmuAu = Bmuf: GMRES iteration counts. LDG method (α = 1, β = [0.5, 0.5]T ):
�h = 2, Ns = 4, Cartesian grids, κ as in Figure 2(a).

�h = 1 = �H = 1 �h = 2 = �H = 2

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 24 39 56 81 25 37 54 77
H0/2 – 31 46 61 – 27 35 50
H0/4 – – 35 47 – – 25 29
H0/8 – – – 36 – – – 18

# iter(A) 112 220 387 x 187 354 643 x

(a) (b)

1 2

34

(c) (d)

Figure 3. The two different subdomain partitions in the test case with K = diag(10−2, 1), and
the corresponding initial coarse grids (Figs. 3(a)–3(c)) and fine grids (Figs. 3(b)–3(d)).

Table 18. BmuAu = Bmuf: GMRES iteration counts. SIPG method (α = 10): �h = �H = 1,
K = diag(10−2, 1), structured triangular grids.

Subdomain partition as in Figures 3(a)–3(b) Subdomain partition as in Figures 3(c)–3(d)

H ↓ h → h0 h0/2 h0/4 h0/8 h0 h0/2 h0/4 h0/8

H0 15 28 50 82 1 1 1 1
H0/2 – 20 35 56 – 1 1 1
H0/4 – – 22 39 – – 1 1
H0/8 – – – 24 – – – 1

# iter(A) 73 180 409 x 77 189 416 x

In the second test case, the exact solution is chosen as u(x, y) = exp(xy), and K = diag(10−2, 1). Here
the problem exhibits a strong anisotropy along the x-direction. In Table 18 we have reported the GMRES
iteration counts obtained with the SIPG method (α = 10), �h = �H = 1 and with the two different subdomain
partitions shown in Figure 3. More precisely, in Table 18 (left) we show the iterations counts obtained with
the subdomain partition shown in Figures 3(a)–3(b), whereas the analogous results obtained with a subdomain
partition aligned with the anisotropy of the problem are reported in Table 18 (right). For the former subdomain
partition we observe the expected convergence rates, whereas for the latter only one iteration is needed to
achieve the required precision.



468 P.F. ANTONIETTI AND B. AYUSO

7. Conclusions

We have introduced and analyzed some new non-overlapping multiplicative Schwarz methods for DG ap-
proximations of second order elliptic operators in divergence form. The construction of the preconditioners is
presented in a unified framework, allowing also for the use of non-matching grids. Due to the lack of sym-
metry of some of the DG methods considered, the analysis is developed by distinguishing between symmetric
and non-symmetric DG approximations. For a wide class of symmetric DG methods we have proved, under
a technical hypothesis on the size of the penalty parameter, optimal convergence estimates for the resulting
iterative methods accelerated with suitable Krylov space solvers. We have addressed the issue of preconditioning
non-symmetric DG approximations, demonstrating numerically that neither the abstract Schwarz convergence
theory given [15] nor the GMRES convergence theory of Eisenstat et al. [21] can be applied to explain the
convergence observed in the numerical experiments. The issue of exploring other GMRES convergence theories
to explain theoretically the optimal behaviour observed is under investigation. Extensive numerical experiments
confirm the theoretical results and assess the performance of the proposed preconditioners. A numerical com-
parison between the proposed multiplicative preconditioner and the additive one studied in [1] have been also
included.
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