Nonlinear optical properties of intriguing Ru σ -acetylides complexes and the use of a photocrosslinked polymer as a springboard to obtain SHG active thin films.

Alessia Colombo,^{a,b} Claudia Dragonetti,^{a,b,c*} Daniele Marinotto,^{b,c} Stefania Righetto,^{a,b} Gianmarco Griffini,^d Stefano Turri,^d Huriye Akdas-Kilig,^e Jean-Luc Fillaut,^{e*} Anissa Amar,^{e,f} Abdou Boucekkine,^e Claudine Katan^{e*}

^a Dipartimento di Chimica dell'Università degli Studi di Milano,

^b UdR INSTM and Centro di Eccellenza CIMAINA dell'Università degli Studi di Milano, and ^c ISTM-CNR, via Golgi 19, 20133 Milano, Italy.

^d Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

^e Institut des Sciences Chimiques de Rennes, ISCR, UMR 6226, CNRS, Université de Rennes 1, 35042, Rennes, France

^{*f*} Département de Chimie, UMMTO, 15000 Tizi-Ouzou, Algeria.

Table S1. Computed photo-physical properties using various levels of theoryPage 2

Fig S1. In situ corona-wire poling dynamic of a PS film containing complex 2......Page 3

Table S1. Calculated electronic properties for complexes 1' and 2' at different levels of theory: transition energy $\binom{\omega_{01}}{2}$ and dipole moment $\binom{\mu_{01}^{z}}{2}$, ground $\binom{\mu_{00}^{z}}{2}$ and excited $\binom{\mu_{11}^{z}}{2}$ state dipole moment, first ($\beta_{zzz}(-2\omega;\omega,\omega)$) and second $\binom{\gamma_{zzzz}(-2\omega;\omega,\omega,0)}{2}$ hyperpolarisabilities relevant to compute the EFISH contributions (eqn 1), cubic diagonal term $\binom{\gamma_{zzzz}(-3\omega;\omega,\omega,\omega)}{2}$ relevant to THG experiments. The sum over states has been implemented according to Eqn. (22), (30) and (29) from Ref. [1], respectively. Superscript T and X stand for Taylor series and phenomenological convention, respectively. The bar (subscript av) indicates orientational averaging. We stress that according to Ref. [2], $\gamma^{X}(-2\omega;\omega,\omega,0) = \frac{1}{4}\gamma^{T}(-2\omega;\omega,\omega,0)$, while $\gamma^{X}(-3\omega;\omega,\omega,\omega) = \frac{1}{24}\gamma^{T}(-3\omega;\omega,\omega,\omega)$. Eq and NEq indicate

that the TD-DFT calculations have been performed under equilibrium (all solvent degrees of freedom are relaxed) and non-equilibrium conditions, respectively.³ The latter is a priori more relevant to the experiments conducted in this study.

Compound		1'				2'		
Geometry	DCM	DCM	DCM	gas	DCM	DCM	DCM	gas
Properties	DCM(Eq)	DCM(NEq)	gas	gas	DCM(Eq)	DCM(NEq)	gas	gas
ω_{01} (eV)	2.264	2.367	2.597	2.639	2.307	2.408	2.662#	2.634
μ_{01}^{z} (D)	-14.96	-14.08	-10.20	-11.82	-16.00	-15.22	-13.73#	-12.91
μ_{00}^{z} (D)	+5.23	+5.23	+3.18	+3.01	+12.03	+12.03	+8.91	+9.01
$\mu_{11}^{z}(D)$	-4.31	-5.72	-3.57	-6.44	+3.73	+2.09	+0.71#	+0.56
$\beta_{zzz}^{T}(-2\omega;\omega,\omega)$ (10 ⁻²⁸ esu)	-8.03	-7.03	-1.69	-3.03	-2.59	-7.05	-3.46	-3.25
$\gamma_{zzzz}^{T}(-2\omega;\omega,\omega,0)$ (10 ⁻³³ esu)	-12.49	+0.59	-1.37	+0.58	-7.13	-9.58	-6.23	-3.56
$\gamma_{zzzz}^{T}(-3\omega;\omega,\omega,\omega)$ (10 ⁻³³ esu)	-36.54	-4.05	-3.33	-1.51	-11.29	-24.85	-12.71	-8.33
$\overline{\gamma}_{av}^{T}(-2\omega;\omega,\omega,0)$ (10 ⁻³³ esu)	-2.50	+0.12	-0.27	+0.12	-1.43	-1.92	-1.25	-0.71
$\overline{\gamma}_{av}^{T}(-3\omega;\omega,\omega,\omega)$ (10 ⁻³³ esu)	-7.31	-0.08	-0.67	-0.30	-2.26	-4.97	-2.54	-1.67
$\overline{\gamma}_{av}^{T}(-3\omega;\omega,\omega,\omega)/\overline{\gamma}_{av}^{T}(-2\omega;\omega,\omega,0)$	+2.92	-0.67	+2.48	-2.50	+1.58	+2.59	+2.03	+2.35
$(\omega_{01} - 2\omega)/(\omega_{01} - 3\omega)$	+3.07	+2.56	+2.00	+1.94	+2.82	+2.42	+1.91	+1.95
$\beta_{zzz}^{X}(-2\omega;\omega,\omega)$ (10 ⁻²⁸ esu)	-2.03	-1.76	-0.42	-0.76	-0.65	-1.76	-0.87	-0.81
$\frac{\mu_{00}^{z}\beta_{zzz}^{X}(-2\omega;\omega,\omega)}{5kT}$ (10 ⁻³³ esu)	-5.10	-4.47	-0.65	-1.11	-3.78	-10.30	-3.75	-3.56
$\gamma_{zzzz}^{X}(-2\omega;\omega,\omega,0)$ (10 ⁻³³ esu)	-3.12	+0.15	-0.34	+0.14	-1.78	-2.39	-1.56	-0.89

$\bar{\gamma}_{EFISH}^{X}$ (10 ⁻³³ esu)	-0.62	+0.03	-0.07	+0.03	-0.36	-0.48	-0.31	-0.18
$\gamma_{EFISH}^{TOT,X}$ (10 ⁻³³ esu)	-5.72	-4.44	-0.72	-1.08	-4.14	-10.78	-4.06	-3.74
$\overline{\gamma}_{THG}^{X}$ (10 ⁻³³ esu)	-0.30	-0.003	-0.03	-0.01	-0.09	-0.20	-0.11	-0.07

[#] the bright excited state is the second one

Figure S1. In situ corona-wire poling dynamic of a PS film containing complex 2.

[1] A. Willets, J. E. Rice, D. M. Burland, D. P. Shelton, J. Chem. Phys. 1992, 97, 7590.

[2] H. Reis, J. Chem. Phys., 2006, **125**, 014506.

[3] (a) D. Jacquemin, C. Adamo, Computational Molecular Electronic Spectroscopy with TD-DFT, Topics in Current Chemistry, pp1-29, Springer Berlin Heidelberg 2015; (b) C. Katan, P. Savel, B. M. Wong, T. Roisnel, V. Dorcet, J.-L. Fillaut, D. Jacquemin, *Phys. Chem. Chem. Phys.* 2014, **16**, 9064.