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Abstract

Information Centric Networking (ICN) leverages in-network caching to pro-
vide efficient data distribution and better performance by replicating contents
in multiple nodes to bring content nearer the users. Since contents are stored
and replicated into node caches, the content validity must be assured end-to-
end. Each content object carries a digital signature to provide a proof of its
integrity, authenticity, and provenance. However, the use of digital signatures
requires a key management infrastructure to manage the key life cycle. To per-
form a proper signature verification, a node needs to know whether the signing
key is valid or it has been revoked. This paper discusses how to retrieve up-to-
date signing keys in the ICN scenario. In the usual public key infrastructure,
the Certificate Revocation Lists (CRL) or the Online Certificate Status Proto-
col (OCSP) enable applications to obtain the revocation status of a certificate.
However, the push-based distribution of Certificate Revocation Lists and the
request/response paradigm of Online Certificate Status Protocol should be fit
in the mechanism of named-data. We consider three possible approaches to dis-
tribute up-to-date keys in a similar way to the current CRL and OCSP. Then, we
suggest a fourth protocol leveraging a set of distributed notaries, which naturally
fits the ICN scenario. Finally, we evaluate the number and size of exchanged
messages of each solution, and then we compare the methods considering the
perceived latency by the end nodes and the throughput on the network links.
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1. Introduction

Named Data Networking is funded by the National Science Foundation for
the Future Internet Architecture project. Projects such as Named Data Net-
working (NDN) and Content Centric Networking (CCN) belong to the same
program for defining a network where the focus is on ”what” users care about
and not on ”where” they are. In this novel architecture, generally called Infor-
mation Centric Networking (ICN), contents are addressed by their name and not
by their location. Thus, the attention is shifted from users to content, resulting
in a caching network that is more efficient and flexible than an IP network for
content distribution and management with beneficial effects on timely delivery.
Moreover, the validity of a content depends on the validity of the signature on
the data packet, differently from IP network where data security depends on the
transmission channel. Such content centric architecture rises up new security
challenges related to key management that should be addressed.

In NDN, the content objects are divided into chunks, each digitally signed by
its producer. Otherwise, the content chunks are organized together with their
digest into a Manifest, which is signed by the producer. Thus, the public key
management becomes a crucial issue for ICN security. Even if each node could
verify the signature before caching objects, most papers assume that verification
is made only by the content consumer. Indeed, in order to perform the signature
verification, a node needs the signer’s public key, which can be easily retrieved
by issuing a standard interest message. However, information about the key
validity status is also necessary. In fact, a content signed with a compromised
key may remain in cache for an indeterminate amount of time, and possibly be
served to the end users. Even if caches implement a freshness mechanism that
deletes a content that has been in the cache longer than a given threshold, a
compromised node could resend data making extremely difficult to remove from
the network the objects signed with a compromised key, resulting in a denial of
service and paving the way for more sophisticated attacks.

The data object authentication is one of the research challenges presented in
the IETF draft [1]. The problem is also analyzed in a survey of security attacks
in ICN [2]. Indeed, there is an urgent need to define and support a mechanism
to distribute updated publisher’s public keys to the consumers of data objects.
In the standard PKIX (Public Key Infrastructure Certificate X.509), the issue
of delivering key revocation status to the end nodes is solved by using the CRL
(Certificate Revocation Lists) [3] or the OCSP (Online Certificate Status Pro-
tocol) protocol [4]. The current approaches in PKI for key management and
revocation are far from optimal and the research community is actively looking
for new techniques. Nonetheless, no current ICN proposal provides a key re-
vocation component, which is necessary for wide-scale deployment. Therefore,
we are the first considering the most obvious solution, i.e. porting PKI solu-
tions to the name-based environment. We also assess their performance in the
NDN framework. Similarly, we also add a novel approach that preserves the
distributed nature of the ICN networks. We compare it to the other approaches
and clarify what are the advantages and shortcomings of such protocol. We
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present a solution based on the ccnx-repository synchronization protocol that
implements similar functionalities to CRL. So far, this is the only solution for key
management that is included in a protocol specification for the ICN scenario.
Then, we suggest two reactive methods that recall the principles behind the
OCSP for the Information Centric Networking framework. In particular, the
nonce-based scheme always retrieves the original key from the producer, and
the timestamp-based method exploits timestamps over the keys to guarantee
freshness.

Finally, we consider a notary-based method like Perspectives [5] that is an
alternative to the traditional PKIX for authenticating the public keys. Indeed,
we propose how to get up-to-date keys retrieving them from the nearest nodes
in an NDN-friendly way.

The main contributions of this paper are:

• We provide, as far as we know, the first proposal to adapt the OCSP and
CRL schemes to the ICN scenario.

• We propose a new solution based on the concept of notaries, to better
adapt the up-to-date key retrieval in a NDN-friendly way.

• We evaluate and compare the various proposals in terms of number of
exchanged messages, latency, and throughput.

• We show that our solution overcomes the main drawbacks of the standard
schemes guaranteeing good network performance. However, it is not al-
ways superior to the other protocols, e.g., when scalability and resistance
to network partitioning requirements can be relaxed, a timestamp-based
reactive protocol is better.

The remainder of the paper is structured as follows: Section 2 reviews the
related work and Section 3 recalls some background notions, together with the
description of the communication protocol in subsection 3.3. Section 4 presents
the network scenario and the attacker model together with the security defi-
nition. Section 5 proposes the traditional methods to distribute valid key and
shows our novel scheme. Finally, Section 6 describes the evaluation scenario,
and gives the performance results before the conclusions that are left for the
last Section 7.

2. Related Work

The public key management is a main security issue in a content centric
network. Since the first work on CCN, Smetters and Jacobson [6] rise the
problem of content authentication. Their proposal is to authenticate the link
between packet name and content using a digital signature scheme implemented
by the content producer. In this way, they provide guarantee of content validity
and origin. However, they do not inspect technical problems related to the
signature scheme used, for example, how to check the signing key status, i.e.
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if it is compromised or revoked. The challenge for the definition of a public
key management in NDN is presented and evaluated in [7]. The certificate
format, distribution and revocation are discussed providing a starting point for
the definition of a PKI in NDN. The signature and key revocation are presented
from the point of view of the data producer/private key owner. This is a good
starting point for our work, which on the other hand analyzes the same problems
from the point of view of the data consumer/public key owner.

A recent work [8] suggests a trust management scheme for NDN. The pa-
per provides the definition of the Interest-Key Binding (IKB) rule, that is also
exploited along our paper. The IKB rule binds the producer’s public key with
the consumer’s interest. Our last two assumption presented in Section 4.1 are
complementary to the IKB rule. However, our paper provides a solution for the
management of key revocation that is left open in [8].

The paper [9] suggests a Key Resolution Service (KRS) for CCN, that is, as
far as we know, one of the few proposals relative to key management in ICN.
This service allows to map a content name with the corresponding security
information. The KRS is queried by the consumer node before sending the
interest for a content. Thus, the consumer can obtain the public key certificate
of a publisher or the content digest. This solution is a first practical attempt to
mitigate content poisoning attack. The main drawback of the proposal is the
presence of a local KRS server that could become a bottleneck. Moreover, the
same paper presents some performance results relative to the average latency
per request sent to the KRS server. The latency is measured as a function of the
cache size and the number of KRS servers. Our work differs from [9] because
we do not need a new network entity such as the KRS, we allow the consumer
to choose its security window and also the keys are frequently refreshed. The
authors of [10] present a platform used to obtain performance results about
CRL and OCSP. The authors show the temporal behavior of CRL and OCSP
in terms of the processing time. The results relative to CRL are shown to be
around 1ms and those relative to OCSP are between 25 and 30ms. These results
are obtained over a standard IP network and end up in a small delay over the
performance gathered with no certificate management. Our paper extends those
protocols for ICN showing that the resulting latency is comparable to the ICN
setting with no key revocation management.

The paper [11] suggests a distributed architecture which exploits cothori-
ties to validate and sign certificates, timestamps and log records. The work
proves that using collective authorities is practical and also provides higher link
security than today’s centralized authorities. The proposal is similar to our pro-
posed notary-based protocol where some trusted nodes perform the certificate
checking. However, our solution is implemented for the Information Centric
Networking scenario.

Thus, if a public key management infrastructure is not defined, there can
happen that invalid or revoked public keys are spread and used into the net-
work. Therefore, a Denial of Service attack is easily exploitable. The problem
is inspected by various papers and here we report some of them.

Gasti et al. [12] present a first attempt to identify and mitigate DoS and
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DDoS in ICN. Particularly, the paper describes two types of attacks: interest
flooding and content/cache poisoning. The first threat consists on sending a
large number of interests requesting contents from the same set of producers;
the second aims to cause node to cache corrupted or false content objects, ob-
structing the retrieval of legitimate contents. The paper also discusses tentative
countermeasures against the attacks but it does not evaluate their efficacy with a
simulation. The paper represents a first step into the definition of content/cache
poisoning in NDN scenario, but it does not consider the problem of key validity.

The papers [13] and [14] analyze the interest flooding-based DDoS over NDN,
considering that interests are sent for non-existent contents and obviously fill up
the victim’s PIT. The authors in [13] propose proactive and reactive countermea-
sures, but then, they focus on reactive methods for detection of interest flooding
via junk interests. Moreover, the authors propose a mitigation technique, called
Poseidon, which identifies traffic anomalies and keeps several statistics on ex-
pired interests. The authors in [14] define three mitigation methods with varying
degree of implementation complexity against the attack. Particularly, they pro-
pose a token bucket approach and two satisfaction-based methods. Finally, the
papers evaluate the benefits of the countermeasures through small-scale and
large-scale simulations over real network topologies. However, the proposals
cannot be applied to the problem of content pollution because they are based
on interest packets and also they do not consider the problem of retrieval of key
status.

The content poisoning attack in NDN is studied in [15]. The authors suggest
a content ranking algorithm for cached content to allow routers to distinguish
between a fake or a valid content. When the consumer verifies the signature and
detects a fake content, it sends an interest that excludes the received content.
Thus, the router can assign a rank to each cached object that is updated when
an interest for that content is received. The content with an highest rank is
selected as response to an interest packet. The proposal is shown to be effective
against content poisoning. However, the problem of key revocation still remains
open.

Thus, there is an urgent need for the definition of a scheme that opens the
possibility to retrieve updated keys in the ICN scenario exploiting and adapting
the well known solution for IP-based networks. Indeed, as also stated in [16],
none of the previous work have addressed the issues relative to security aspects
about key management. This paper inspects the problem of content poison-
ing and suggests three PKI-like solutions for the key management and, then,
presents a novel method that reflects the NDN distributed nature.

3. Background

This section gives some preliminary concepts about the information centric
architecture and protocol.

The ICN architecture comprises three different nodes, as shown in Figure 1:
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Figure 1: The reference scenario

• Data Producer, P : upon reception of an Interest packet, it answers with
the corresponding Data packet. It signs a content by using its key.

• Data Router, R: upon reception of an Interest packet, it answers with
the corresponding Data packet, if it is present in its content store. Oth-
erwise it forwards the request towards the correct Data Producer. Upon
reception of a Data packet, it forwards it to the downstream Consumer.
Moreover, it caches packet in its Content Store.

• Data Consumer, C: obtains data sending Interests with the desired
data name.

Moreover, the architecture comprises a Trusted Authority (TA) that periodically
updates the public/private key pairs. In the remainder of the paper, we assume
that the communication network is reliable and timely, i.e., no message can be
lost due to communication delays or node malfunctioning.

3.1. Signature Generation and Verification

The content producer, P , is responsible for the digital signature over the
content, C, and the corresponding name, N . Particularly, a content is made
available in the network as MN,C,P = (N,C, SignP (N,C)), where SignP (N,C)
is the producer’s signature over the name and the content. The signature gener-
ation can follow one of the two forms: single blocks are individually signed using
a standard public key algorithm, e.g. RSA with SHA256, or multiple blocks are
signed together with an aggregated signature scheme, e.g. Merkle Hash Trees
[17]. A content consumer retrieves the content, C, using its name, N and it
should be able to find the public key to use to verify SignP (N,C). How the
consumer finds the key is explained in the next subsection.

3.2. Key Model

In the following sections, we follow the key trust model presented in [18]
and [19]. As depicted in Figure 2, a root key signs the site keys, which in turn
sign the user’s keys. Then, each user is responsible to sign and to maintain
in a local repository the device and application keys. This model allows users
to follow the trust chain from the leaf nodes (i.e. application and device) to
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root key /keys/<SHA256(key)>/<ver>/%00

signs

site’s key /keys/<site>/<SHA256(key)>/<ver>/%00

signs

user’s key /keys/<site>/<user>/<SHA256(key)>/<ver>/%00

signs

app keys /keys/<site>/<user>/<app>/<SHA256(key)>/<ver>/%00

Figure 2: Key model and naming in NDN

the root key for verifying the validity of a key. In each Data packet, there is
a ”KeyLocator/KeyName” field, that one can use to fetch the key. Moreover,
since the key itself is a Data packet, the key ”KeyLocator/KeyName” field is used
to reach a trusted anchor. The root key, that is ”public knowledge” and self-
signed, is used to verify the key needed to verify the Data packet. Furthermore,
the Figure 2 shows the key name structure. Usually there is a common prefix
”/keys”, used to easily distinguish keys from contents, as the first part of the
name; the middle part represents the path in the keys subtree, namely the keys
hierarchy in the network; the final part is the hash value of the corresponding
public key. There could be another part of the name that carries the content
version and segment, but it is not mandatory.

3.3. Simplified Model of the ICN Protocol

The basic information centric protocol follows the request/response paradigm.
A response is not given back if it is not received a request. The request message
is called Interest, whereas the response Data Packet. Each Interest is uniquely
identified by a Name and a Nonce. Then, the corresponding Data Packet must
carry the same Name and the same Nonce. The Data Packet is always signed by
its Producer following the RSA signature algorithm. From now on, an Interest
packet is represented by I(name) and a Data packet by Dsigner(name).

The simplified communication protocol consists of 7 phases:

1. Setup: the initial phase is performed only once to define the set of public
parameters and to distribute them to the users.

2. Key Gen: this phase is performed time to time to generate the key pairs
and to distribute them to the users. The Producer runs the key generation
algorithm and gets (pk, sk). Then, it pushes to the TA the public key to be
certified and keeps the private key secret. Finally, the Producer publishes
off-line the public key pk into the nodes’ repositories by means of the ccnx
synchronization protocol.

3. Create Data: the Producer, P , produces and stores contents. Each con-
tent is represented by m = DP (name m) and the corresponding signature
is σ ← SignskP (Hs(m)).

7



4. Send Interest: the Consumer, C, sends an Interest I(name m) with the
name of the data it wants to the next hops.

5a) Forward Interest: if the next hop, a Router R, does not have the con-
tent, it forwards the Interest I(name m) to the next hop.

5b) Send Data: if the next hop, a Router R or the Producer P , has the
content, it answers with the corresponding data DP (name m) .

6) Receive Data: the Consumer, C, receives the data DP (name m).

7) Verify Data: the Consumer, C, verifies the content: V erpkP (Hs(m), σ′)
?
=

1.

The following Figure 3 shows the message exchange.

TA

DP (pkp)

DTA(pkp)

P

KeyGen

DTA(pkp)

CreateData

I(m)

SendData

C2

DTA(pkp)

I(m)

SendData
Forward
Interest

DP (m)

C1

DTA(pkp)

SendInterest

DP (m)

DP (m)

VerifyData

Figure 3: The Communication Protocol

We suggest to verify all the packets at the end nodes to prevent cache pollu-
tion attacks or more sophisticated attacks. The standard verification procedure
follows the protocol. However, the signature validation is a crucial problem.
Each node needs to check the public key status, as described in the following.

The verification process should follow the next steps. After receiving a Data
Packet, each end node in the network:

1. Checks the KeyLocator containing the signing key name or the key itself.

2. Checks if the key name is known and if the key is stored in the cache. If
a match is found, the node checks the key status. If the key status was
checked in the security window, then the Data packet can be verified.

3. Otherwise, the node expresses an Interest for the key, and waits till the
reception and the validation of the key before verifying and accepting the
content into its cache.

3.4. CCNx Synchronization Protocol

Every CCN node has a repository where content objects are persistently
stored in addition to the content store. The CCNx synchronization protocol
allows repositories to be automatically up to date [20]. A set of contents whose
prefix name is common, is called Collection. The contents in the collection are
organized within a sync tree, that is built by the local Sync Agent. The agent
computes an additive hash over that tree, the topmost hash is called root hash.
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Algorithm 1 Verification of Content Validity

Check the KeyLocator.
Check the key in the Content Store.
if a match is found then

Check the key status.
if Key status was checked in the window then

Verify the Data packet.
return

end if
end if
Send an Interest for the key.
Wait for the key then check key and content.

Periodically, the agent sends Root Advise Interests to the neighboring nodes
which synchronize their repositories comparing the root hash of the sync tree
sent in the Interest with their own root hash. If they match, the collections are
in synchronization. If they do not match, the collections are updated using the
standard interest/data protocol and sending the different root hash between the
nodes.

4. The Up-to-Date Key Retrieval Security Problem

4.1. Assumptions

1. Each Data packet contains a KeyLocator field containing the name of a
public key, which can be fetched with the standard ICN mechanism.

2. A public key is valid if it is included in a certificate issued by a Trusted Au-
thority and if there is a proof that it has not been revoked. A vulnerability
period of duration W is acceptable.

3. The owner of a valid key is honest and only signs the contents that it is
authorized to sign. This paper does not discuss how to scope signatures
or enforce name-key binding rules.

4. All the contents signed with an invalid key must be dropped by the Con-
sumer, even if they were signed when the key was valid. This paper does
not discuss how to remove stale content from the router caches.

5. We assume that each node has a clock that increases at the same rate of
the others with a tolerance of ±0.05s. However, the model is partially
synchronous meaning that the clocks may display different values at the
same time.

6. The message delivery time tdB from node A to node B and the message
processing time tpB at node B can be measured and are known for each
node. If no Data packet is received within RTT = 2 · tdTA

+ tpTA
after the

Interest has been sent, then the node deduces that the message is lost or
no correspondent Data exists. RTT is called the Round Trip Time.
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4.2. Attack Scenario and Security Definition

Our attacker model assumes an active, dishonest node, which can inject any
content into the node caches. In particular, our attacker:

1. can obtain any valid content produced and signed in the network.

2. can insert any content of its choice in any Router content store.

3. can obtain any Producers’ private key. In this case, the Producer imme-
diately revokes the stolen key.

4. cannot obtain more than a single key in an interval W .

5. cannot break any cryptographic algorithm.

According to the attacker previously described, we provide our security def-
inition:

Definition 1. The key retrieval scheme is secure if no uncompromised Con-
sumer accepts as valid a content signed with an invalid key, except for the case
that less than a time W has passed since the key was revoked.

5. Key Retrieval Schemes

This Section reviews and provides additional details about the three key
retrieval schemes that have been firstly presented in [21]. Then, we describe
the proposal of this paper which overcomes the drawbacks of the three previous
schemes.

The first protocol supposes to create a list with valid keys that are updated
and signed by the Trusted Authority (TA), and then distributed to the network
nodes using the ccnx synchronization protocol.

Moreover, we recall the two reactive protocols: the nonce-based and the
timestamp-based schemes. Indeed, a user sends an Interest for a key to the
Producer, and the latter answers with a Data packet containing the key and its
signature. The main difference is the validity window that it is very small for
the nonce based protocol and a chosen value from the users in the timestamp
based protocol.

The fourth protocol exploits some trusted nodes that are responsible for
providing a specific key, when they receive an Interest addressed to themselves.
This solution easily fits the distributed nature of the Information Centric Net-
working paradigm.

On the one side, the original ICN communication protocol does not need
pervasive modification, the communication follows the standard Interest/Data
packet exchange. On the other side, the Interest and Data packets need some
changes. In particular, the Consumer sends an Interest for a key specifying
the requirements for that key, as detailed in the following. Then, Producer or
Routers answer with the corresponding key following the required criteria.
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5.1. Protocol 1: Proactive method

Protocol P1 periodically distributes up-to-date keys to consumer nodes.
Such predistribution can leverage either the proposed CCNx synchronization
protocol [20] or, alternatively, the ChronoSync protocol [22].

The Trusted Authority and each Consumer keep a repository holding the
public keys. Upon every key update, the TA pushes modifications to all the
Consumers.

In order to enable key retrieval, the Trusted Authority defines a key collection
where the Producers’ public keys are listed.

The keys in the collection are then organized within a tree and the TA
computes a root hash over that tree.

Whenever some change happens, a RootAdvise message with the root hash
is sent to all the consumer nodes. The Consumer compares the root hash of its
repository with the received root hash. If the hashes are equal, the repositories
are up-to-date; otherwise the Consumer expresses an Interest to request the
keys that have been modified.

Figure 4 shows the synchronization process. Notice that after the Consumer
has compared the hashes, it sends Interests for the keys that are not up-to-date.

The main advantage of this solution is that the key repositories are kept
synchronized and, therefore, no key retrieval is necessary when data arrives.
On the other hand, the main disadvantage is that Consumers must keep a
large number of keys for Producers even if they are not interested in their
content. Additionally, as the number of keys grows, the update messages are
more and more frequent resulting in a significant overhead. Additionally, the
synchronization procedure must be repeated for each Consumer, potentially
violating the security window for some other Consumers.

This key retrieval scheme is secure for whichever security window W because
the key repositories are synchronized every time there is a key modification
or revocation, except that the synchronization procedure incurs in significant
delays.

5.2. Protocol 2: Nonce-based

Protocol P2 guarantees the up-to-date status of the key ensuring that the
key is sent directly by the Trusted Authority.

Whenever a new Data packet arrives, the Consumer checks whether the
corresponding key is available and executes Algorithm 1. If no valid key is
found, an Interest for the key is sent by the Consumer node. The Interest must
contain the “do not answer from content store” option and a nonce. Thus, the
TA answers with a Data packet containing the root key and the same nonce.

Particularly, the Consumer node sends an Interest specifying the following
fields: name=key/pk P , selector equal to answer origin kind, meaning “do
not answer from content store”, and a unique nonce, necessary for guarantee-
ing the uniqueness of the response. Note that key/pk P is the name of the
Producer’s public key.
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TA Repo/TA Repo/Consumer

Define Key Collection

Compute
Root Hash

I(RootAdvise) Compare
Root Hash

Store Keys

Reply
∆
t

Sync

I(RootAdvise) Compare
Root Hash

Refresh Keys

Reply

Sync

I(RootAdvise) Compare
Root Hash

Figure 4: Repository Synchronization. Note that the RootAdvise message is a special Interest
message.

As soon as the Consumer receives the Data packet containing the key, it
verifies that the message is signed by the TA and that the message includes the
unique nonce, which is also part of the authenticated data. Then, the Consumer
verifies the original message and stores the key in the Content Store. Algorithm
2 describes the operations performed by the Consumer.

Algorithm 2 Consumer in Protocol P2

Send I(key/pk P). This message includes a random nonce, n.
Wait until D P(key/pk P) is received.
Check that D P(key/pk P) includes n.
Check that D P(key/pk P) has been signed by a TA and the signature is
valid.
Store the key in the CS.
Use the key to check the signature of pending messages.

It is worth noting that, by virtue of the answer origin kind option, the
Router nodes only forward the Interest packets to the following nodes toward
the TA.

The latter answers with a Data packet containing the name=key/pk P , the
signed info that are the same nonce sent in the Interest packet and the Pub-
lisher Public Key Digest that identifies the Producer, and the content that is
the public key needed to verify the original packet. These data are signed by
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the TA.
Then, the Data packet is forwarded from the Trusted Authority to the Con-

sumer.
The following Algorithm 3 describes the operations performed by the TA.

Algorithm 3 Trusted Authority in Protocol P2

Receive I(key/pk P) with nonce n.
Put n in D TA(key/pk P).
Forward D TA(key/pk P) to the Consumer.

This key retrieval scheme is secure if the security window respects the fol-
lowing condition: W > RTT , i.e. it should be bigger than the round trip time,
RTT , between the Consumer and the Trusted Authority. Note that the tight-
est security window can be achieved only with the exact knowledge of the RTT.
However, W can be chosen to be larger than the maximum network RTT. On
the one hand, this protocol can guarantee security with very small windows, W ,
since the key is guaranteed to be fresh after each execution of the protocol. On
the other hand, the TA can become a bottleneck.

5.3. Protocol 3: Timestamp-based

In Protocol P3, each incoming key is signed by the TA along with a times-
tamp. When the Consumer needs a key, it checks in the Content Store. If a
matching key with timestamp T0 is found, then the Consumer checks whether
T0 + W falls later than the current time, in which case, the key is considered
valid. Otherwise, the Consumer sends an Interest for the key to all its neighbors
specifying in the name a timestamp, TS, that indicates a threshold validity.

The Consumer sends an Interest packet with name=key/pk P/TS. A Router,
having in its Content Store the key key/pk P/Tr with Tr > TS, can answer
with the corresponding Data packet.

Otherwise, the node forwards the Interest to the following node up to, pos-
sibly, the TA. The TA is assumed to generate key messages on-the-fly with the
current time. Notice that system-wide clock synchronization is necessary for
the correctness of the protocol.

This key retrieval scheme is secure if the security window is bigger than the
chosen timestamp W > TS. The Consumer can choose any value for TS which
is smaller than the current time and larger than the current time minus W .
A small value will result in a quicker response from the network, but also in
more frequent key expirations. A larger value will result in a higher latency in
obtaining the key, but in longer key durations.

5.4. Protocol 4: Notary-based method

Protocol P4 further enhances the scalability of the previous protocols by
leveraging on specially trusted nodes, called Notaries, to provide keys on behalf
of the TA. These Notaries are chosen by each Consumer and located in diverse
network locations near the end users.
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When the Consumer needs a valid key, it sends an Interest packet to a set
of Notaries of size NS asking for the content with name=notary/Ni/key/pk P ,
where Ni is the notary’s name. This Interest can only be satisfied by the Notary
as in Protocol P2. This protocol requires to add a FIB entry for each Notary in
all the network nodes, so that they can route packets to named notaries. The
other part of the name specifies that the content will be a key, /key, and in
particular, the public key of Producer P , pk P .

In order to increase the trust on the key validity, the Consumer can request
the key to more than one notary, e.g. NS , and wait for the answer ofNT notaries,
where NT ≤ NS . Moreover, we assume that the notaries are neighbor nodes
and that could be part of different network areas in order to guarantee partition
tolerance. If fewer than NT of notaries answer to the Interest within a time
interval ∆t, the Consumer requests the key to the TA using the nonce-based
method.

It is worth noting that the notaries sign the keys with their keys, which,
therefore must be available at the Consumer or can be retrieved with one of the
other protocols.

Algorithm 4 describes the operations performed by the Consumer.

Algorithm 4 Consumer in Protocol P4

Send I(notary/Ni/key/pk P) to the chosen notaries.
Wait ∆t.
if At least NT D Ni(notary/Ni/key/pk P) packets are received then

Check that the key signatures are valid.
Store the key in the CS.

else {∆t expires}
Retrieve /key/pk P using the nonce-based method (Protocol 2).

end if

Notary nodes store a key entry for each Producer, P . The entry is a special
content whose name is /key/pk P , and it is composed of the key itself and
the corresponding lifetime or the label revoked. The lifetime is generated by
the key owner when the key is first used, and timely updated. When the key’s
lifetime expires or the key becomes revoked, the key is marked as stale and is
automatically dropped out of the cache.

The Notary can answer to the requesting Consumer with two messages: (i)
the key entry, meaning that the Notary knows the key and it is not expired; (ii)
the key entry with the label revoked, meaning that it is no longer valid to sign
and must be dropped. The Data packet has name=notary/Ni/key/pk P . The
signed info is the Publisher Public Key Digest that identifies the Notary that
has signed the content and the content is the key entry or the key entry with
the label revoked. The packet is signed with the Notary key.

The following Algorithm 5 describes the operations performed by the Notary.

This solution allows the Consumer to choose where to anchor its trust. More-
over, we do not create a bottleneck in the Trusted Authority, since each Notary

14



Algorithm 5 Notary Ni in Protocol P4

Receive I(notary/Ni/key/pk P).
Remove name prefix and check Content Store.
if D(/key/pk P) is found then

if key lifetime != 0 && key is not revoked then
send D NI(notary/N/key/pk P) to the Consumer.

else
if key is revoked then

send D Ni(notary/N/key/pk P) with label revoked
end if

end if
end if

can sign and forward the key entry. We only involve the TA when there is a
new key request or when the key expires. Also, the key lifetime checking does
not require a coordination between the nodes clock.

This key retrieval scheme is secure if the security window is W > ∆t+RTT ,
i.e. it should be bigger than the waiting time window plus the round trip
time between the Consumer and the TA if the Notaries do not answer within
∆t. Usually, the security window, W , coincides with the key lifetime that is
assigned to the key and signed by the TA, when the key is created.

6. Performance Evaluation

In this section we evaluate the number of exchanged messages as a function
of the system parameters |P |, |R|, |C|, and |NT | of the protocol presented in
Section 3.3.

First, it is useful to discuss the possible size of the packets. As stated in
[23], the minimum size of the Interest packet is 14 byte, let us call it mSI . The
maximum size is 196619 byte, let us represent it as MSI . Thus, the minimum
size of the Data packet is 6 byte, mSD, the maximum size is 196611 byte, MSD.
Then, we consider the frequency of requests λ, measured as the number of sent
interests per second. Moreover, we define the miss probability at router node r,
prmiss =

∏
i∈PathC→r

(1−pihit), where prhit is the hit probability at router node r,
r ∈ PathC→r comprises all the router nodes on the path between the Consumer
C and the Router r. Then, we define the stale probability, prstale, that is the
probability that the key timestamp stored in the Router r is expired.

6.1. Number and Size of Messages

During the Key Gen phase, the p-th Producer generates his key pair and
pushes the public key to the Trusted Authority, that receives |P | data packets.
Then, the TA certifies the public keys and sends them back to the corresponding
p-th Producer. Finally, the Trusted Authority pushes all the Producers’ public
keys to all the |C| Consumers.
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The Send Interest phase involves only the Consumers. The c-th Consumer
sends λ Interest packets per seconds to the neighbor Routers.

During the Forward Interest phase, each r-th Router receives λ|C|
|R| p

r−1
miss

Interests and forwards to the next hops λ|C|
|R| p

r
miss Interest packets.

The Send Data phase can include a Producer or a Router. The Router node

receives λ|C|
|R| p

r−1
miss Interest packets and answers with λ|C|

|R| p
r−1
miss Data packets.

The Producer node receives λ|C|prmiss and answers with the same number of
Data packets.

The c-th Consumer receives λ Data packets from the neighbor nodes during
the Receive Data phase.

Finally, each Consumer verifies the Data packets received and checks the key
validity in the Verify Data phase. The number of messages is different relative
to the freshness protocol chosen. Starting from Protocol 1, for each key update,
the TA pushes into nodes repositories the Producers’ public key. Thus, it sends
|C||P | Data packets and each Consumer receives |P | Data packets containing
the Producer’s public key.

Using the nonce-based method, P2, the c-th Consumer sends an Interest for
the public key for each Producer. The r-th Router receives |C||P |/|R| Interests
and forwards them to the next hop until they reach the TA. The TA answers with
|C||P | Data packets that are forwarded by the Routers till the c-th Consumer.

By choosing the timestamp-based Protocol 3, the c-th Consumer sends an In-
terest for each Producer’s key specifying the time threshold that the key should

not exceed. Each r Router receives |C||P ||R| p
r−1
stale Interests and checks their times-

tamp. If the keys are not stale, the Router answers with the corresponding
|C||P |
|R| p

r−1
stale Data packets. Otherwise, the Router forwards |C||P |/|R|prstale In-

terests to the next hop. The Interests can reach the TA, that sends on the
reverse path the corresponding keys. Finally, the |P | keys are received by the
c-th Consumer.

Concluding with Protocol 4, the c-th Consumer sends |NT | Interests for each
Producer’s key to the chosen Notaries. Each of the chosen n-th Notary responds
with the corresponding Data packet. If the Notary does not have the key or the
key is stale, the Consumer sends an Interest using the Protocol 2.

We now evaluate the size of messages: Interest and Data packets. We follow
the specifications on [23] for our analysis. Our Interest packets can have two
names: /data/Id P/seq no or /key/Id P/seq no. Thus, the Interest name
has different sizes depending on the packet type: SI(/data/Id P/seq no) =
mSI + L(PPKD) + L(name) = 286 byte or SI(/key/Id P/seq no) = mSI +
L(PPKD) +L(name) = 280 byte, where L(PPKD) = 256 byte, and L(name)
depends on the name length. Moreover, when the nonce-based method is used,
the Selector field should be used for specifying the AnswerOriginKind that
requires 3 byte more. When the timestamp-based method is used, the name
comprises also the timestamp that requires 22 byte. If we use the Protocol 4,
we need to add /notary/Id N to the name and it is 11 byte more.

We can state the same about the Data packet names, i.e. the length depends
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on the protocol chosen. Usually, the content size changes depending on the
contents, however, we assume that all the contents (i.e. data and keys) have the
same size of 128 byte. Thus, the Data packet size is SD(/data/Id P/seq no) =
mSD+L(sign)+L(content)+L(name) = 676 byte or SD(/key/Id P/seq no) =
mSD+L(sign)+L(content)+L(name) = 670 byte, where L(sign) = 260 byte,
L(content) = 396 byte, and L(name) depends on the name length.

Table 1 compares the number of messages received and sent by each entity
and reports the corresponding message sizes.

Table 1: Message Exchange

Phase Input Output Size In Size Out
Messages Messages (byte) (byte)

Trusted Authority
Key Gen |P | |P |+ |C||P | 670 670
Verify P1 - |C||P | - 670
Verify P2 |C||P | |C||P | 283 670
Verify P3 |C||P |pr−1stale |C||P |pr−1stale 303 692

Producer
Key Gen 1 1 670 670
Send Data λ|C|prmiss λ|C|prmiss 286 676

Router

Forward Int λ|C|
|R| p

r−1
miss

λ|C|
|R| p

r
miss 286 286

Send Data λ|C|
|R| p

r−1
miss

λ|C|
|R| p

r−1
miss 286 676

Verify P2 2|C||P |
|R|

2|C||P |
|R| 953 953

Verify P3 2|C||P |
|R| pr−1stale

2|C||P |
|R| pr−1stale 995 995

Consumer
Key Gen |P | - 670 -
Send Int - λ - 286
Receive λ - 676 -
Verify P1 |P | - 670 -
Verify P2 |P | |P | 670 283
Verify P3 |P | |P | 692 303
Verify P4 |NT ||P | |NT ||P | 684 294

Notary
Verify P4 |C||P | |C||P | 294 684

6.2. Assessment Scenario

To evaluate the impact of key retrieval on NDN nodes, we conduct sim-
ulations using the open-source ndnSIM package [24], which implements NDN
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protocol stack for NS-3 network simulator. We run simulations for two net-
work topologies: i) a smaller tree topology, and ii) a larger mesh topology. The
nodes’ Content Stores use the Least Recently Used (LRU) cache replacement
policy, the link between each pair of nodes is bidirectional and has a capacity
of 1 Gbit/s and a latency of 5 ms.

Router 

Producer 

Consumer 

Figure 5: Tree topology.

The tree topology, in Figure 5, comprises 8 leaf nodes, the Consumers, 6
Router nodes that are the transit nodes organized into two levels and one root
node, the Producer.

Router 

Figure 6: Mesh topology. Each Router has a link with a Consumer and a Producer, not shown
in the picture.

The mesh topology, in Figure 6, comprises 13 leaf nodes, the Consumers, 13
Router nodes and 13 root nodes, the Producers.

The Consumer nodes alternates On and Off periods following an exponential
distribution. During On period, the Consumer requests content with a frequency
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fc interests/second, with an exponential distribution with mean 1/fc for inter-
interests gap.

The contents of each Producer are organized into C = 400 popularity classes,
each one with 34500 objects. Each content, c, has a probability of being re-
quested, pc, that follows the Zipf-Mandelbrot law: the more the content is
popular, the higher the probability of being requested, hence pc = K(c+ q)−α,

where K = 1/
∑C
i=1(i+ q)−α and α = 0.8 is the slope of the distribution. Since

we put q = 0, the distribution becomes the Zipf law.
We assume that the number of Producers is equal to the number of Con-

sumers. Thus, eight Producer applications are co-located in the root node in
the tree topology. The Producer are distributed in the network as depicted in
Figure 6 for the mesh topology. We also assume that the TA responsible for
signing a Producer key is co-located with the Producer.

All the Routers and Consumers have a Content Store that allows up to
207000 entries to be cached and respects the content freshness. The simulations
last 200 s. All the results are averaged over 10 simulations achieving a confidence
interval of 95% or higher that yields a precision better than 1% .

We fixed unlimited freshness for ”/data” packets and limited freshness for
”/key” packets. Further, to distinguish between the nonce-based, the timestamp-
based and the proactive methods, we assume the following:

1. in the proactive mode (P1), the Consumers always have the necessary
keys;

2. in the nonce-based protocol (P2), the routers do not store keys;

3. in the timestamp-based protocol (P3), the validity threshold is chosen 10
seconds before the current time;

4. in the notary-based method (P4), the key validity is 10 seconds, and
routers do not store keys;

5. in P2, P3, and P4, the TA signing Producer P keys is co-located with the
Producer itself;

6. in P4, each Consumer chooses the three nearest Consumers as notaries
and waits for the first answer.

6.3. Numerical Results

In this Section, we compare the performance of the protocols discussed in
this paper. In particular, we report data concerning the latency depending
on volume of requests, and the throughput on network links by distinguishing
between tree and mesh topology.

Figures 7 and 8 show the average throughput on the input link of the Con-
sumer nodes for the different key retrieval methods for the two topologies. As
can be noted in Figure 7, in the tree topology the throughput on the link between
the first level of Routers and the Consumer nodes grows with the frequency of
requests and reaches saturation at about 250 Mbit/s, which is much less than
the channel capacity. In this topology, the link at the Producer node is the
bottleneck. The throughput depicted in the Figure takes into account both the
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data content and the key content, where data content occupies most of the avail-
able channel capacity. The impact of key packets is negligible with respect to
the data content and, for this reason, all the protocols show similar throughput
trend. Even if more interests for keys are sent, e.g., in P2 protocol, they do not
have a perceivable effect on the throughput.
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Figure 7: Mean volume of Data packet received by the Consumer nodes in the tree topology.

A similar trend is depicted in Figure 8, which is relative to the mesh topology.
Differently from the tree topology, there is no bottleneck at the Producer node
and the throughput approaches the channel capacity, i.e. 1Gbit/s. As in the tree
topology, the impact of the key retrieval protocol is negligible on the throughput
and all protocols show a similar throughput, this is due to fact that the data
content occupies most of the available capacity with respect to the key packets.
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Figure 8: Mean volume of Data packet received by the Consumer nodes in the mesh topology.

Figures 9 and 10 show the mean latency for content and key retrieval aver-
aged over all the popularity classes as a function of the frequency of requests, i.e.
fc = 2123, 9200, 18400, 27600 interests/second, and depending on the network
topology. In the tree topology, Figure 9, the lowest latency is obtained with P1,
which grows slowly and stays under 0.3 s even with fc = 27600. Protocol P3
and P4 show similar latency as P1 up to fc = 18400, when their delay starts
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Figure 9: Mean latency of all the popularity classes depending on volume of requests in the
tree topology considering the alternative protocols. Precision better than 1% with confidence
95%.

growing, reaching about 1 s for fc = 27600. Finally, protocol P2 latency is
comparable to the other methods only up to fc = 9200, then the latency starts
growing quickly, showing that P2 performance suffers from the congestion at
the root node.

We have not taken into account a congestion control mechanism. Thus, in
Figure 9, the values of latency relative to the biggest volumes of requests grow
exponentially due to the congestion of the links. Before the channel satura-
tion, in the left-hand side of the Figure, the additional latency of the reactive
protocols P2, P3, and P4, is negligible with respect to the proactive protocol,
P1. The proactive protocol can be seen as the lower bound for the considered
topologies. Indeed, since the keys are updated out-band, the depicted values
represent the latency only in content retrieval.

The results relative to the mesh topology are presented in Figure 10. The
trend is similar to the tree topology, but with some interesting differences. First,
the average latency is lower for the same fc, because the traffic can flow over
multiple routes and the producer link stops being a bottleneck. Second, the
performance of protocol P4 is worse than P3 and halfway between P2 and P3,
whereas in the tree topology the performance of P3 and P4 are similar. In fact,
in the tree topology, P4 messages flow through the peripheral links, which are
not congested. Instead, in the mesh topology, congestion may occur at any link
and, thus, involve P4 messages. Additionally, P4 sends two or more interests
for each requested key, thus increasing the traffic when compared to P3.

The same observations drawn for the tree topology can be written here. The
results relative to P2, P3 and P4 add a negligible latency to the lower bound,
P1, before the channel saturation. In this case, the saturation is asymptotically
reached with a bigger volume of requests than the tree topology. Thus, we can
say that, in both scenarios, our proposed solutions guarantee the benefits of
NDN in terms of small latencies in content delivery.

Figure 11 depicts the standard deviation relative to the mean latency for
content and key retrieval averaged over all the popularity classes as a function
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Figure 10: Mean latency of all the popularity classes depending on the volume of requests in
the mesh topology considering the alternative protocols. Confidence 95%.
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Figure 11: Standard deviation relative to the mean latency of all the popularity classes de-
pending on the volume of requests in the mesh topology considering the alternative protocols.

of the frequency of requests, i.e. fc = 2123, 9200, 18400, 27600 interests/second,
and relative to the mesh topology. The figure shows that the standard deviation
results are clustered closely around the values of the mean latency. Thus, the
curves in Figure 11 have the same trend of those in Figure 10.

All our proposed solutions prevent nodes accepting a corrupted packet in
their cache, except that less than a time W has passed since the key was revoked.
However, observing the results, there are some differences between the presented
protocols.

P2 always guarantees keys’ authenticity at the price of higher latency and
of possible bottlenecks on the Trusted Authority node(s).

P1 has the lowest latency in all cases. The drawback is that P1 requires
key pre-distribution, resulting in large memory consumption in the nodes and
in longer vulnerability periods. Further, we believe that the proactive mode can
be used when the channel capacity is limited and the network is overloaded,
since it allows to manage the key retrieval off-line.

P3 has comparable latency to P1 in the mesh topology and similar perfor-
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Table 2: Comparison of the Studied Protocols

Protocol P1
Minimum Achievable
Security Window (W )

long

Additional Traffic 2 packets per hop to the TA for each key in the
database for each Consumer

Key Retrieval Latency negligible

Protocol P2
Minimum Achievable
Security Window (W )

1 RTT to the TA

Additional Traffic 2 packets per hop to the TA for each key request
Key Retrieval Latency 1 RTT to the TA

Protocol P3
Minimum Achievable
Security Window (W )

1 RTT to the TA

Additional Traffic between 2 packets and 2 packets per hop to the TA,
depending on caching, for each key request

Key Retrieval Latency between 1 RTT to first hop and 1 RTT to the TA,
depending on caching

Protocol P4
Minimum Achievable
Security Window (W )

1 RTT to the TA + processing time at the notaries

Additional Traffic 2 packets per hop to each notary for each key re-
quest, plus 2 packets per hop to the TA, in case of
failure

Key Retrieval Latency 1 RTT to the farthest notary plus 1 RTT to the
TA, in case of failure

mance in the tree topology. In addition, P3 can provide much shorter security
windows and allows the user to choose the time threshold of validity. It is there-
fore a viable choice for wide scale deployment. However, it pays the price of
clock synchronization of all the network nodes.

Finally, P4 is the best solution not only for a good trade off between the
evaluated performance parameters but also because it leaves the users the pos-
sibility to choose where to put their trust. Table 2 shows a comparison of the
main features of the different protocols in terms of the minimum security win-
dow that can be guaranteed, the resulting additional traffic, and the latency on
key retrieval.

7. Conclusion

This paper deals with the problem of content freshness and revocation in
ICN scenario. In particular, it compares different centralized, P1 and P2, and
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distributed, P3 and P4, approaches to distribute up-to-date keys in a NDN-
friendly way.

We provide the NDN framework with a trust management infrastructure.
However, our approach can be straightforwardly extended to other ICN ap-
proaches. In particular, we present a proactive method that periodically dis-
tributes updated keys to the nodes, two reactive protocols that allow the TA
or an intermediate node to send the up-to-date status of the key upon request,
and a method where some trusted nodes provide keys on behalf of the TA. Our
results show that, even if the communication model undergoes a change, it is
possible to maintain the benefits of an NDN network in terms of latency.

On the one hand,both P1 and P2 are centralized methods because only one
node, the Trusted Authority, can provide the requested key. These methods can
be used when the access network is overloaded, however, the TA could become
a bottleneck. To overcome this issue, a key delegation scheme could be defined
to allow a TA to entrust some other network entities to certify keys. This is a
possible direction for an evolution of our work.

On the other hand, both P3 and P4 are distributed methods because any
cache in the network can send the relevant key. The difference is that P4 further
reduces the load towards the Trusted Authority and makes the system more
robust to network partitioning. The advantages of P4 come at the expense of
additional peer-to-peer traffic in the network. As such, P4 works best when the
bottleneck is farther from the user, such as in our mesh topology. When the
bottleneck link is near to the user, a solution with no peer-to-peer traffic would
have better performance.
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