
Quality of Service Driven Runtime Resource Allocation
in Reconfigurable HPC Architectures

Marcello Pogliani∗, Gianluca C. Durelli∗, Antonio Miele∗, Tobias Becker†,
Peter Sanders†, Cristiana Bolchini∗ and Marco D. Santambrogio∗
∗Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy
{marcello.pogliani, gianlucacarlo.durelli, antonio.miele, cristiana.bolchini, marco.santambrogio}@polimi.it

†Maxeler Technologies Ltd., United Kingdom
{tbecker, psanders}@maxeler.com

Abstract—Heterogeneous System Architectures (HSA) are
gaining importance in the High Performance Computing (HPC)
domain due to increasing computational requirements coupled
with energy consumption concerns, which conventional CPU
architectures fail to effectively address. Systems based on Field
Programmable Gate Array (FPGA) recently emerged as an
effective alternative to Graphical Processing Units (GPUs)
for demanding HPC applications, although they lack the
abstractions available in conventional CPU-based systems. This
work tackles the problem of runtime resource management of
a system using FPGA-based co-processors to accelerate multi-
programmed HPC workloads. We propose a novel resource
manager able to dynamically vary the number of FPGAs
allocated to each of the jobs running in a multi-accelerator
system, with the goal of meeting a given Quality of Service
metric for the running jobs measured in terms of deadline
or throughput. We implement the proposed resource manager
in a commercial HPC system, evaluating its behavior with
representative workloads.

I. INTRODUCTION

Despite the unprecedented increase in complexity and per-
formance requirements of computing systems, improvements
in silicon technologies and fabrication processes cannot
guarantee the yearly doubling of system performance of the
past decades (Moore’s law [1]). With the rise of micropro-
cessors’ power densities, power consumption emerged as a
hard limit to their evolution [2]. As single-threaded perfor-
mance leveled off, a paradigm shift was needed to continue
increasing performance: this led to the rise of multi- and
many-core architectures, and to the shift from instruction-
level parallelism to thread-level parallelism. However, “dark
silicon” [3] limits multi-core designs: as the power budget
constrains how many cores can be integrated on a chip,
transistors are under-utilized, and the architectures cannot
scale beyond a few hundreds of cores. Furthermore, costs
related to electricity and computer room air conditioning are
such a relevant part of the datacenter total cost of ownership
that it is usual to characterize datacenter costs in terms
of dollar per watt [4], [5]. Even in the High Performance
Computing (HPC) scenario, classically characterized for

striving to maximize the computational performance alone,
the trend is clearly going towards the optimization of energy-
aware metrics (e.g., performance per watt). This is testified
by projects such as the “Green 500” list [6], started in 2005
to rank supercomputers in terms of energy efficiency.

In this context, Heterogeneous System Architectures
(HSA) are emerging as a common paradigm to provide
high performance solutions for consumer and HPC systems.
Trends and projections have shown that using heteroge-
neous architectures is the most feasible way to achieve
exascale performance in HPC systems, keeping the power
budget manageable [7]. HSAs exploit different processing
elements for different types of tasks: typically, a standard
multi-core CPU, which runs the control-intensive part of
the applications, is coupled with highly efficient and spe-
cialized accelerators that run the computational intensive
and performance-critical parts. A popular accelerator is the
Graphical Processing Unit (GPU), an architecture originally
conceived for graphic rendering, which can be used for gen-
eral purpose computation through specialized frameworks
such as OpenCL [8] and NVIDIA CUDA [9].

Besides GPUs, reconfigurable hardware – usually imple-
mented with Field Programmable Gate Arrays (FPGA) –
is emerging as a key player in the HPC context. Although
GPUs are good at performing massively parallel floating-
point computation, reconfigurable fabric allows to com-
pletely change the data-path if the computation requires so.
Reconfigurable hardware is able to couple high performance
with low power consumption, at the expense of ease of
programming. HPC solutions featuring FPGA accelerators
are available on the market; an example is represented by
the Data Flow Engine (DFE) produced by Maxeler Tech-
nologies [10]. Customers can build their own computational
cluster or buy compute time from cluster owners following
the utility computing paradigm. A classical problem in the
context of shared datacenters is that resource provisioning
for running applications (virtual machines or, in general,
jobs) is usually performed statically by the user. The end
user has to determine upfront the resources needed by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/74312268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

its own application, ending up over-provisioning resources.
This scenario not only increases the renting costs for the
user, but is not even beneficial for the datacenter owner: to
achieve high efficiency (thus reducing the datacenter man-
agement costs), all the running machines in a cluster must
have a high utilization. Current solutions featuring FPGA
accelerators are no different and, for this reason, research is
moving in this direction [11]; however, previous approaches
in the reconfigurable computing domain do not consider
the Quality of Service (QoS) delivered to customers, which
is of utmost importance in a utility computing paradigm.
Furthermore, unlike runtime resource management solutions,
static resource partitioning cannot cope with possible failures
of datacenter nodes or accelerators.

In this work, we propose a runtime management controller
for HPC systems that accelerate computational intensive
kernels of performance-critical applications with reconfig-
urable hardware. The controller aims at dispatching the
available reconfigurable processing resources among the run-
ning applications in order to guarantee application-specific
QoS requirements, specified in terms of deadlines or desired
throughput. The controller features two different scheduling
policies devoted to resource dispatching. We implemented
the controller in a Maxeler HPC system featuring 8 FPGA-
based accelerators (Maxeler’s DFEs) and validated it consid-
ering different instances of a financial application presenting
strict and varying time requirements.

This paper is organized as follows. Section II describes
the problem; Section III introduces the proposed techniques;
Section IV evaluates this work on a Maxeler HPC system
using representative workloads. Finally, Section V presents
an overview of related work, and Section VI closes the
paper.

II. CONTEXT AND PROBLEM DEFINITION

In this paper, we target a system with multiple accelerators
shared among a number of applications. We refer to a
Maxeler Technologies MPC-X1, which contains up to 8
DFEs shared by multiple CPU nodes over an Infiniband
network. DFEs are FPGA-based accelerators aimed at large-
scale processing, and provide massive parallelism through
deep pipelining.

The resource manager supports highly parallelizable ap-
plications structured as a series of mutually independent op-
erations; they have a computational intensive and highly data
parallel loop, with as few dependencies as possible, running
for many iterations. This structure is extremely simple, but
representative of scientific computation kernels that benefit
from hardware acceleration: it is found in HPC applications
such as option pricing, image and video processing, and
computation of the correlation matrix (e.g., for brain network
analysis).

1https://www.maxeler.com/products/mpc-xseries/

A. Execution model
From the point of view of an application willing to use

DFE resources, the basic execution model concerns the so-
called actions, i.e., the atomic units of computation. An
action is a single invocation of DFE functionalities with its
own application-specific data streams and parameters sent
to the DFE. Usually, an action consists in setting scalar
values in the DFE, streaming data, running the computation,
and finally receiving back streamed data and scalar values.
Actions are considered atomic because it is not possible to
preempt or cancel them once they have been dispatched,
mainly due to the large context-switching overheads in-
volved. Many applications can be split into several actions;
if a computation does not depend on transient data stored
inside the DFE memory, each action can run on an arbitrary
DFE, and actions belonging to the same applications can run
in parallel over multiple devices.

The abstraction that supports the decoupling between
applications and physical DFEs in the Maxeler framework
is called a DFE group. A DFE group is presented to an
application as a single virtualized DFE backed by a pool
of one or more physical devices. All DFEs within a group
are configured with the same bitstream (i.e., in Maxeler’s
terminology, the same maxfile); then, actions submitted syn-
chronously or asynchronously to a group are scheduled onto
physical DFEs through a queuing mechanism implemented
in the MPC-X device to ensure high DFE utilization.

Applications that do not depend on transient data can
submit actions to a group without knowing what is the
physical DFE running the computation. Groups can be
shared between multiple applications that use the same
configuration bitstream and, if they are created as dynamic
groups, they can be resized at runtime by adding or removing
DFEs. It is worth noting that shrinking the group, i.e.,
removing a DFE, requires waiting until one DFE has finished
its current action. Using groups, applications are not aware
of the physical resources they are using; this renders the
resource allocation process more flexible, and paves the way
for dynamic runtime resource management. In fact, although
the group abstraction, by itself, does not solve any resource
management problem and is just a thin virtualization layer,
in the following we will build upon DFE groups to perform
automated DFE allocation.

B. Problem Statement
The problem we tackle is to manage allocation for jobs.

A job J = {a1, . . . , an} is defined as a set of stateless
and independent actions a1, . . . , an that require the same
configuration bitstream. The output of the resource manager
is a time-varying well-formed allocation. Given a set of jobs
J and a number N of resources, a well-formed allocation
θ is a function θ : J → N where∑

j∈J
θ(j) ≤ N

Host 1
A1

Host 2
A3

A2

RM
(MPC-X 2)

MPC-X 1 MPC-X 2

Infiniband monitoring
 data

 grow / shrink
groups

group creation
actions

job (goal, constraints)

Figure 1. The proposed resource manager in a typical MPC-X deployment.

We allocate resources to meet explicit goals, following a
goal-oriented approach. As different applications running
on the same HPC cluster may have different performance
requirements, goals are job-specific. Each job is described
by the following metadata:
• A goal, which takes the form of a desired deadline or

a desired throughput.
• The job size, i.e., the number of actions (if the goal is

a deadline).
• An optional constraint on the minimum and maximum

number of DFEs assigned to the job while it is running;
the resource manager will enforce this constraint.

In this framework, the resource manager tackles the follow-
ing problem: Given a set of jobs J , and N resources (i.e.,
DFEs), find a time-varying well-formed allocation θ that
satisfies the constraints, so that the goals are met if possible.
Our resource manager leverages DFE groups by creating a
dynamic group for each job, and modifying at runtime the
group sizes to vary the allocation of DFEs to the jobs.

III. DESIGN AND IMPLEMENTATION

The proposed resource manager is a stand-alone user-
space application, deployed in an environment composed of
one or more high performance switched Infiniband networks,
multiple CPU nodes, and one or more MPC-X devices. As
shown in Figure 1, it runs on a generic CPU node, is tied
to a specific MPC-X, and exchanges data with CPU nodes
and the MPC-X over an IP network. A specifically designed
API allows applications to register to the resource manager,
specify goals, and submit jobs; the resource manager con-
nects with the Maxeler management software to retrieve
monitoring data and issue group resize commands. While
designing the system, we took into account three important
requirements:
• To provide a simple way to plug in new resource

management policies and algorithms.
• To provide a generic infrastructure to handle requests

from applications.
• To provide an abstraction layer over the retrieval of

monitoring data and the change of resource allocation

on the MPC-X.

Having the resource manager mediate every DFE-related
operation would result in massive performance overhead;
thus, the resource manager is a passive component and the
managed applications directly perform operations such as
loading bitstreams and submitting actions.

We developed two DFE resource management policies,
each one targeted for a different workload scenario: the ear-
liest deadline first policy, and the throughput-based policy.
These two policies are discussed in the following sections.

A. Earliest Deadline First

The earliest deadline first (EDF) policy, applicable to
jobs specifying deadlines as a goal, assigns all the allocable
resources to the job with the earliest deadline among the
ones active in the system. The allocable resources are the
DFEs in excess to the ones needed to cope with any
metadata-specified constraints. The events that can trigger a
change of allocation are the retirement or the submission of
a job. In particular, a job submission changes the allocation
if the new job is due before the deadline of the currently
running job. The EDF policy supports only jobs specifying
goals in terms of deadlines.

This policy attains good results in case of batch jobs, when
all the results of the computation are needed only after the
job deadline, provided that the system is able to meet all
the deadlines. The main drawback is a lack of predictability
of the response time: as the exact time a job is scheduled
depends on the deadlines of other jobs, it is difficult to
control the response time when submitting a job.

If the duration of a single action is small with respect to
the whole job, the resource manager effectively preempts a
job when it changes the allocation. In case of a workload
where all the jobs are instances of the same application and
use the same bitstream, the problem is similar to classical
real-time scheduling with preemption: EDF minimizes the
maximum lateness of the jobs. It is optimal in the sense that
if there exists a schedule for a set of jobs fulfilling all the
deadlines, then also the EDF schedule fulfills all the dead-
lines. To show that EDF is optimal in this context, we start
from the fact that a job is composed of a finite number of
discrete actions which can be independently assigned to any
resource. Let us consider a set of jobs J = {J1, J2, . . . , Jn}
having respectively deadlines d1 ≤ d2 ≤ · · · ≤ dn. If a
schedule s of J exists so that all the deadlines d1, . . . , dn
are met, then J1 completes before d1, i.e., all the actions
ai ∈ J1 complete before d1. The EDF policy schedules
the jobs in the order of their deadlines: applying the EDF
schedule to J , the first actions to be completed are all the
ones of J1. As we consider independent actions, if there
exists a schedule where J1 completes at a time instant
t ≤ d1, a fortiori J1 completes at a time instant t′ ≤ t ≤ d1

using the EDF schedule2. Let us consider a fictitious job
J12 composed of the actions {a : a ∈ J1 ∨ a ∈ J2}.
Assuming that the schedule s fulfills all the deadlines, then
J12 completes before d2 because J1 completes before d1,
J2 completes before d2, and d1 ≤ d2. In this case, the EDF
schedule runs the actions belonging to J12 before anything
else; thus d2 is met under EDF for the same considerations
done for the job J1. Reasoning in this fashion for the other
jobs of J , we can conclude that if there exists a schedule
s able to fulfill all the deadlines, also the EDF schedule
does so, thus EDF is optimal. This is true assuming that the
jobs are known to the system at the beginning, but similar
considerations are true also in case of job arrivals spread in
time. This reasoning is not valid, instead, in presence of a
non-negligible reconfiguration delay.

B. Throughput-Based Policy
In streaming applications, such as real-time video encod-

ing, intermediate results are constantly needed: the important
metric is not the job response time, but the throughput,
i.e., the rate at which new results become available. Using
the EDF scheduler in this scenario, the latency of the first
intermediate results is unpredictable: the scheduler can run
the application immediately at maximum speed, or even
make the application wait for a long time before starting
its execution (if other applications have a stricter deadline).
For this scenario, we developed a different heuristic that
exploits a feedback loop to keep the job throughput in a
certain range.

Unlike the EDF policy, where the scheduling events are
confined to submission and retirement of a job, the resource
manager for the throughput-based policy runs periodically,
querying the MPC-X device for its status, running the
decision algorithm, and issuing group resize commands
according to the new allocation. This periodic nature is the
main drawback: a short control period, while allowing for
a fine grained control, may cause too many reconfiguration
events and hurt the system performance; for this reason, in
the remainder of this discussion, we consider a workload
composed of multiple instances of the same application, such
as an hardware accelerated video-encoding cluster where
different users have different QoS requirements.

This policy uses a target throughput as a goal g; when a
job j specifies its goal as a deadline3, it is translated into a
time-varying throughput gj(k):

gj(k) =
total number of actionsj − actionsj(k)

deadlinej − time(k)

Here, actions(k) is the total number of actions completed
at the control step k, and time(k) is the current time at k;

2The schedule s executes before the time instant t at least all the actions
of J1, plus possibly others.

3Although, as discussed, the EDF scheduler is optimal for deadline-
based batch applications, the throughput scheduler is useful for workloads
featuring a mix of deadline-based and throughput-based requirements.

Job Controller 1
goals

measurements

Job Controller 2 Job Controller n. . .

Resource Broker
constraints

allocation

resource
request

Figure 2. High-level structure of the resource management algorithm.

unlike EDF, the job metadata must specify the total number
of actions. We remark that using a time-varying goal and
computing the throughput over a time window provides
more precise results than averaging the throughput from the
beginning of the job, although a requested globally averaged
throughput is a more straightforward interpretation for a
deadline.

Figure 2 depicts the high level structure of the throughput-
based resource management algorithm. To achieve modular-
ity, we follow an approach already in use for other resource
management problems [12]: we separate the algorithm in
two layers having a clear interface between them, the Job
Controllers and the Resource Broker. The algorithms used
in the job controllers and in the resource broker are based
upon heuristics; nevertheless, the split in two levels makes it
simple to exploit other techniques for the per-job controller
(e.g., formal control theory) keeping low the complexity of
the controllers, and leaving to the resource broker the task
of coping with constraints. A two layer algorithm, where
the job controller request is independent from the other
jobs of the workload, can produce less precise results than
a single, integrated algorithm which takes into account all
the jobs at the same time. Despite this, we believe that the
advantages of a simple and easy to adapt structure outweighs
its shortcomings.

Job Controllers: The job controllers work independently
and in the context of a single job j, computing its “ideal”
resource request. They take as an input the job metadata, the
current allocation and the completed actions, producing two
synthetic values. The first value is a performance metric pj ,
which indicates how the performance of j are far from its
goal: if j is performing better than its goal, pj > 1, otherwise
pj < 1; the resource broker uses pj to decide which jobs
to penalize if some of the requests cannot be satisfied. The
second output value is the resource request rj , expressed
as the number of desired DFEs. If the size of actions
belonging to the same job is approximately constant and
the jobs scale linearly with the number of assigned DFEs,
we can compute the resources needed to enforce the required
throughput as follows. Let gj(k) be the desired throughput

of j at the control step k, and tj(k) the throughput of j
computed as in (1), where actions(k) is the total number of
completed actions and time(k) is the current time at the step
k. The duration of an action can be estimated, as shown in
(2), by the ratio between the allocation and the throughput
over the last time window, smoothing the resulting value
through an exponential moving average filter with a constant
smoothing factor α ∈ [0, 1]; by varying the value of α, the
algorithm can react quicker or slower to a change of the
action duration at the expense of being able to filter outliers
out (e.g., particularly slow actions, measurement errors). We
then compute the resource request rj(k), and pj(k) value
as the ratio between the current throughput and the goal, as
reported in (3) and (4) respectively.

tj(k) =
actions(k)− actions(k − 1)

time(k)− time(k − 1)
(1)

âj(k) = α · allocationj(k − 1)

tj(k)
+ (1− α) · âj(k − 1) (2)

rj(k) = dâj(k) · gj(k)e (3)

pj(k) =
tj(k)

gj(k)
(4)

Resource Broker: The resource broker (described in Al-
gorithm 1) computes the allocation according to the values
computed by the job controllers and the system constraints.
As input parameters, the resource broker takes a list of
currently running jobs, and the number of available DFEs
(max). The value of max is the number of available phys-
ical DFEs minus any DFEs reserved for jobs initialized
but not yet started, and any blacklisted DFE. It is worth
noting that a DFE is blacklisted when it fails repeatedly
a reconfiguration process. If the resource request fits the
MPC-X, the resource broker works as in Algorithm 2: it
divides the excess DFEs among the jobs that declared a
deadline as a goal: throughput-bound applications do not
usually gain in having more resources than what they need,
due to other synchronization constraints in other parts of the
computation pipeline the DFE application is part of. If the
resource request does not fit the available DFEs, the resource
broker acts as described in Algorithm 3: it penalizes some
jobs assigning less resources than required according to a
heuristic.

In order to make the job submission process simple for
the users, we do not require previous profiling data: when a
job enters the system, it is not possible to predict its resource
request. However, the throughput-based algorithm targets
long-running jobs: for this reason any bad choice in the
initial allocation, due to the lack of profiling data, has a small
impact on the job performance. In particular, when a job j
enters the system and there are enough unallocated DFEs
to cope with its constraints, we assign to j the unallocated
resources; otherwise, we deallocate DFEs from active jobs
ensuring the resource request of each active job is less or

Algorithm 1 Resource Broker
function RESOURCEBROKER(jobs, max)

request ← 0
for all j ∈ jobs do

j.allocation ← 0
request ← request + rj

end for
if request ≤ max then

ALLOCATEFIT(jobs, max, request)
else

ALLOCATENOTFIT(jobs, max, request)
end if

end function

Algorithm 2 Request fitting in the MPC-X
function ALLOCATEFIT(jobs, max, request)

slack ← max − request
for all j ∈ jobs do

j.allocation ← rj
end for
dbound ← {j ∈ jobs : j.goal = DEADLINE }
SORT(dbound) by p
for all j ∈ dbound do . Paused jobs

if j.allocation = 0 and slack > 0 then
j.allocation ← 1
slack ← slack− 1

end if
end for
assigned ← true . Other jobs
while slack > 0 and assigned do

assigned ← false
for all j ∈ dbound do

if slack > 0 then
j.allocation ← j.allocation +1
slack ← slack− 1
assigned ← true

end if
end for

end while
end function

equal than the resources it is allocated. If it is not possible,
we reject j.

IV. RESULTS

We implemented our resource manager on a system com-
posed of a Maxeler Technologies MPC-X2000 device with
six Maia DFEs (Altera Stratix V D8 FPGA, 48 GB RAM
for each DFE), and a CPU node with two Intel R©Xeon R©E5-
2670 (8 cores, 2.6 GHz, 20 MB LLC, Intel HyperThread-
ing) and 64 GB of DDR3 RAM, running the CentOS 6.4
GNU/Linux distribution, and MaxelerOS 2014.2. The MPC-
X is connected to the CPU node via two switched Infiniband

Algorithm 3 Request not fitting in the MPC-X
function ALLOCATENOTFIT(jobs, max, request)

available ← []
for all j ∈ jobs do

prio ← pj
for i← 1 . . . rj do

available ← available +〈prio, j〉
prio ← prio · 0.75

end for
end for
SORT(available) by the first element
allocated ← 0
for all e ∈ available do

if allocated < max then
e[1].allocation ← e[1].allocation +1
allocated ← allocated +1

end if
end for

end function

networks; the HCAs are Mellanox ConnectX VPI PCI-
Express 2.0, capable of Quad Data Rate (QDR) transfers.

For the evaluation, we chose as a benchmark a simplified
option pricing application based on the Black and Scholes
formula. This type of option pricing is often performed
repetitively in various types of financial risk analytics.
For example, Value at Risk (VaR) computes the expected
threshold loss on a portfolio of financial assets for a
specified probability. Computing VaR requires the repeated
pricing of options for an entire portfolio over a range of
scenarios, representing a very large workload that can be
easily parallelized. The processing kernels are suitable for
implementation on co-processors, with low memory cost and
large computation/data transfer ratio.

A. Deadline Goals

We ran our system with multiple instances of our bench-
mark application without considering the reconfiguration
overhead. Figure 3 summarizes the execution times of the
benchmark application for a static, fixed allocation, and
using the resource manager. To obtain those results, we ran
the benchmark using a set of static allocations, partitioning
the available DFEs among three jobs in various ways (i.e.,
the 3-3-2 scenario means that the workload is composed
of three applications, two of them using a group with 3
DFEs, and one using a group with 2 DFEs). Then, we set
the deadlines for the throughput-based algorithm in order
to obtain a behavior as close as possible to the one of the
static allocation, and we compared the results to the ones
obtained using the EDF policy. While the EDF allocation is
reported in all the plots for the sake of clarity, it is the same
result throughout all the table rows, because its behavior
depends only on the ordering between the deadlines and not

EDF
Static
Throughput-based

Algorithm:Scenario: 3-3-2 Scenario: 4-2-2

Scenario: 4-3-1 Scenario: 5-2-1 Scenario: 6-1-1

Ex
ec

ut
io

n
Ti

m
e

[s
]

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

[s
]

0

50

100

150

200

A B C
Job

A B C A B C

Figure 3. Execution time for a workload composed of three instances of
the same application managed through different policies.

Job A
Job B
Job C

Th
ro

ug
hp

ut
 [a

ct
io

ns
/s

]

0

20

40

60

80

D
FE

s

0
2
4
6
8

Time [s]
0 10 20 30 40 50 60 70 80 90

Figure 4. Execution trace of a workload with three instances of the same
applications, managed by the EDF algorithm.

on the value of the deadlines themselves. The plots show that
using a dynamic allocation improves the utilization of the
DFEs: when the job with the earliest deadline finishes, the
freed DFEs can be reallocated to the other jobs; furthermore,
the performance penalty with respect to the static allocation
is low both using both EDF and the throughput-based
algorithm. As expected, in this case, EDF leads to better
results than the throughput-based policy.

Figure 4 and 5 depict the dynamic behavior of both the
developed policies; in the example we consider, deadlines
are arbitrarily set to 50, 109, and 195 seconds respectively
with a constraint of at least 1 DFE assigned to each job4.
The top half of the plots shows the allocation; in case of

4Those deadlines are set to match the scenario “5-2-1” of Figure 3.

Job A (50)
Job B (109)
Job C (195)

Request Actual allocation

Th
ro

ug
hp

ut
 [a

ct
io

ns
/s

]

20

40

60

D
FE

s

0
2
4
6
8

Time [s]
0 20 40 60 80 100

Figure 5. Execution trace of a workload with three instances of the same
applications, managed by the throughput-based algorithm; deadlines set to
50, 109, and 195 seconds.

Unconstrained
30 actions/s
60 actions/s

Th
ro

ug
hp

ut
 [a

ct
io

ns
/s

]

0

50

100

D
FE

s

2

4

6

8

Time [s]
0 50 100 150

Figure 6. Execution trace of the benchmark application when controlling
the throughput of applications running in isolation.

the throughput-based policy, the dots are the request per-
formed by the job controller before the resource brokerage
phase, while the lines are the allocation after the resource
broker intervention. Although the throughput-based policy
internally enforces a throughput over a time window, we
chose to represent the global throughput (average throughput
from the beginning of the job), as it is representative of goals
expressed in the form of a deadline, and allows to easily
understand whether the deadline was met. The bottom half
of the plot shows the global throughput; the dashed lines
in Figure 5 are the deadline goals converted to a global
throughput (if the deadline is 200s and the job size is 3000,
we draw a dashed line at 3000/200 = 60 actions/s). It is also
possible to notice the difficulty to predict when the job will
actually start its execution with the EDF algorithm.

B. Throughput Goals

Figure 6 shows the throughput-based policy behavior
when the goal is specified as a throughput. The plot shows
the throughput over a time window equal to the control
period, running a single instance of the benchmark applica-
tion. The dashed line refers to an unconstrained execution;
for the blue and red lines, we set the goals to 30 and

60 actions/s
20 actions/s

Th
ro

ug
hp

ut
 [a

ct
io

ns
/s

]

20

40

60

D
FE

s

2

4

6

t
0 50 100 150 200

Figure 7. Execution trace of the benchmark application when controlling
the throughput of applications executed in co-location.

60 actions/s respectively. The MPC-X allows to assign to
a job only an integer number of DFEs: for a goal of 60
actions/s, the throughput is noticeably higher than requested,
as using less DFEs would make the system to underperform.
Figure 7 shows the behavior of two co-located applications
with different goals, 60 and 20 actions/s. After the first
job finishes, the throughput of the second job increases
without changing the allocation: when both applications run
together, the interconnection bandwidth saturates; as soon as
the first job ends, the bandwidth is not saturated anymore.
Furthermore, changing the allocation to 1 DFE would reduce
the throughput to less than the required goal.

V. RELATED WORK

Commodity operating systems do not cope well with
HSAs: they manage devices such as GPUs or FPGA-based
systems as I/O devices, without higher-level abstractions.
Research has recently moved towards building better system-
level abstractions for HSA; two fundamental research chal-
lenges are resource virtualization and elasticity.

An important topic in resource virtualization is to grant
virtualized operating systems access to hardware resources
without impairing performance, and to solve contention on
resources used by multiple operating systems. This topic,
originally explored for GPU solutions [13], starts to be
explored for FPGA-based systems; for instance, El-Araby
et al. [14] tackled FPGA virtualization in the context of
devices aimed at high performance applications. Research
efforts have focused on extending cloud computing archi-
tectures to support heterogeneous processing elements. In
fact, accelerators do not fit the cloud computing model as
they are not virtualizable in a generic way and are difficult
to share. Byma et al. [15] extended OpenStack to provision
FPGAs like standard virtual machines; in this view, cloud
platforms can offer to users virtualized FPGA resources
loaded with precompiled or custom functionalities. The
reconfigurable regions have a streaming interface connected
to the datacenter network to allow direct communication
with the virtual machines.

In a heterogeneous cloud, it becomes desirable to enable
elasticity. Hydrogen [16] attempts to provide elasticity in
multi-tenants environments for the same class of systems
targeted by this work. It associates each job with a Job-Level
Objective metric (e.g., execution time); each Hydrogen in-
stance manages a pool of resources, and a resource manager
allocates jobs to the resources according to a scheduling pol-
icy. The resource manager keeps a queue of ready jobs; when
resources become available, it runs a scheduling algorithm to
choose which jobs to run among the available ones, and how
many resources to assign to each one of them. A component
(elasticity manager) is associated with all the Hydrogen in-
stances of the platform: it chooses the scheduling algorithm
that the resource managers will use, and assigns resources to
the Hydrogen instances (i.e., it grows or shrinks the resource
pools). The elasticity manager is aware of the jobs’ JLOs,
and estimates whether the jobs will meet their objectives
through a metric that tells by how much the jobs miss their
JLOs. A key difference with our work is that we consider
long-running jobs and perform online profiling, without
needing the offline profiling used in Hydrogen. We also
consider general, user-provided hardware implementations,
while Hydrogen assumes a fixed repository (library) of high-
performance commonly used kernels. Finally, the Maxeler
platform used in this work is already harnessing the ideas
of virtualization and elasticity [11]. However its runtime
allocation mechanism aims to maximize DFE utilization
without taking into account any QoS metrics: this results
in a poor job for applications with different requirements
sharing the same MPC-X.

VI. CONCLUSION

In this work we proposed runtime resource management
techniques for HPC reconfigurable systems, implementing
them on a commercial platform with promising results. We
extended the MPC-X software layer with a component able
to control at runtime applications that offload computations
to the managed hardware accelerators. Unlike the state of
the art, our system aims to control workloads with QoS-
bound jobs, using metrics meaningful to the application.
We considered two types of job-specific goals – deadline
and throughput – showing that it is possible to control ap-
plications having a structure that is widespread among HPC
ones. Resource management techniques are good enablers
for resource sharing, even on devices conceived as single-
application and single-user appliances: resource sharing can
extend the suitability of HSAs to a wider user base.

ACKNOWLEDGMENTS

This work was partially funded by the European Commission in
the context of the FP7 SAVE project (#610996-SAVE).

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics, pp. 114–117, Apr 1965.

[2] S. Borkar and A. A. Chien, “The future of microprocessors,”
Comm. of ACM, vol. 54, no. 5, pp. 67–77, May 2011.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward dark silicon in servers,” IEEE Micro, vol. 31, no. 4,
pp. 6–15, July 2011.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as
a computer: an introduction to the design of warehouse-scale
machines,” Synth. Lect. on Computer Architecture, vol. 8,
no. 3, pp. 1–154, 2013.

[5] C. L. Belady, “In the data center, power and cooling
costs more than the it equipment it supports,” Electronics
cooling, 2007. [Online]. Available: http://www.electronics-
cooling.com/2007/02/in-the-data-center-power-and-cooling-
costs-more-than-the-it-equipment-it-supports/

[6] W. chun Feng and K. Cameron, “The Green500 list: Encour-
aging sustainable supercomputing,” IEEE Computer, vol. 40,
no. 12, pp. 50–55, Dec 2007.

[7] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting
to the new normal for computer architecture,” Computing in
Science & Engineering, vol. 15, no. 6, pp. 16–26, Nov 2013.

[8] OpenCL – The open standard for parallel programming of
heterogeneous systems, Khronos OpenCL WG Std., 2011.
[Online]. Available: https://www.khronos.org/opencl/

[9] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” ACM Queue, vol. 6,
no. 2, Mar. 2008.

[10] O. Pell and V. Averbukh, “Maximum performance computing
with dataflow engines,” Computing in Science & Engineering,
vol. 14, no. 4, pp. 98–103, 2012.

[11] J. G. F. Coutinho et al., “Harness project: Managing hetero-
geneous computing resources for a cloud platform,” in Recon-
figurable Computing: Architectures, Tools, and Applications.
Springer, 2014.

[12] D. B. Bartolini, F. Sironi, D. Sciuto, and M. D. Santam-
brogio, “Automated fine-grained cpu provisioning for virtual
machines,” ACM Trans. Archit. Code Optim., vol. 11, no. 3,
pp. 27:1–27:25, Jul. 2014.

[13] M. Dowty and J. Sugerman, “GPU virtualization on
VMware’s hosted I/O architecture,” SIGOPS Operating Sys-
tems Review, vol. 43, no. 3, pp. 73–82, Jul. 2009.

[14] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Virtualizing
and sharing reconfigurable resources in high-performance
reconfigurable computing systems,” in Proc. of the 2nd Int.
Workshop on High-Performance Reconfigurable Computing
Technology and Applications, Nov 2008, pp. 1–8.

[15] S. Byma et al., “FPGAs in the cloud: Booting virtualized
hardware accelerators with OpenStack,” in Proc. of the 22nd
IEEE Annual Int. Symp. on Field-Programmable Custom
Computing Machines, May 2014, pp. 109–116.

[16] P. Grigoras, M. Tottenham, X. Niu, J. G. F. Coutinho, and
W. Luk, “Elastic management of reconfigurable accelerators,”
in Proc. of the 12th IEEE Int. Symp. on Parallel and Dis-
tributed Processing with Applications, Aug 2014.

