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Abstract—A discrete-time Wiener phase noise channel with
an integrate-and-dump multi-sample receiver is studied. An
upper bound to the capacity with an average input power
constraint is derived, and a high signal-to-noise ratio (SNR)
analysis is performed. If the oversampling factor grows as SNRα

for 0 ≤ α ≤ 1, then the capacity pre-log is at most (1 + α)/2 at
high SNR.

I. INTRODUCTION

Instabilities of the oscillators used for up- and down-

conversion of signals in communication systems give rise to

the phenomenon known as phase noise [1]. The impairment

on the system performance can be severe even for high-quality

oscillators, if the continuous-time waveform is processed by

long filters at the receiver side. This is the case, for example,

when the symbol time is very long, as happens when using

orthogonal frequency division multiplexing. A study of the

signal-to-noise ratio (SNR) penalty induced by filtering of a

white phase noise process has been recently done in [2], where

it is shown that the best projection receiver suffers an SNR

loss that depends on the phase noise statistics.

Typically, the phase noise generated by oscillators is a

random process with memory, and this makes the analysis of

the capacity challenging. The phase noise is usually modeled

as a Wiener process, as it turns out to be accurate in describing

the phase noise statistics of certain lasers used in fiber-

optic communications [3], and of free-running microwave

oscillators [1]. Tight numerical bounds on the information rate

of discrete-time phase noise channels with memory are given

in [4]–[7], while analytical results on single-user Wiener phase

noise channels are given in [8]–[12] where it is shown that

even weak phase noise becomes the limiting factor at high

SNR.

In [11] an achievable rate region for the discrete-time

Wiener phase noise channel with an integrate-and-dump over-

sampling receiver was derived. For the same channel and

receive filter, in this paper we develop an upper bound to the

capacity and characterize the pre-log1 at high SNR.

The paper is organized as follows. The system model for

the continuous-time channel is described in Sec. II, along with

a simplification that leads to the discrete-time model under

consideration. The upper bound to the capacity is derived in

1The factor in the capacity high-SNR expansion in front of log(SNR).

Sec. III, and the results are discussed in Sec. IV. Conclusions

are drawn is Sec. V.

Notation: Capital letters denote random variables or random

processes. The notation Xn
m = (Xm, Xm+1, . . . , Xn) with

n ≥ m is used for random vectors. With N (0, σ2) we denote

the probability distribution of a real Gaussian random variable

with zero mean and variance σ2. The symbol
D
= means equality

in distribution.

The symbol X̃ denotes the reduction of X modulo [−π, π),
and the binary operator⊕ denotes summation modulo [−π, π).
Given a complex random variable X , we use the notation

X|| = |X | and X∠ = ∠X to denote the amplitude and the

phase of X , respectively.

The operators E [·], h (·), and I (· ; ·) denote expectation,

differential entropy, and mutual information, respectively.

The function log(x) denotes the natural logarithm of x.

II. SYSTEM MODEL

In this Section we describe how to obtain a discrete-time

version of the continuous-time channel, and we point out the

main assumption that leads to the simplified model analyzed

in Sec. III.

The output of a continuous-time phase noise channel can

be written as

Y (t) = X(t)ejΘ(t) +W (t), 0 ≤ t ≤ T (1)

where j =
√
−1, X(·) is the data-bearing input waveform,

and W (·) is a circularly symmetric complex white Gaussian

noise. The phase process is given by

Θ(t) = Θ(0) + γ
√
TB(t/T ), 0 ≤ t ≤ T, (2)

where B(·) is a standard Wiener process, i.e., a process

characterized by the following properties:

• B(0) = 0,
• for any 1 ≥ t > s ≥ 0, B(t)−B(s) ∼ N (0, t− s)

is independent of the sigma algebra generated by

{B(u) : u ≤ s},
• B(·) has continuous sample paths almost surely.

One can think of the Wiener phase process as an accumulation

of white noise:

Θ(t) = Θ(0) + γ

∫ t

0

B′(τ) dτ, 0 ≤ t ≤ T, (3)

where B′(·) is a standard white Gaussian noise process.
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A. Signals and Signal Space

Suppose X(·) is in the set L2[0, T ] of finite-energy signals

in the interval [0, T ]. Let {φm(t)}∞m=1 be an orthonormal basis

of L2[0, T ]. We may write

X(t) =

∞∑

m=1

Xm φm(t), W (t) =

∞∑

m=1

Wm φm(t) (4)

where

Xm =

∫ T

0

X(t) φm(t)⋆ dt, (5)

x⋆ is the complex conjugate of x, and the {Wm}∞m=1 are

independent and identically distributed (iid), complex-valued,

circularly symmetric, Gaussian random variables with zero

mean and unit variance.

The projection of the received signal onto the n−th basis

function is

Yn =

∫ T

0

Y (t) φn(t)
⋆ dt (6)

=

∞∑

m=1

Xm

∫ T

0

φm(t) φn(t)
⋆ ejΘ(t) dt+Wn (7)

=

∞∑

m=1

Xm Φmn +Wn. (8)

The set of equations given by (8) for n = 1, 2, . . . can be

interpreted as the output of an infinite-dimensional multiple-

input multiple-output channel, whose fading channel matrix is

Φ = [Φmn].

B. Receivers with Finite Time Resolution

Consider a receiver whose time resolution is limited to ∆
seconds, in the sense that every projection must include at

least a ∆-second interval. More precisely, we set ML∆ = T ,
where M is the number of independent symbols transmitted

in [0, T ] and L is the oversampling factor, i.e., the number

of samples per symbol. The integrate-and-dump receiver with

resolution time ∆ uses the basis functions

φm(t) =

{
1/
√
∆, t ∈ [(m− 1)∆,m∆)

0, elsewhere.
(9)

for m = 1, . . . ,ML. With the choice (9), the fading

channel matrix Φ is diagonal and the channel’s output for

n = 1, . . . ,ML is

Yn = Xn
1

∆

∫ n∆

(n−1)∆

ejΘ(t) dt+Wn

= Xn ejΘ((n−1)∆) 1

∆

∫ n∆

(n−1)∆

ej(Θ(t)−Θ((n−1)∆)) dt+Wn

D
= Xn ejΘn

1

∆

∫ ∆

0

ejγ
√
∆Bn(t/∆) dt+Wn (10)

(a)
= Xn ejΘn

∫ 1

0

ejγ
√
∆Bn(t) dt+Wn

= Xn ejΘnFn +Wn, (11)

where we have used the notation Θn = Θ((n − 1)∆) and

Fn =
∫ 1

0
ejγ

√
∆Bn(t) dt. In (10) we have used (2), the property

B(t/T ) − B((n − 1)∆/T )
D
= B(t/T − (n − 1)∆/T ), the

substitution
{

t← t− (n− 1)/∆
Bn(t/T )← B(t/T − (n− 1)∆/T ),

(12)

and the property
√
TBn(t/T )

D
=
√
∆Bn(t/∆). Finally, in

step (a) we have used the substitution t← t/∆.

Since the oversampling factor is L, and the basis functions

are square in time domain, we have XkL+1 = XkL+2 = . . . =
XkL+L for k = 0, . . . ,M−1, and we can write the model (11)

as

Yn = X⌈n/L⌉L ejΘnFn +Wn (13)

for n = 1, . . . ,ML.
The vectors XML

1 , FML
1 , and WML

1 are independent of

each other. The variables {XkL}Mk=1 are chosen as identically

distributed with zero mean and variance E
[
|Xn|2

]
, and the

average power constraint is

E

[
1

T

∫ T

0

|X(t)|2 dt
]
=

1

ML∆

ML∑

n=1

E
[
|Xn|2

]

=
E
[
|Xn|2

]

∆
≤ P . (14)

Since we set the power spectral density of W to 1, the power

P is also the SNR, i.e., SNR = P .
Using (3), the variables ΘML

1 follow a discrete-time Wiener

process:

Θn = Θn−1 +Nn−1, n = 1, . . . ,ML, (15)

where the Nn’s are iid Gaussian variables with zero mean and

variance γ2∆. The fading variables Fn’s are complex-valued

and iid, and Fn is independent of Θn
1 . In other words, Fn

is correlated only to Nn, and is independent of the vector

(Nn−1
1 , NML

n+1).
Note that for any finite ∆, or equivalently for any finite

oversampling factor L, the vector Y ML
1 does not represent

a sufficient statistic for the detection of X given Y in the

model (1). In other words, the finite time resolution receiver

is generally suboptimal.

In this paper we study a simplified model, where the fading

variables FML
1 are all one, i.e., we have

Yn = X⌈n/L⌉L ejΘn +Wn, n = 1, . . . ,ML. (16)

This is a commonly-studied model, e.g., see [11], [13], and

it is referred to as the discrete-time Wiener phase noise

channel. The complete model (13) is harder to analyze than

the model (16), because in the former the dependency between

Fn and Nn must be addressed. On the other hand, if the

oversampling factor L grows unbounded, then each random

variable Fn converges to 1; this suggests that the analysis of

the model (16) can give insights into the analysis of model (13)

for receivers with high time resolution.



III. UPPER BOUND ON CAPACITY

We compute an upper bound to the capacity of the discrete-

time Wiener phase noise channel (16). For notational conve-

nience, we use the following indexing for i = 1, . . . , L and

k = 1, . . . ,M :

Y(k−1)L+i = Xk ejΘ(k−1)L+i +W(k−1)L+i, (17)

and we group the output samples associated with Xk in the

vector Yk = Y
(k−1)L+L
(k−1)L+1 .

The capacity is defined as

C (SNR) = lim
M→∞

1

M
sup I

(
XM

1 ;YM
1

)
(18)

where the supremum is taken among the distributions of XM
1

such that the average power constraint (14) is satisfied.

The mutual information rate can be upper-bounded as

follows:

1

M
I
(
XM

1 ;YM
1

)
=

1

M

M∑

k=1

I
(
XM

1 ;Yk

∣∣Yk−1
1

)

(a)

≤ 1

M

M∑

k=1

I
(
XM

1 ;Yk

∣∣Yk−1
1 , Θ̃(k−1)L

)

(b)

≤ 1

M

M∑

k=1

I
(
Xk;Yk | Θ̃(k−1)L

)

(c)
= I

(
X1;Y1 | Θ̃0

)

(d)
= I

(
X||,1;Y1

∣∣ Θ̃0

)
+ I

(
X∠,1;Y1 | Θ̃0, X||,1

)
(19)

where step (a) holds by a data processing inequality and

because Θ̃(k−1)L is independent of XM
1 , (b) because Yk

is conditionally independent of (Yk−1
1 , Xk−1

1 , XM
k+1) given

(Xk, Θ̃(k−1)L), (c) follows by stationarity of the processes,

and (d) by polar decomposition of X1 and the chain rule.

For the amplitude channel, i.e., the first term in the right-

hand side (RHS) of (19), we have

I
(
X||,1;Y1

∣∣ Θ̃0

) (a)

≤ I
(
X||,1; {X1e

jΘ̃i +Wi}Li=1

∣∣∣ Θ̃L
0

)

(b)
= I

(
X||,1; {X1 +Wi}Li=1

∣∣ Θ̃L
0

)

(c)
= I

(
X||,1 ; {X1 +Wi}Li=1

)

(d)
= I

(
X||,1 ;

∣∣∣∣∣X1 +
1

L

L∑

i=1

Wi

∣∣∣∣∣

)

(e)

≤ 1

2
log(1 + SNR)− log(2)

2
+ o(1) (20)

where (a) holds by a data processing inequality and be-

cause Θ̃L
0 is independent of X1, (b) holds due to the cir-

cular symmetry of the Wi’s, (c) because Θ̃L
0 is independent

of any other quantity, (d) because the processed variable∣∣∣X1 + L−1
∑L

i=1 Wi

∣∣∣ is a sufficient statistic for the detection

of X||,1, and (e) is an upper bound to the capacity of a

non-coherent channel under an average power constraint [8,

Eq. (16)] where o(1) represents a function independent of L
that vanishes for SNR→∞.

For the phase channel, i.e., the second term on the RHS

of (19), we have

I
(
X∠,1;Y1 | Θ̃0, X||,1

)

= I
(
X∠,1; {X1e

jΘ̃i +Wi}Li=1

∣∣∣ Θ̃0, X||,1
)

(a)

≤ I
(
X∠,1; {X1e

jΘ̃i}Li=1

∣∣∣ Θ̃0, X||,1
)

(b)
= I

(
X∠,1; {X∠,1 ⊕ Θ̃i}Li=1

∣∣∣ Θ̃0, X||,1
)

(c)

≤ I
(
X∠,1; {X∠,1 ⊕ Θ̃i}Li=1

∣∣∣ Θ̃0

)

(d)
= I

(
X∠,1;X∠,1 ⊕ Ñ0, Ñ

L−1
1

∣∣∣ Θ̃0

)

(e)
= I

(
X∠,1 ;X∠,1 ⊕ Ñ0

)

= h

(
X∠,1 ⊕ Ñ0

)
− h

(
Ñ0

)

(f)

≤ log(2π)− h

(
Ñ0

)
(21)

≤ 1

2
log

(
2π

eγ2

)
− 1

2
log(∆)− g(∆) (22)

where in step (a) we bound by the information extracted by

a genie-aided receiver that knows the additive noise WL
1 , (b)

is obtained by deleting the amplitude contribution of X||,1,

(c) holds because X||,1 ⊸−− (X∠,1, Θ̃0) ⊸−− {X∠,1 ⊕
Θ̃i}Li=1 forms a Markov chain, (d) is obtained by applying

reversible transformations, (e) holds because the random vari-

ables (ÑL−1
1 , Θ̃0) are independent of any other quantity, (f)

holds by choosing a uniform distribution in [0, 2π) for X∠,1,

and the last inequality is derived in the Appendix with

g(∆) =
1

2
erf

(
π√
2γ2∆

)

− e
− π2

2γ2∆

√
2πγ2∆

(
π +

4(π + γ2∆/π)

1− e
− π2

γ2∆

)
− 1

2
. (23)

Suppose the oversampling factor grows as a power of the

SNR, i.e., L = ∆−1 = ⌈SNRα⌉ for 0 < α ≤ 1. Inserting (20)

and (22) into (19) and using (18) yields

C (SNR) ≤ 1

2
log(1 + SNR)− log(2)

2
+

1

2
log

(
2π

eγ2

)

+
1

2
log(⌈SNRα⌉) + o(1), (24)

which for large SNR gives

lim sup
SNR→∞

{
C (SNR)− 1 + α

2
log(SNR)− 1

2
log

(
π

eγ2

)}
≤ 0.

(25)

IV. DISCUSSION

As a byproduct of (25), an upper bound to the capacity

pre-log is

lim
SNR→∞

C (SNR)

log(SNR)
≤ 1 + α

2
. (26)
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Fig. 1. Capacity pre-log bounds as a function of α for high SNR. The
oversampling factor L is L = ⌈SNR

α⌉.

As shown in the previous Section, a pre-log of 1/2 comes

from the amplitude channel, while a contribution of α/2 comes

from the phase channel. For example, if no oversampling is

used (L = 1), one can let α go to zero and obtain just the

degrees of freedom provided by the amplitude channel, i.e.,

1/2. This means that, without oversampling, the Wiener phase

noise channel has the same degrees of freedom of the non-

coherent channel. This is in accordance with the result given

in [8].

If the oversampling factor grows as
√
SNR, for α = 1/2,

then a pre-log higher than 3/4 can not be achieved. Indeed,

a pre-log as high as 3/4 can be achieved with the processing

described in [11]: the amplitude channel contributes with pre-

log 1/2 by using the statistic

Vk =

L∑

i=1

|Y(k−1)L+i|2 (27)

to detect Xk,||, and the phase channel contributes with pre-log

1/4 by using the processing

∠Ỹk = ∠

(
Y(k−1)L+1

(
Y(k−1)L

Xk−1

)⋆)
(28)

to detect Xk,∠.

Figure 1 plots the known upper and lower bounds to the

capacity pre-log at high SNR. The upper bound is the result

of this paper, expressed in (26). The lower bound is based on

results derived in [11]. More specifically:

• the lower bound for the amplitude channel, shown as the

dashed black line, was derived independent of the growth

rate of the oversampling factor;

• for the phase channel it was shown how to achieve pre-

log 1/4 for α = 1/2, hence the same pre-log can be

achieved for 1/2 ≤ α ≤ 1. It is not difficult to use the

results of [11] to extend the lower bound in the range

0 ≤ α < 1/2. It turns out that the achievable pre-log

linearly increases from 0 to 1/4.

From the Figure, the capacity pre-log is exactly known in

the range 0 ≤ α ≤ 1/2, where the upper and lower bounds

agree. The upper bound derived in this paper does not rule out

the possibility to achieve pre-log 1 if the oversampling factor

grows faster than
√
SNR.

Consider the case of receivers without oversampling (L = 1
or α → 0). The analysis of Sec. III shows that the simpli-

fied model (16) has capacity pre-log 1/2, while the general

discrete-time model that accounts also for the amplitude fading

Fn (13) has a log(log(SNR)) behavior at high SNR [14], i.e.,

pre-log 0. This means that, at least in the case L = 1, the
simplified model is not a good approximation of the complete

model.

V. CONCLUSIONS

We have derived an upper bound to the capacity of discrete-

time Wiener phase noise channels. As a byproduct, we have

obtained an upper bound to the capacity pre-log at high

SNR that depends on the growth rate of the oversampling

factor used at the receiver. If the oversampling factor grows

proportionally to SNR
α, then a capacity pre-log higher than

(1 + α)/2 can not be achieved.

Previous results on a lower bound to the capacity pre-log

allow to state that the capacity at high SNR is exactly (1 +
α)/2 log(SNR) for 0 ≤ α ≤ 1/2.

APPENDIX

A LOWER BOUND TO h

(
Ñ0

)

The probability density function of Ñ0 is

pÑ0
(x) =

∞∑

k=−∞
pN0(x+2πk) =

∞∑

k=−∞

1√
2πγ2∆

e
− (x+2πk)2

2γ2∆

(29)

for −π ≤ x < π and zero elsewhere, and can be upper-

bounded as follows for −π ≤ x < π:

pÑ0
(x)

(a)

≤ 1√
2πγ2∆

(
e
− x2

2γ2∆ + 2

∞∑

k=0

e
−π2(2k+1)2

2γ2∆

)

(b)

≤ 1√
2πγ2∆

(
e
− x2

2γ2∆ + 2
∞∑

k=0

e
−π2(2k+1)

2γ2∆

)

=
1√

2πγ2∆


e

− x2

2γ2∆ + 2
e
− π2

2γ2∆

1− e
− π2

γ2∆


 (30)

where step (a) follows by using x ≥ −π for the terms with

k ≥ 1 and x < π for the terms with k ≤ −1. Inequality (b)
holds because (2k + 1)2 ≥ 2k+ 1 for k ≥ 0. The differential



entropy of Ñ0 can be lower-bounded as follows:

h

(
Ñ0

)
= E

[
− log

(
pÑ0

(Ñ0)
)]

(a)

≥ 1

2
log(2πγ2∆) +

E

[
Ñ2

0

]

2γ2∆
− E


log


1 +

2e
Ñ2

0−π2

2γ2∆

1− e
− π2

γ2∆






≥ 1

2
log(2πγ2∆) +

E

[
Ñ2

0

]

2γ2∆
− 2e

− π2

2γ2∆

1− e
− π2

γ2∆

E

[
e

Ñ2
0

2γ2∆

]
(31)

where inequality (a) is due to (30) and the monotonicity of

the logarithm, and the last inequality is due to log(1+x) ≤ x.
A lower bound to the second moment of Ñ0 is:

E

[
Ñ2

0

]
=

∞∑

k=−∞

∫ π

−π

x2pN0(x+ 2πk) dx

≥
∫ π

−π

x2pN0(x) dx

= γ2∆erf

(
π√
2γ2∆

)
−
√
2πγ2∆e

− π2

2γ2∆ (32)

where

erf(x) =
2√
π

∫ x

0

e−t2 dt (33)

is the error function. Since all the terms of the summation are

positive, the inequality follows by considering only the term

for k = 0. An upper bound to the last expectation on the RHS

of (31) is

E

[
e

Ñ2
0

2γ2∆

]
=

1√
2πγ2∆

∞∑

k=−∞

∫ π

−π

e
− (x+2πk)2−x2

2γ2∆ dx

=
1√

2πγ2∆

∞∑

k=−∞

γ2∆

πk
e
− 2π2k2

γ2∆ sinh

(
2π2k

γ2∆

)

=
2√

2πγ2∆

(
π +

∞∑

k=1

γ2∆

πk
e
− 2π2k2

γ2∆ sinh

(
2π2k

γ2∆

))

≤ 2√
2πγ2∆

(
π +

∞∑

k=1

γ2∆

π
e
− 2π2k2

γ2∆ sinh

(
2π2k

γ2∆

))

=
2√

2πγ2∆

(
π +

γ2∆

π

)
. (34)

The bound (31) with inequalities (32) and (34) give

h

(
Ñ0

)
≥ 1

2
log(2πeγ2∆) +

1

2
erf

(
π√
2γ2∆

)

− e
− π2

2γ2∆

√
2πγ2∆

(
π +

4(π + γ2∆/π)

1− e
− π2

γ2∆

)
− 1

2

=
1

2
log(2πeγ2∆) + g(∆). (35)

Also, note that h
(
Ñ0

)
≤ h (N0) = 1/2 · log(2πeγ2∆), so we

have that the bound (35) is tight for small ∆, i.e.,

lim
∆→0

g(∆) = 0. (36)
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