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ABSTRACT
This paper compares two periodic control methods, the optimal H2 and the periodic static
output feedback (POF), to reduce the helicopter rotor vibrations. Actively twisted blades with
Macro-Fibre Composite (MFC) piezoelectric actuators are used. The design model is based on
a simplified aerodynamic model and on a multi-body model of the Bo 105 isolated rotor with
the original blades replaced by actively twisted ones. The performance of the two controllers
in alleviating hub loads is verified with improved simulations based on a free-wake model.
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NOMENCLATURE
c blade choord
Ak, Bk, Ck, Dk discrete time model matrices
AC

k , BC
k , CC

k , DC
k periodic controller matrices

CL, CD, CM lift, drag and moment coefficients
CnM2 sectional normal force coefficient
E {., .} variance matrix
E [.] expected value
F tip-loss correction factor
Fz blade root shear force
FZ hub vertical force
J performance index
Kk feedback proportional gain
MX , MY hub moment along x and y axis
N discrete controller period
Ok observability matrix
p pitch bearing position
Qi k, Ri j k QR factorisation matrices of Uk,s and Yk,s, (i, j) = {1, 2}
R blade radius
Uk,s, Yk,s input and output Hankel matrices
Uk, �k, Vk singular value decomposition matrices of R22 k

TZ rotor thrust
u system control
V electric potential
V∞ free-stream velocity
w white noise
Wdist baseline loads shaping filters
Wn disturbance shaping filters
Wper f performance weighting function
x, y system state and output vectors
z system performance
α shaft angle
ϑp pre-cone angle
ϑtw blade twist
μ advancing ratio
νβ non-dimensional flap frequency
νϑ non-dimensional torsional frequency
νξ non-dimensional lag frequency
� rotor angular velocity

1.0 INTRODUCTION
Helicopters experience severe levels of vibration on the main rotor due to the asymmetrical
airflow in forward flight. These vibratory loads are transmitted to the fuselage and degrade
the flight comfort, while causing structural components fatigue and wear. Active controls
are being extensively investigated by helicopter researchers to reduce the related vibrations.
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The basic strategy to alleviate such loads is to modify the periodic aerodynamic loads
at harmonic frequencies above the 1/rev. The simplest approach is to control the already
available swashplate through a suitable harmonic signal computed by the Higher Harmonic
Control (HHC) algorithm(1), based on a linear quasi-static rotor model response. However,
it is now possible to embed actuators into the blades and thus to independently control each
blade. This allows to overcome the limitations of using only a swashplate as actuator, such
as the need to install otherwise over-dimensioned hydraulic actuators and the impossibility
to independently control more than three blades. Different methods of actuation have been
studied to carry out Individual Blade Control (IBC)(2-5). In this paper, we assume the
availability of actively twisted blades. Piezoelectric actuators are distributed along the blade
span, with the control voltage computed to minimise the aerodynamic loads. This solution has
been widely investigated in recent years(6,7), and experimental tests carried out at NASA(2) and
DLR(8,9) proved its feasibility.

The complex non-linear behaviour of the rotor subsystem in forward flight limits the
possibility of achieving satisfactory performance through linearised time invariant controller
theories. In particular, the dynamic system periodicity plays an important role, so that more
sophisticated solutions can be found by exploiting the periodic control theory. A model
following approach to stabilise lag and pitch moments using periodic control has been
proposed by Vaghi(10). Periodic vibration controllers were also used by Arcara et al(11) and by
Bittanti and Cuzzola(12); both these papers consider the baseline loads alleviation by means of
IBC as a disturbance rejection problem. Active twist flaps are used by Ulker(13) to reduce hub
loads by a dynamic compensator arising from the periodic H2 and H∞ design.

In the present paper, we start from a review of the periodic H2 design and of the
Periodic Output Feedback (POF) technique(14,15) to reduce hub loads. After comparing the
two solutions and showing that satisfactory results can be achieved by using the static POF
approach, we test the robustness of the two controllers. It is shown that, even if a simple
design model is used in the design phase of the vibration periodic controllers, satisfactory
load reductions are achieved with a more complex numerical model that better approximates
the real rotor behaviour. An important aspect of this study is the analysis of the POF controller:
its design is very simple and involves fewer parameters than those of the H2 controller.
Another advantage is that all the helicopter flight envelope can be covered with an easy gains
scheduling.

The paper is organised as follows. In the Section 2.0, the rotor numerical model and the
tools used to simulate the response of both the design and the validation model are described.
In the Section 3.0, the blade response of the design model is properly identified, and the
procedures to synthesise the periodic H2 controller and the POF one are explained. Section 4.0
shows the validation model closed-loop results and assesses the controller’s robustness.

2.0 NUMERICAL MODELLING
2.1 Multi-body rotor model

Vibratory forces acting on the hub can be reduced by modifying the periodic aerodynamic
loads in the forward flight condition. Blades actively twisted by means of piezoelectric
actuators distributed along the blade span are considered here. The original blades of an
already available multi-body model of the Bo 105 rotor(16) are replaced with actively twisted
ones. The active blades use Macro-Fibre Composite (MFC) piezoelectric actuators with
inter-digitated electrodes. These actuators exploit the primary piezoelectric direction of
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Figure 1. (Colour online) Blade section discretisation.

Table 1
Bo 105 model data with original and piezoelectric blade

Rotor data Bo 105 blade Piezoelectric blade

R 4.9 m 4.9 m
p 0.23 m 0.23 m
ϑp 2.5◦ 2.5◦

c 0.3025 m 0.3025 m
ϑtw −8◦ −8◦

� 44.4 rad/s 44.4 rad/s
α 3◦ 3◦

νβ 1.11 1.1
νξ 0.69 0.73
νϑ 3.63 3.89

polarisation, thus allowing to achieve a high strain rate with low actuation power. They are
oriented in such a way that the strain is applied at ±45 deg to generate maximum torsional
authority.

The inertial couplings and structural deformation of the main helicopter rotor are
intrinsically non-linear. Therefore, the use of a suitable non-linear model is mandatory. A
deformable multi-body model, built with the software MBDyn(17), is used. The swashplate
and the pitch links are represented with rigid bodies, while each blade is modelled using
five geometrically exact finite volume non-linear beam elements(18). MBDyn is able to
handle piezoelectrically actuated beams provided the stiffness, and the piezoelectric coupling
matrices of the blade section are known. The beam section stiffness and mass data of the
original Bo 105 blades are known. The section properties of the actively twisted blades,
on the contrary, have to be computed. An accurate way to compute such properties, still
accounting for three-dimensional elastic and piezoelectric constitutive laws, is the semi-
analytical approach(19-21). The three-dimensional continuum is decomposed into the one-
dimensional domain of the beam model and the two-dimensional domain of the beam
section. A finite element discretisation of the beam section, such as that shown in Fig. 1,
allows computing, by means of a specialised semi-analytic procedure, the sought generalised
beam section stiffness matrix. This semi-analytical formulation was used to optimise the
piezoelectric blade section(22); the position of the elastic axis and of the centre of mass were
constrained during the optimisation to avoid aeroelastic instabilities. Rotor data, together with
the first frequencies of the original passive blades and of the optimised piezoelectric blades,
are shown in Table 1.

Even though MBDyn is a general-purpose multi-body software, it contains some
specialised elements for the simulation of helicopter rotors; among them, it provides simple
aerodynamic elements, such as the blade element momentum theory and different linear
inflow models. Taken together, these elements allow a quick approximation of the system
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response with a level of accuracy that is deemed suitable to reproduce representative vibratory
loads in forward flight, at least for a preliminary design of the controller. The simulations were
performed by combining the Blade Element Momentum (BEM) theory with the Drees inflow
model(23). The required data are the lift, drag and moment coefficients of the blade NACA
23012 aerofoil, CL, CD and CM , with respect to the Mach number and to the aerodynamic
angle-of-attack. This rotor model will be later referred to as the ‘low-fidelity model’ because
it is based on a low-fidelity aerodynamic model. It has been used to design the controllers
through several optimisations.

2.2 Free-wake aerodynamic code

A more accurate model is required to validate the controller’s performance. The multi-body
deformable structural model is detailed, well tested, and validated. The aerodynamic model,
on the other hand, is rather simple and can strongly influence the predicted loads acting on the
blades. In particular, linear inflow models are known to under-estimate the harmonic content
of the forces. Computational Fluid Dynamics (CFD) is usually used to solve the aerodynamic
field of every single blade, while the induced velocity is computed through potential methods,
such as the prescribed or free-wake method(24). However, we strive to avoid computationally
intense tasks, such those arising from CFD simulations, because we need to simulate several
seconds of flight to validate the controllers. For this reason, we have chosen the so-called
hybrid approach(25-27), thus treating separately, with different models, the aerodynamic near
and far fields of the blade. An improved blade element theory accounting for unsteady effects
is used for the near field representation. The rotor wake is approximated by releasing the
blade-tip vortex at each time-step; the ensuing free-wake dynamic is integrated in time, with
the induced velocity computed according to the Biot-Savart law.

The blade span is divided into strips, with more elements at the blade root and tip; a tip-loss
factor is defined as well. The tip-loss correction factor F scales the aerodynamic coefficients
of each strip and is computed according to the simplified Prandtl’s formulation(23,28). The lift,
drag and aerodynamic moment of the strip is computed through the data sheet for the CL,
CD and CM coefficients that was used for the MBDyn simulations and scaled by the tip-loss
factor F . The effective aerodynamic angle-of-attack, however, is corrected by accounting for
unsteady effects; this is achieved by using both the Theodorsen lift deficiency function for the
aerofoil motion and the Kussner function, which better represents the interaction between the
blades and the tip vortexes, considered as gusts(29,30).

After computing the loads of every blade element, the equivalent bound circulation is
computed through the Kutta-Jukovsky theorem, and the strength of the tip vortex that is going
to be released at a given time-step is set to the 80% of the maximum bound circulation of the
blade outer portion(31), with a dual-peak model in case of a negative load on the outer portion
of the blade tip(32). An important model parameter is the size of the vortex core. Since we
are only using the tip vortex to approximate the rotor wake, reproducing the physical size of
the core vortex would over-estimate the blade vortex interaction loads(27); thus, we assume
that the blade-tip vortex initial diameter is equal to 50% of the blade chord(33) and that the
vortex aging follows Squire’s law(27,34). The effects of the near wake are taken into account
by the unsteady blade element theory and the tip-loss correction; for this reason, the far wake
represented by the tip vortexes is activated after 30◦ of rotor revolution. The aerodynamic
code is written in Matlab.

MBDyn can perform co-simulations by exchanging data with external programs by means
of bi-directional socket communications; a Python communication library is available to ease
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Figure 2. (Colour online) Hart II baseline trim condition, 6° descent flight at μ = 0.15.

the interfacing effort. Therefore, the Matlab free-wake code is connected to MBDyn through
the open-source software MatPy(35), a useful Python interpreter for Matlab. The aeroelastic
interface between the structural node of the beams and the aerodynamic strip elements is
computed through an energy-conserving moving least-squared algorithm(36).

The simulation code has been validated with the experimental data of the Hart II baseline
trim condition, a 6° descent flight at μ = 0.15(37). Figure 2 compares the experimental
collective and cyclic pitch control against those computed with our free-wake code, with
the blade element theory combined with the dynamic inflow of MBDyn, and with the two
hybrid approaches described by Amiraux(38). In the first approach, the lifting line theory is
combined with the free-wake geometries of the tip and the root vortexes, while in the second
approach a more accurate RANS-based CFD code is used for the near-field aerodynamics of
the blade. To better evaluate the BVI prediction and the loads estimation capabilities of the
code, the normal force coefficient of the section at 87%R is compared, for one rotor revolution,
in Fig. 3. The normal force coefficient predicted by our code is close to that obtained with
the lifting line theory with only the free wake of tip vortex; it is also able to predict the
position of the BVI. However, both codes overestimate the BVI peaks. The more accurate and
computationally demanding RANS model with tip and root vortexes reduces the BVI peaks
and better approximates the low-frequency content of the normal-force coefficient. Moreover,
the lifting line and BEM methods produce a lower peak in CnM2 near 115°, while experiment
and RANS solver lower peaks are closer to 160°. This phase shift will have an impact on 4/rev
loads. Thus, the proposed code is not able to match the more accurate response of the RANS
plus tip/root vortexes schemes. However, it reproduces with a much smaller computational
cost the overall response of the real system. It will thus be used as a verification model to
assess the proposed controller robustness.
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3.0 CONTROLLER DESIGN
3.1 Identification of the design model

The design model, based on the low-fidelity aerodynamic theory provided by MBDyn, allows
the controller to be tuned with a reasonable computational effort. The effect of the control
applied to one blade on the forces on the other blades is almost null due to the very simple
aerodynamic model. Therefore, each blade is considered independent, and the IBC controller
is designed by considering only a single blade. A periodic state-space model linearised
around an equilibrium configuration is required for the periodic control design. The linearised
input/output relation between the voltage V applied on the blade and the blade sensors
measures is of interest. The blade root shear force Fz and five vertical accelerations at locations
uniformly distributed along the blade span are chosen as outputs in order to well represent the
blade response for the identification.

Dealing with a helicopter in forward flight, the system is periodic. This has to be taken
into account when identifying the model. Classical identification procedures for Linear Time
Invariant (LTI) systems cannot be used for periodic systems. Thus, a periodic subspace
identification algorithm(13) is used to find a Linear Discrete-time Periodic (LTP) model of
the blade in the form:

xk+1 = Akxk + Bkuk,

yk = Ckxk, … (3.1)

where the system matrices have period N. The input/output time histories signals from
the numerical simulations are organised in input/output Hankel matrices Uk,s and Yk,s for
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k = 1 . . . N as follows:

Uk,s =

⎡
⎢⎢⎢⎢⎣

uk uk+1 · · · uk+s−1

uN+k uN+k+1 · · · ...
... · · · ...

u(n−1)N+k · · · u(n−1)N+k+s−1

⎤
⎥⎥⎥⎥⎦ , … (3.2)

Yk,s =

⎡
⎢⎢⎢⎢⎣

yk yk+1 · · · yk+s−1

yN+k yN+k+1 · · · ...
... · · · ...

y(n−1)N+k · · · y(n−1)N+k+s−1

⎤
⎥⎥⎥⎥⎦ , … (3.3)

where N is the period, n is the total number of simulations and s is the length of each
experiment. The Hankel matrices are computed using data from the numerical simulations.
Considering the QR factorisation of the compound matrices:

[
Uk,s Yk,s

] = [
Q1k Q2k

] [
R11k R12k

R21k R22k

]
, … (3.4)

the observability matrix Ok is given by the row space of matrix R22k . It can be computed
through the singular value decomposition (SVD):

R22k = Uk�kVT
k … (3.5)

Ok = ṼT
k . … (3.6)

The order of the identified system is chosen according to the magnitude of the singular values
of �k. Then, the observability matrix is computed as ṼT

k , which contains the first rows and
columns of VT

k up to the defined system order. Afterward, the matrices Ak and Ck can be
obtained by exploiting the observability matrix at the instants k + 1 and k(13,39). The system
periodicity is imposed by setting ON+1 = O1.

Matrices Bk and Dk are computed by minimising the squared 2-norm error between the real
and the model outputs, yreal and y, respectively:

min
Bk,Dk

‖ yreal − y ‖2
2 . … (3.7)

The rotor is trimmed at an advance ratio μ = 0.23 so to reproduce reasonable hub forces,
TZ = 20,010 N, MX = 746 Nm and MY = −85 Nm, with a shaft angle of α = 3◦ as in Fig. 4.
The blade periodic loads and the accelerations for the reference trimmed configuration are
saved; they are subsequently subtracted from the excited response signals to linearise the
system around the trimmed configuration. The blade are excited with a random voltage
with an amplitude of 40 V filtered above 6/rev to limit higher harmonics in the dynamic
response. The Bo 105 rotor has a four blades; thus, the most important harmonics for
the vibratory hub loads are the 3/rev and the 4/rev; all output signals have been filtered
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FZ
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α

V∞

Figure 4. (Colour online) Rotor shaft inclination.

before the identification to consider only these harmonics, hence reducing the size of the
state-space model. The controllers should minimise the 4/rev harmonic of the blade root
shear force Fz to reduce the hub vertical force and reduce the 3/rev harmonic as well to
alleviate the vibratory loads associated to the moments of the blade root loads. Note that
for the vertical force and the torque of the hub only the steady and the multiples of the
4/rev harmonics of the blade root force and moment are not filtered by the hub. On the
other hand, the multiples of the 4/rev in plane forces and moments of the hub, with respect
to the rotor disk, are generated by the multiples of the 3/rev and 5/rev blade loads and
moments. The aeroelastic multi-body simulation requires a small integration time-step; the
simulations are performed with N = 140 time-steps for every rotor revolution. The direct
identification of such signals will lead to the computation of 140 linear systems spanning
the period. The system outputs are decimated to N = 28 time-steps per rotor revolution
in order to reduce the computational burden of both the identification and the controller
design, still approximating the outputs with sufficient accuracy. Hints about the order of
the identified system can be found by analysing the singular value magnitudes of the
matrix R22k at each time-step. The best compromise between data fitting and system order
is given by retaining the most important singular values. For example, Fig. 5 shows the
singular values computed for the first time-step. Based on the singular values, the chosen
linear periodic model of the blade is a 14th-order system for every time-step spanning the
period.

After identifying the linearised blade model, performance specifications and model
disturbances have to be introduced in the generalised plant. The block diagram of the complete
design model is shown in Fig. 6, where z are the controlled outputs, y are the measures, w
are white noise disturbances and u the applied blade voltage. The goal is to minimise the
blade root shear force Fz. The shaping filters Wdist models the baseline loads, which are
now reintroduced as output disturbances of the system. Figure 7 shows the shaping filter
that models the baseline load of the tip blade acceleration; since the measures have been
previously filtered, only the 3/rev and the 4/rev harmonics of the baseline signals have to
be reproduced. The sensors noise is modelled with white noises having an amplitude of
0.1. The performance of the controller are defined by means of the frequency weighting
function Wper f , shown in the block diagram of Fig. 6, to impose the reduction of the blade
root load Fz harmonics; it is adjusted in the controller design phase to obtain the best
vibration reduction. The generalised plant model is thus described with the following linear
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Figure 6. Generalised plant.

periodic model:

xk+1 = Akxk + B1k wk + B2kVk,

zk = C1k xk + D11k wk + D12kVk, … (3.8)

yk = C2k xk + D21k wk

It can be noticed that there is no direct feed-through between the input voltage and the sensor
measures, i.e. matrix D22 = 0.
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3.2 H2 Periodic controller

This section describes the design of the optimal H2 controller that stabilises the system and
minimises the H2 norm of the transfer function between the plant disturbance and the desired
performance. Starting from the identified generalised plant model a dynamic output feedback
controller can be found by solving two Discrete Time Periodic Riccati Equations (DTPRE)(40)

corresponding to the filtering and the state feedback control problem:

Qk+1 = AkQkAT
k + B1k BT

1k − (
AkQkCT

2k
+ B1k DT

21k

)
+ (

D21k DT
21k

+ C2k QkCT
2k

)−1 (
AkQkCT

2k
+ B1k DT

21k

)
, … (3.9)

Pk = AT
k Pk+1Ak + CT

1k
C1k − (

AT
k Pk+1B2k + CT

1k
D12k

)
+ (

DT
12k

D12k + BT
2k

Pk+1B2k

)−1 (
AT

k Pk+1B2k + CT
1k

D12k

)
… (3.10)

A cyclic QZ decomposition method is used for the solution of Equations (3.9) and (3.10)(41,42).
Once the solutions of the Riccati equations have been obtained, the periodic control system
can be easily defined by(13,40):

ξk+1 = AC
k ξk + BC

k yk, … (3.11)

Vk = CC
k ξk + DC

k yk.

The controller matrices AC
k , BC

k , CC
k and DC

k can be computed by following the procedure
shown in the Appendix(14).

The controller has the same order of the generalised plant of Equation (3.8), and depends on
the selected frequency weighting functions and shaping filters for performance specification
and the disturbance modelling. A good compromise between control activity and loads
alleviation is found by using the performance frequency weighting function Wper f shown
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in Fig. 8. The resulting periodic controller is a 44th-order dynamic compensator with period
N = 28. The controller is designed for the first blade; the same controller is used for the other
blades after applying a time shift to its matrices to account for the system periodicity.

3.3 Periodic output feedback controller

The second approach analysed in this paper is a periodic static controller. The control law is a
direct feedback relationship of the form:

uk = Kkyk,

where the gain matrix Kk can either be periodic with period N or a constant matrix equal
for all sample times. The static output feedback control law is obtained by minimising the
quadratic performance index:

J = E

[ ∞∑
k=0

(
zT

k Qkzk + uT
k Rkuk

)]
, … (3.12)

where Qk and Rk are symmetric periodic user defined weighting matrices. No closed-form
solutions can be found to this problem. Its solution must be found by resorting to a numerical
optimisation procedure. The problem can be re-formulated as(43):

J(K) = tr(σPG), … (3.13)

∇KJ(K) = 2
(
RKC2 + BT

2 σPA
)
SCT

2 , … (3.14)

where the gradient of the cost function is provided as well, since many optimisation algorithms
require it. The script notation X indicates the block diagonal matrix X = diag (X1, . . . , XN )

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/aer.2016.80
Downloaded from https:/www.cambridge.org/core. Open University Library, on 09 Feb 2017 at 07:26:01, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/aer.2016.80
https:/www.cambridge.org/core


Brillante ET AL 1775Periodic controllers for vibration reduction...

related to the cyclic sequence of the periodic matrix Xk; the notation σX denotes the K-cyclic
shift σX = diag (X2, . . . , XN, X1). Matrices P and S satisfy the Discrete Periodic Lyapunov
Equations (DPLEs):

P = AT
σPA + Q … (3.15)

and

σS = ASAT + G, … (3.16)

respectively, where A = A + B2KC2 is the closed-loop matrix and Q = Q + CT
2 KTRKC2.

Algorithms for the solution of DPLEs are described by Varga(44) and Varga and Pieters(43).
Matrix G is defined as G = diag (0, . . . , 0, X0), where X0 represents the influence of initial
conditions and disturbances on the state dynamics defined as X0 = E

[
x0xT

0

]
. In the closed-

loop system, the perturbed initial conditions are:

x0 = x0 + (B1N + B2N KND21N ) w … (3.17)

Assuming null cross-correlation between the initial conditions x0 and the disturbances w, i.e.
E

[
x0wT

] = 0, the matrix X0 is given by:

X0 = E
[
x0xT

0

] + B1N E
[
wwT ]

BT
1N

+ B2N KND21N E
[
wwT ]

BT
1N

+ B1N E
[
wwT ]

DT
21N

KT
NBT

2N
+ B2N KND21N E

[
wwT ]

DT
21N

KT
NBT

2N
, … (3.18)

where the variance matrices are approximated as identity matrices.
A constant (1 × 6) static gain matrix K is chosen for the control law. Since the dynamic

model of the blade is already stable, the initial solution for the optimisation procedure can
be assumed as the null matrix. The performance specification has been adapted to achieve
satisfactory results, resulting in a decrease of the weight effect on the 4/rev harmonic;
the hand-tuned frequency weighting function Wper f , shown in Fig. 9, is similar to the H2

controller weighting function of Fig. 8. The performance weighting matrix Qk of the cost
function J is the identity matrix, because the performance specifications have been taken
into account by Wper f , and is kept constant for the whole period. The weight matrix Rk, that
prescribes further limitation for the control signal, is tuned until satisfactory loads reduction
is achieved. In this example, it has a value of 5,000. The design of this controller is faster than
that of the H2 one because of the smaller number of parameters involved in the optimisation
and because the solution of the two DPLEs is less demanding than the solution of the
DTPREs(42).

4.0 SIMULATION RESULTS
4.1 Closed-loop analysis on the design model

The performance of the periodic controllers, designed on the multi-body rotor model with
low-fidelity aerodynamics, are shown at μ = 0.23. The periodic controllers are implemented
in Simulink environment using S-functions. Rate-transition blocks are used before and after
the controller because of the different sample times between the multi-body simulation and
the periodic controller.
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Figure 9. (Colour online) POF Control performance weight.

The vibration reduction achieved by the periodic controllers are summarised in Fig. 10.
Although a significant passive load reduction is obtained by simply replacing the Bo 105
blades with the piezoelectric ones, both controllers allow to further alleviate the hub loads. The
H2 controller reduces the 4/rev harmonic of the hub force and moments FZ, MX and MY by
24%, 60% and 86%, respectively. The static output feedback controller achieve a reduction of
43%, 65% and 58%. Both solutions are satisfactory, and their performances are comparable.
The H2 controller has a better capability to reduce the moment MY , while the direct output
feedback approach better alleviates FZ. On the average, the simpler static output feedback
controller can be a valid substitute of the H2 controller dynamic compensator, despite its
faster algorithm and fewer design parameters. Note also that harmonics higher than the 4/rev
are only marginally excited.

The voltage applied on the first blade is shown in Fig. 11. The control signal is a sequence
of steps because of the controller sampling time. The control effort remains quite low and
does not exceed 80 V in both simulations. Note also that the control voltage computed by the
static output feedback control has a lower-frequency content than that of the H2 dynamic
compensator; this may lead to better robustness properties, since it does not excite high-
frequency harmonics that may not have been considered in the controller design phase.

4.2 Controller robustness validation

In this section, the periodic controllers designed using the simple aerodynamic model are
tested with the model coupled with the free-wake code. Figure 12 shows the computed rotor
wake and the non-dimensional inflow for the baseline condition. Dealing with the time-
marching wake of the tip vortexes, it is possible to model the blade vortex interaction and
to have a good approximation of the induced velocity of the rotor. This validation model is a
useful test-bed for robustness validation because the dynamics of the blades is different, since
the swashplate setting is changed to reach the same trim configuration of the previous model.
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Figure 10. (Colour online) Vibrations reduction on the low-fidelity model at μ = 0.23.

Furthermore, the induced velocity, that is better approximated, increases the harmonic content
of the aerodynamic loads. In fact, the baseline loads of Fig. 13, estimated with the free-wake
model, are 1 order of magnitude higher than those of Fig. 10, that were estimated with the
simple inflow model.
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(a) Rotor wake. (b) Non-dimensional inflow at azimuth ψ = 0◦.

Figure 12. (Colour online) Free-wake aerodynamics (baseline condition at μ = 0.23).

Even if the improved aerodynamic model introduces new dynamics and raises the hub
loads, none of the two controllers destabilise the rotor system, and they both achieve a
good reduction of the loads. Both controllers reduce by more than 75% the moment MX

of Fig. 13(b). The static output feedback controller seems to be more robust with respect to
the force FZ of Fig. 13(b), and allows a larger reduction than that of the H2 controller. This
behaviour could be explained by the fact that the H2 control leads to an augmented periodic
state-space dynamic system with many controller parameters to be designed and additional
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Figure 13. (Colour online) Validation of the controllers on the free-wake model
using the piezoelectric blade.
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Figure 14. (Colour online) Applied voltage on blade 1 in the validation phase, μ = 0.23, free wake.

dynamics in the closed-loop system. On the contrary, the direct output feedback control law
is based on a simple gain matrix that is kept constant throughout the period of the system.

Figure 14 shows the applied control voltage. The control activity is significantly higher than
that of Fig. 11 because of the higher loads; still, it remains bounded and acceptable, since it is
not higher than 800 V. This somewhat high voltage for control purposes may be a problem for
crew safety. It is however within the range of what can be found in the literature. For example,
in Ref. 2 the active twist blades are excited with an amplitude of 1,000 V to assess vibrations
reduction capabilities, while in Ref. 45 a voltage of ±500 V is applied for blade de-icing.

5.0 CONCLUSIONS
A multi-body numerical model of the Bo 105 main rotor is modified by adding actively twisted
blades and used to design and implement individual blade control for hub vibration reduction
relying on the periodic control theory. After identifying a periodic linearised model of the
blade response, both the dynamic compensator arising from the H2 periodic control theory
and the periodic static output feedback controller, which minimise the 3/rev and the 4/rev
harmonics of the blade root shear force, have been designed and tested. The closed-loop
simulations are carried out by coupling MBDyn and Simulink. The controllers are validated
on a more sophisticated free-wake aerodynamic model.

The design model shows a significant vibratory loads reduction with a small control effort,
especially for the two hub moments MX and MY. Furthermore, the performance of the two
periodic controller appears to be similar. This means that the direct periodic output feedback,
which involves fewer design parameters and has a faster design algorithm, can be a valid
substitute of the optimal H2 approach. Moreover, using only a gain matrix in the control law
would allow covering the entire flight envelope by simply interpolating, with a gain scheduling
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technique, the gain matrices. It would thus be possible to avoid the problems that could arise
when interpolating state-space models(46,47).

The validation model, with the free-wake aerodynamic code, shows that taking into account
the periodicity of the rotor in forward flight leads to robust controllers even if model
uncertainties are not considered in the design phase. In fact, there is no spill-over, and both of
the controllers manage to reduce vibratory loads with satisfactory performance. These results
seems promising for a practical implementation of such controllers.

It must be noted, however, that the robustness of these periodic controllers still has to be
thoroughly investigated for a large number of trim configurations. The effectiveness of the
envisioned static output feedback gain scheduling has also to be assessed.

A.0 APPENDIX
Controller Matrices Reconstruction

The controller matrices AC
k , BC

k , CC
k and DC

k of Equation (3.11) can be computed by following
the procedure outlined in(13) and reported here for completeness. It can be derived by the
filtering and control theory in H2 described in(40) by combining the observer and the full
information state feedback control.

After solving the two periodic Riccati Equations (3.9) and (3.10), the sought matrices are
given by:

AC
k = Ak − LkC2k + B2k Kk − B2k LO

k C2k , … (A.1)

BC
k = Lk + B2k LO

k , … (A.2)

CC
k = Kk − LO

k C2k , … (A.3)

DC
k = LO

k , … (A.4)

where

Lk = (
AkQkCT

2k
+ B1k DT

21k

) (
C2k QkCT

2k
+ D21k DT

21k

)−1
, … (A.5)

LO
k =

(
KkQkCT

2k
+ WkDT

21k

) (
C2k QkCT

2k
+ D21k DT

21k

)−1
, … (A.6)

Kk = −
(

BT
2k

Pk+1B2k + DT
12k

D12k

)−1 (
BT

2k
Pk+1Ak + DT

12k
C1k

)
… (A.7)

and

Wk = − (
BT

2k
Pk+1B2k + DT

12k
D12k

)−1 (
BT

2k
Pk+1B1k + DT

12k
D11k

)
. … (A.8)

Should matrix D22k be non-null, i.e. should direct feed-through be present, then the matrices
would have to be modified into(48):

ÃC
k = AC

k − BC
k D22k T−1

k CC
k , … (A.9)

B̃C
k = BC

k − BC
k D22k T−1

k DC
k , … (A.10)
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C̃C
k = T−1

k CC
k , … (A.11)

D̃C
k = T−1

k DC
k , … (A.12)

where

Tk = DC
k D22k + I … (A.13)

and I is the identity matrix.
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