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Abstract. Aggregate size effect is among several important factors that affect concrete mechanical
behavior. In this study, this effect is investigated numerically, and the obtained results are compared
with the gathered experimental data that are recently performed at Politecnico di Milano and the Joint
Research Center of Ispra, Italy. Since concrete is a rate-dependent material, different types of static
and dynamic experiments are carried out to study the aggregate size effect on concrete response. The
Lattice Discrete Particle Model (LDPM), a three-dimensional mesoscale discrete model, is employed
to simulate concrete mechanical response. LDPM simulates concrete at the level of coarse aggregate
pieces and is capable of characterizing strain localization, distributed cracking in tension and com-
pression and to reproduce post peak softening behavior. The parameters governing different aspects
of LDPM from concrete mixture design to the meso-scale mechanical constitutive law are calibrated
and used in the validation process.

1 Introduction
Concrete is the most widely used material in

the construction of civil engineering structures
such as dams, bridges and buildings. Concrete
has a complex heterogeneous internal structure,
which includes several characteristic lengths
from the scale of cement nano particles to the
macroscale. Concrete mechanical properties
evolve during its lifetime due to different phe-
nomena such as hydration, creep, shrinkage,
drying and alkali-silica-reaction. Besides, con-
crete is a rate dependent material, which means
that its mechanical characteristics, including
compressive and tensile strength, young’s mod-
ulus and fracture energy, vary with respect to
the applied loading rate [1, 2]. Therefore, con-

sidering all aforementioned complexities, a de-
tailed computational model should be devel-
oped to accurately simulate concrete behavior.

Computational models that have been devel-
oped to simulate concrete cracking and failure
can be categorized as cohesive crack models
[3], smeared crack approach [4], and discrete
lattice and particle models [5], that are all dis-
cussed and compared in [6]. In the cohesive
crack model, it is assumed that cracking occurs
between the boundary of finite elements when
the nodal force normal to the element bound-
ary reaches a critical value [7]. That node is
then duplicated and separated by the crack, and
new degrees of freedom are added to the sys-
tem. In smeared crack approaches, cracking and
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of cement, qw = 1000 kg/m3 is the mass density of water, and
vair is the volume fraction of entrapped or entrained air (typi-
cally 3–4%);

2. Compute the volume fraction of simulated aggregate as
va0 ¼ ½1# Fðd0Þ&va ¼ ½1# ðd0=daÞnF &va;

3. Compute the total volume of simulated aggregate as Va0 = va0V;
4. Compute particle diameters by sampling the cdf in Eq. (2) by a

random number generator: di ¼ d0½1# Pi 1# dq
0=dq

a

! "
&#1=q, where

Pi is a sequence of random numbers between 0 and 1. Fig. 1a
shows a graphical representation of the particle diameter selec-
tion procedure.

5. For each newly generated particle in the sequence, check that

the total volume of generated particles eV a0 ¼
P

i pd3
i =6

# $
does

not exceed Va0. When, for the first time, eV a0 > Va0 occurs, the
current generated particle is discarded, and the particle gener-
ation is stopped.

Fig. 1b shows the comparison between the theoretical sieve
curve (solid line) and the computational sieve curve (circles), ob-
tained through the procedure highlighted above for the generation
of a 100-mm-side cube of concrete characterized by c = 300 kg/m3,
w/c = 0.5, nF = 0.5, d0 = 4 mm, and da = 8 mm.

In order to simulate the external surfaces of the specimen vol-
ume, the generated particles are augmented with zero-diameter
particles (nodes). Assuming that the external surfaces of the spec-
imen volume can be described through sets of vertexes, edges, and
polyhedral faces, one node for each vertex is first added to the par-
ticle list. Then, Ne = INT(Le/hs) and Np ¼ INT Ap=h2

s

# $
(where the

operator INT(x) extracts the integer part of the argument x) nodes
are associated with each edge e and polyhedral face p, respectively.
Le is the length of a generic surface edge, Ap is the area of a generic
surface polyhedron, and the average surface mesh size hs is chosen
such that the resolution of the discretization on the surface is com-
parable to the one inside the specimen. Numerical experiments
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Fig. 1. (a) Probability distribution function for particle size generation; (b) theoretical (solid curve) and numerical (circles) sieve curve; (c) particle system for a typical dog-
bone specimen; (d) tetrahedralization for a typical dog-bone specimen; (e) tessellation of a typical LDPM tetrahedron connecting four adjacent particles; (f) edge-point
definition; (g) face-point definition; (h) tet-point definition; and (i) LDPM cells for two adjacent aggregate particle.
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Fig. 1. (a) Probability distribution function for particle size generation; (b) theoretical (solid curve) and numerical (circles) sieve curve; (c) particle system for a typical dog-
bone specimen; (d) tetrahedralization for a typical dog-bone specimen; (e) tessellation of a typical LDPM tetrahedron connecting four adjacent particles; (f) edge-point
definition; (g) face-point definition; (h) tet-point definition; and (i) LDPM cells for two adjacent aggregate particle.
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(b) (c)

Figure 1: (a) LDPM polyhedral cell enclosing spherical aggregate pieces. (b) Spherical particle and
(c) polyhedral cell representations of a typical dogbone specimen.

damage is assumed to occur within a band of fi-
nite elements. Mesh sensitivity of the response
is the main drawback of this approach. Dis-
crete models, on the other hand, can simulate
material fracture and failure without suffering
from the typical drawbacks of continuum based
models. In these methods, material domain is
approximated a priori by a discrete system of
lattices and/or particles. Therefore, their kine-
matics naturally handle displacement disconti-
nuities and cracking [8]. Among other advan-
tages of discrete models, remeshing during the
analysis is not necessary, and the constitutive
equations are vectorial as opposed to tensorial.
The latter is a key characteristic for the simula-
tion of fracture.

The Lattice Discrete Particle Model
(LDPM), recently developed by Cusatis et
al. [9, 10] is a meso-scale model which simu-
lates concrete at the scale of coarse aggregate
pieces. LDPM has successfully captured con-
crete fracture and failure in multiple types of ex-
periments and has been extended to model ASR
effect [11–13], fiber reinforced concrete [14],
fracture and failure of concrete in a multiscale
framework [15, 16], and simulating rock me-
chanics under different loading conditions [17].
In the current research, LDPM is calibrated and
validated with respect to the experimental data
recently provided on several quasi-static and
dynamic experiments performed at Politecnico
di Milano and the Joint Research Center of

Ispra, respectively. These experiments were
carried out on two different types of concrete:
standard and dam concrete which vary in their
mixture design and mainly on their maximum
aggregate size. Furthermore, different sizes of
specimens are considered for each test to in-
vestigate the specimen size effect in addition to
aggregate size effect. LDPM parameters rele-
vant to quasi-static and dynamic experiments
are calibrated by methodically fitting the results
of the numerical simulations with the provided
experimental data. Using the calibrated param-
eters, the validation procedure is performed by
simulating the experiments that that were not
used in the calibration process.

2 The Lattice Discrete Particle Model
(LDPM)

LDPM constructs the geometrical represen-
tation of concrete meso-structure through the
following steps. 1) The coarse aggregate pieces,
whose shapes are assumed to be spherical,
are introduced into the concrete volume by
a try-and-reject random procedure. 2) Zero-
radius aggregate pieces (nodes) are randomly
distributed over the external surfaces to facili-
tate the application of boundary conditions. 3)
A three-dimensional domain tessellation, based
on the Delaunay tetrahedralization of the gener-
ated aggregate centers, creates a system of poly-
hedral cells (see Figure 1a) interacting through
triangular facets and a lattice system composed
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Figure 2: Geometry of three-point bending test specimens

Dam Concrete Specimen Span S [mm] Height D [mm] Width B [mm] Notch depth a [mm]
Small 900 300 240 90

Medium 1800 600 240 180
Large 2700 900 250 270

Standard Concrete Specimen Span S [mm] Height D [mm] Width B [mm] Notch depth a [mm]
Small 450 150 120 45

Medium 900 300 120 90
Large 1800 600 120 180

Table 1: Three point bending specimen dimensions for dam and standard concrete.

by the line segments connecting the particle
centers. Figures 1c and d represent spherical
particle and corresponding polyhedral represen-
tations of a typical dogbone specimen.

In LDPM, rigid body kinematics is used to
describe the deformation of the lattice/particle
system and the displacement jump, ~uC�, at the
centroid of each facet is used to define measures
of strain as

eN =
nT~uC�

`
; eL =

lT~uC�

`
; eM =

mT~uC�

`
(1)

where ` = interparticle distance; and n, l, and
m, are unit vectors defining a local system of
reference attached to each facet.

Next, a vectorial constitutive law governing
the behavior of the material is imposed at the
centroid of each facet. In the elastic regime,
the normal and shear stresses are proportional
to the corresponding strains: tN = EN e∗N =

EN (eN − e0
N ); tM = ET e∗M = ET (eM − e0

M ); tL =

ET e∗L = ET (eL−e0
L), where EN = E0, ET = αE0,

E0 = effective normal modulus, and α = shear-
normal coupling parameter; and e0

N , e0
M , e0

L are

mesoscale eigenstrains that might arise from a
variety of phenomena such as, but not limited
to, thermal expansion, shrinkage, and ASR ex-
pansion.

For stresses and strains beyond the elastic
limit, LDPM mesoscale nonlinear phenomena
are characterized by three mechanisms as de-
scribed below.

Fracture and cohesion due to tension and
tension-shear. For tensile loading (e∗N > 0),
the fracturing behavior is formulated through

an effective strain, e =

√
e∗2N +α(e∗2M + e∗2L ),

and stress, t =

√
t2

N + (tM + tL)2/α, which
define the normal and shear stresses as
tN = e∗N (t/e); tM = αe∗M (t/e); tL = αe∗L (t/e).
The effective stress t is incrementally elas-
tic (ṫ = E0ė) and must satisfy the in-
equality 0 ≤ t ≤ σbt (e,ω) where σbt =

σ0(ω) exp[−H0(ω)〈e− e0(ω)〉/σ0(ω)], 〈x〉 =

max{x,0}, and tan(ω) = e∗N/
√
αe∗T = tN

√
α/tT ,

e∗T =

√
e∗2M + e∗2L , and e0(ω) = σ0(ω)/E0. The

3
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≥0.1 mm 

 0.01mm 
200 mm 

Figure 3: Crack opening contour of dam concrete three point bending specimens of different sizes at
failure.

post peak softening modulus is defined as
H0(ω) = Ht (2ω/π)nt , where Ht is the softening
modulus in pure tension (ω = π/2) expressed
as Ht = 2E0/ (lt/le −1); lt = 2E0Gt/σ

2
t ; le is

the length of the tetrahedron edge; and Gt is
the mesoscale fracture energy. LDPM pro-
vides a smooth transition between pure tension
and pure shear (ω = 0) with parabolic variation
for strength given by σ0(ω) = σtr2

st

(
− sin(ω)

+

√
sin2(ω) + 4α cos2(ω)/r2

st

)
/ [2α cos2(ω)],

where rst = σs/σt is the ratio of shear strength
to tensile strength.

Compaction and pore collapse from com-
pression. Normal stresses for compressive
loading (e∗N < 0) are computed through the in-
equality −σbc(e∗D,e

∗
V ) ≤ tN ≤ 0, where σbc is a

strain-dependent boundary function of the vol-
umetric strain, e∗V , and the deviatoric strain,
e∗D = e∗N − e∗V . The volumetric strain is com-
puted by the volume variation of the Delau-
nay tetrahedra as e∗V = ∆V/3V0 and is as-
sumed to be constant for all facets belong-
ing to a given tetrahedron. Beyond the elas-
tic limit, −σbc models pore collapse as a lin-
ear evolution of stress for increasing volumetric
strain with stiffness Hc for −e∗V ≤ e∗c1 = κc0e∗c0:
σbc = σc0 + 〈−e∗V − e∗c0〉Hc(rDV ); Hc = (Hc0 +

Hc1)/(1 + κc2 〈rDV − κc1〉) + Hc1 with Hc1 >
Hc0; σc0 is the mesoscale compressive yield
stress; rDV = |eD |/(e∗V − er0) for e∗V ≤ 0 and

rDV = |e∗D |/eV0 for e∗V > 0, e∗VO = kc3ε0 , kc3 =

0.1 and κc1, κc2 are material parameters. Com-
paction and rehardening occur beyond pore col-
lapse (−e∗V ≥ e∗c1). In this case one has σbc =

σc1(rDV ) exp
[
(−e∗V − e∗c1)Hc(rDV )/σc1(rDV )

]

and σc1(rDV ) = σc0 + (e∗c1− e∗c0)Hc(rDV ).

Friction due to compression-shear. The
incremental shear stresses are computed as
ṫM = ET (ė∗M− ė∗pM ) and ṫL = ET (ė∗L − ė∗pL ), where
ė∗pM = λ̇∂ϕ/∂tM , ė∗pL = λ̇∂ϕ/∂tL, and λ is the
plastic multiplier with loading-unloading con-
ditions ϕλ̇ ≤ 0 and λ̇ ≥ 0. The plastic potential

is defined as ϕ =

√
t2

M + t2
L −σbs (tN ), where the

nonlinear frictional law for the shear strength
is assumed to be σbs = σs + (µ0 − µ∞)σN0[1−
exp(tN/σN0)] − µ∞tN ; σN0 is the transitional
normal stress; µ0 and µ∞ are the initial and final
internal friction coefficients.

Finally, the governing equations of the
LDPM framework are completed through the
equilibrium equations of each individual parti-
cle.

Rate dependence of LDPM is captured by
introducing a rate dependent function into
the facet strain dependent boundary function
previously described in Section 2 as σbt =

F (ω̇)σ0(ω) exp[−H0(ω)〈e− e0(ω)〉/σ0(ω)]
where rate dependent function F (ω̇) = 1 +

c1asinh(ė/(c0/l)), see [18] for details.
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Figure 4: Force versus CMOD curves for small, medium, and large specimens for (a) to (c) standard
and (d) to (f) dam concrete.

3 Calibration and validation of LDPM

LDPM parameters that need to be defined
split into two primary groups: The first set char-
acterizes the geometry and composition of con-
crete meso-structures. It includes water to ce-
ment ratio w/c, aggregate to cement ratio a/c,
the maximum da and minimum d0 aggregate
size, and the Fuller coefficient n f which is used
to obtain the aggregate size distribution [9]. The
Fuller coefficient value was adjusted by fitting
the theoretical fuller curve formula to the sieve
curve of the standard and dam concrete used
in the experiments. All other parameters were
based on the mix designs that are provided for
both standard and dam concrete. Mix design
parameters for dam concrete were: cement con-
tent c = 236 kg/m3, a/c = 8.82, w/c = 0.5, d0
= 10 mm, da = 64 mm, and n f = 0.5. For stan-
dard concrete they were c = 273 kg/m3, a/c =

7.33, w/c = 0.55, d0 = 6 mm, da = 30 mm,
and n f = 0.5. The second set of LDPM param-

eters are related to the meso-scale mechanical
behavior which is formulated by the constitu-
tive equations explained in Section 2. Different
subsets of this set of parameters are calibrated
with respect to the results of different types of
performed experiments.

3.1 Static Simulations
Simulation of quasi-static experiments in-

cluding three point bending, uniaxial uncon-
fined compression, and confined compression
are considered in this section. In all simula-
tions, three LDPM particle realizations are con-
sidered, and the averaged results are plotted for
each test.

3.1.1 Three Point Bending

Three point bending experiments are carried
out on three different specimen sizes for dam
and standard concrete which are reported in
Figure 2 and Table 2 . One can see that the
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Figure 5: Stress-Strain curves of unconfined compression tests for (a) and (b) small and large dam
concrete cylinders, (c) dam concrete prism, (d) and (e) small and large standard concrete cylinders,
(f) standard concrete prism.

dam concrete samples are larger than standard
ones due to the larger maximum aggregate size.
Standard clip gauges were used to measure the
Crack Mouth Opening Displacement (CMOD)
during the loading process. The softening be-
havior due to tensile fracturing are governed by
tensile strength σt and meso-scale characteris-
tic length lt (related to the fracture energy Gt
through lt = 2E0Gt/σt

2) that are calibrated us-
ing the three point bending test results. To save
the computational cost, only the middle part of
the specimens are simulated by LDPM, which
is the volume where that fracture localization
is expected to occur. The two sides of the
specimen are modeled by elastic finite element.
Force versus CMOD curves for the standard and
dam concrete of three different sizes specimens
are presented in Figure 4. LDPM parameters
calibration procedure was performed through
fitting the load CMOD curve of the small speci-

mens with the experimental data, and the model
is validated by predicting the results for the two
other sizes. In the case of standard concrete, the
large, medium, and small specimens show re-
spectively an average peak load around 29 kN,
13 kN and 7 kN, while for dam concrete are
55 kN, 37 kN and 24 kN. It is shown that the
experimental data and the numerical simulation
results are in excellent agreement for all differ-
ent sizes with respect to peak loads and post
peak softening behavior, which also demon-
strates LDPM capability to characterize size ef-
fect. However, in the case of small and medium
dam concrete specimens, post peak softening
behavior is less accurate. This can be explained
by the fact that the maximum aggregate size is
relatively large, hence the number of aggregates
that can fit along the ligament above the notch
is relatively small, which leads to a lack of res-
olution of the crack pattern.
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≥1 mm 

 0.001mm 
(a) (b) (c) (d) 

100 mm 

Figure 6: Contours of meso-scale crack opening at failure for (a) small and (b) large standard and (c)
small and (d) large dam cylindrical specimens.

≥0.3 mm 

(a) (b) 

  0.03 mm 

≥1 mm 

 0.001mm 
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Figure 7: Contours of meso-scale crack opening at failure for uniaxial compression of (a) dam and (b)
standard prisms. Meso-scale crack opening contour of confined compression simulations at failure
for standard concrete with a (a) 4 mm and (b) 10 mm thickness jackets.

3.1.2 Unconfined Compression

In unconfined compression test, LDPM pa-
rameters that need to be calibrated are the shear
strength σs and the initial friction µ0 which af-
fect mostly the peak value, the softening ex-
ponent nt that governs the post peak behavior.
Prismatic (240 mm × 240 mm × 300 mm for
dam and 117 mm × 137 mm × 300 mm for stan-
dard concrete) and cylindrical specimens (200
mm and 300 mm lengths and 200 mm diame-
ter for both concrete types) are used in the un-
confined compression experiments. As shown
in Figure 5, stress-strain curves of the numeri-
cal simulations are in good agreement with the
experimental data. One can observe that the
experimental peak values obtained for different
types of standard concrete specimens are con-

sistent, while there is a discrepancy between the
peak values obtained for the dam concrete pris-
matic specimen and the cylindrical ones. This
can be justified by the low ratio of the speci-
men size to the maximum aggregate size, and
the fact that only one sample was tested for the
dam concrete prismatic case. As shown in Fig-
ures 6 and 7 (a) and (b), LDPM replicates the
shear mode failure with oblique crack patterns
which is consistent with what is observed in ex-
periments.

3.1.3 Confined Compression

In the confined compression tests the speci-
mens are axially loaded inducing a lateral de-
formation which is confined by a steel jacket
generating an inward reaction force setting the
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(d), (e), (f) cylinders.

specimen under a state of triaxial confined pres-
sure. Cylinders of 200 mm diameter and 400
mm height confined by steel jackets of 4 and
10 mm thickness are used in the experiments.
The instrumentation used for data acquisition
were two strain-gauges and one LVDT. The two
strain-gauges were placed at the mid-height of
the steel jacket to measure the tangential and
vertical strains, and one that measures the total
longitudinal deformation from plate to plate.

The LDPM parameters that must be cali-
brated are the initial and final hardening mod-
ulus ratios Hc0/E0 and Hc1/E0, respectively.
Longitudinal stress versus tangential strain data
were used to calibrate the model, while the ex-
perimental data for the total vertical strain and
LVDT vertical strain served for the validation
procedure. Comparison of the numerical simu-
lation results and the experimental data for both
concrete types are depicted in Figures 8 and 9
for 4 mm and 10 mm steel jacket thickness,
respectively. In the stress versus total vertical

strain plots, one can see that the numerical re-
sults and the experimental data do not match in
the initial part for both types of concrete and
steel jacket thicknesses. This can be mainly ex-
plained by non-uniform initial contact between
the loading plates and the specimen ends. This
behavior is not observed in Figures 8 (b) and (c)
and 9 (b) and (c), since the stain-gauges were
directly attached to the jackets. As expected
for a constant longitudinal strain, more force
is needed in the case of the 10 mm jacket than
the 4 mm one. As far as aggregate size is con-
cerned, dam concrete shows a bigger capacity to
resist triaxial confinement as shown in Figures
8 and 9.

The final set of calibrated parameters used
for the LDPM simulations of dam concrete are
E0 = 33340 MPa, α = 0.25, σt = 1.55 MPa,
σs/σt = 1.35, σc0 = 150 MPa, Lt = 5500 mm,
nt = 0.3, Hc0/E0 = 0.3, µ0 = 0.2, kc0 = 2, kc1 =

1, kc2 = 5, and Hc1/E0 = 0.8. For standard con-
crete, the final calibrated parameters are normal
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Figure 10: Dynamic compression experiment setup.

modulus E0 = 33340 MPa, α = 0.167, σt = 2.4
MPa, σs/σt = 1.7, σc0 = 155 MPa, Lt = 2200
mm, nt = 0.3, Hc0/E0 = 0.4, initial friction µ0 =

0.05, kc0 = 2, kc1 = 1, kc2 = 5 and Hc1/E0 = 0.9

3.2 Dynamic Simulations

Dynamics experiments conducted at the HO-
PLAB facility on standard and dam concrete
specimens are considered in this section to in-
vestigate the mechanical characteristics of con-
crete under high strain-rates. The experimen-
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Figure 11: Force measured at sections F1, F2, and F3 divided by the sample cross section area during
dynamic compression tests on (a) to (c) small and (d) to (f) large dam concrete specimens and on (g)
to (i) small and (k) to (m) large standard concrete specimens.

tal apparatus which is developed based on the
Hopkinson bar techniques is depicted in Figure

10 where the concrete cylindrical specimen is
placed between two steel loading plates that are
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each connected to a twin incident and transmit-
ter steel bars. Young modulus and mass den-
sity of the steel plates and the twin bars are
E = 210 and 197 GPa and ρ = 7800 and 7780
kg/m3, respectively. Sudden breaking bolt at
the far left end of the apparatus generates a ten-
sile pulse which travels through the input twin
bars. Due to the special developed experimental
setup, transferred tensile signal is converted into
compressive force and is applied on the speci-
men by means of the steel loading plates. Part
of the compressive wave is transmitted through
the concrete specimen and the output twin bars,
while part of it is reflected back through the in-
put twin bars. The signal is recorded during the
experiment at three different sections shown as
F1, F2, and F3 in Figure 10. Compression tests
are performed on cylindrical specimens of 200
mm diameter and 200 mm and 400 mm lengths
for both type of concrete.

For the numerical simulations, the force his-
tory that should be applied on the input twin
bars is calculated based on the recorded sig-
nal at section F1 during the experiment. Lon-
gitudinal wave speed is calculated based on the
mechanical properties of the twin bars, which
is used to approximate the amount of time that
takes for the longitudinal wave to travel from
the section F1 to the specimen and reflects back
to the section F1. Therefore, one can estimate
the initial portion of the signal at the section F1
that is not affected by the reflected wave. The
estimated signal is used as the loading history
in the numerical simulations and is kept as con-
stant to the end of the analysis. Figure 11 shows
the comparison between the measured signals at
sections F1, F2, and F3 divided by the sample
cross section area from numerical simulation
results and the experimental data. It is shown
that LDPM can perfectly capture the peak value
and the force attenuation trend at three different
measurement sections for small and large stan-
dard and dam concrete specimens. It should be
noted that the signal oscillations observed in ex-
perimental data recorded at section F3 is due to
machine vibrations that is not captured in nu-
merical simulations.

Parameter c0 and c1 are calibrated with re-
spect to the small specimens experimental data
and are validated through fitting the data for
large specimens. c0 = 1× 10−6 and 5× 10−6/s
and c1 = 0.12 and 0.07 are the calibrated values
for dam and standard concrete, respectively.

4 Conclusions
LDPM calibrated and validated in this paper

can accurately simulate different types of quasi-
static experiments from fracture to unconfined
and confined compression tests. Effect of the
specimen size as well as the the aggregate size
effect is captured in LDPM simulations. In ad-
dition, LDPM can successfully predict concrete
behavior under dynamic compressive load in
Hopkinson bar experiments, and it can accu-
rately reproduce the force history recorded be-
fore and after the specimen in terms of peak val-
ues as well as their attenuation trend.
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