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Expressive touch: control of robot emotional expression by touch

Uriel Martinez-Hernandez and Tony J. Prescott

Abstract— In this paper, we present a work on control
of robot emotional expression using touch sensing. A tactile
Bayesian framework is proposed for recognition of different
types of touch gestures. We include a sequential analysis method
that, based on the accumulation of evidence from tactile interac-
tion, allows to achieve accurate results for recognition of touch.
Input data to our method is obtained from touch sensing, which
is an important modality for social robotics. Here, emotion
in the robot platform are represented by facial expressions,
that are handled by a developed control architecture. We
validate our method with experiments on tactile interaction
in simulated and real robot environments. Results demonstrate
that our proposed method is suitable and accurate for control
of robot emotions through interaction with humans using touch
sensing. Furthermore, it is demonstrated the potential that
touch provides as a non-verbal communication channel for the
development of social robots capable to interact with humans.

I. INTRODUCTION

Integration of robots in society, which represents an ex-

citing and challenging goal for scientists and engineers,

requires of reliable methods for control, perception, learning

and interaction with humans. An important role in human

communication and interaction is played by emotions, which

coupled to social context, determine behavioural reaction

to social events, internal needs and goals [1], [2]. This

drives the necessity to integrate emotional representation

and control methods in robotic platform to achieve socially

interactive robots that mimic human social characteristics [3].

Inspiration from psychology, neuroscience and ethology has

motivated some works on the investigation and design of

software architectures, focusing on vision and speech stimuli,

for control of artificial emotions [4], [5], [6].

Touch plays an important role to build a physical rep-

resentation of the external world, identify and manipulate

objects. This sensing modality also serves as a non-verbal

communication channel in human interaction to feel and

mediate social perceptions in various ways [7], [8]. Recently,

it has been observed that perception of touch sensing allows

humans to accurately recognise intended emotions [9]. For

these reasons, rapid advances in tactile sensor technology

have been observed in the last decade, opening a wide

repertoire for applications for robot touch [10]. Surprisingly,

only few works have focused their research on touch for

control of robot emotions using facial expressions, discrete

tactile switches and emotional states approaches [11], [12].

We propose a probabilistic framework for control of

robot emotions using touch as stimulus during a human-
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Fig. 1. Robot emotion control based on perception of human touch.
Tactile data is obtained from the artificial skin of the iCub humanoid robot.
Emotions are represented by facial expressions controlled by human touch.

robot interaction process. Here, robot emotions are based

on facial expressions with a discrete categories approach that

implements happiness, shyness, disgust and anger, which are

drawn from the set of emotions identified from patterns of

neural responses [13], [14]. Facial expressions have demon-

strated to provide a good interface to display emotions in

robotic platforms [15], [16], [17].

A Bayesian approach was developed together with a

sequential analysis method for perception of touch. This

method has been used in previous works for study of

perception with vision, audio and touch sensing modalities

providing accurate recognition of human emotion and object

discrimination [18], [19], [20]. Our method gives the robot

the capability to accumulate tactile evidence and make deci-

sions once a belief threshold is exceeded.

We developed a control architecture for emotion control

based on touch and activation of facial expressions in the

robotic platform. This architecture composed of five process-

ing layers named sensation, perception, decision, action and

world, allows humans to change the emotional state of the

robot based on real-time tactile interaction.

Validation of our method was made with experiments in

simulated and real worlds. The experiment was to perceive

a specific type of touch (hard, soft, caress and pinch), based

on human-robot tactile interaction, and activate the appro-

priate emotional expression in the iCub humanoid robot.

Furthermore, we investigated how the use of individual and

combination of features extracted from tactile data affect the

accuracy and reaction time of perception of touch.

Results from this work show that our tactile Bayesian

approach allows robots to perceive various types of touch

and control its emotional expressions. Overall, we provide an

accurate method using touch as a non-verbal communication

channel for control of emotions in social robotics.



Fig. 2. Tactile sensory system of the iCub humanoid robot composed of
artificial skin in its torso, upper arm, forearm, palm and fingertips.

A. Robotic platform

We chose the iCub humanoid robot platform for our

investigation on human-robot interaction for emotion control.

The iCub robot is an open platform designed for research

on cognitive development, control and human-robot inter-

action [21]. This robotic platform with a similar size of a

four year old child has 53 degrees of freedom. Its arms and

hands allow dexterous manipulations and interaction with its

surrounding environment, whilst its head and eyes are fully

articulated. Multiple sensory capabilities integrated in the

iCub robot, e.g., vision, touch and hearing, allow it to receive

rich sensory information from the environment in different

modalities [22]. The open robotic platform is also capable to

produce facial expressions through arrays of LEDs (Light-

Emitting Diodes) located in its face, which allow the robot

to show emotional states important to reach a more natural

behaviour and interaction with humans.

In this work, we focus on perception and emotion control

using data from tactile human-robot interaction. The iCub

humanoid has one of the most advanced tactile sensory tech-

nologies, which covering its torso, arms, palms and fingers,

offers a great opportunity for investigation on perception,

control and interaction in robotics (Figure 2). The artificial

skin of the iCub humanoid robot is based on a distributed

pressure sensor built with a capacitive technology. The sen-

sors are composed of flexible PCBs (Printed Circuit Board),

where each one provides 12 measurements of capacitance

that correspond to 12 round pads known as taxels. Tactile

measurements are locally converted from capacitance to

digital values with 8 bit resolution and sent to the main

computer located in the head of the robot.

II. METHODS

A. Data collection

For the analysis and development of our method on

perception of touch we collected tactile data from the iCub

humanoid robot. The data collection was based on the

interaction of humans with the robot by applying different

types of touch on its artificial skin. The artificial skin on the

left upper arm of the robot was arbitrarily chosen for data

collection. The types of touch used by humans were labelled

as hard, soft, caress and pinch. The four types of touch used

for tactile data collection and their visualisation with the Skin

GUI (Graphical User Interface) application provided in the

iCub software repository are shown in Figure 3.

We collected a total of ten tactile datasets from the

artificial skin of the iCub humanoid robot; five datasets

collected from the left upper arm were used for training our

method, while data from different areas of the tactile sensory

system, e.g., arms and torso were used to collect five datasets

for testing in a simulated world. Samples of data collected

for each type of touch are shown in Figure 3.

The data collected is preprocessed before using it as input

of our modules. First, we normalised between 0 and 1 the

data from all the types of touch. Next, the data is separated

to obtain individual contacts, which are used for training our

methods for perception of touch described in Section II-B.

B. Bayesian framework

Our work is focused on emotion control in robots based

on touch. Integration of touch in robotics requires the devel-

opment of methods for perception and understanding of the

changing environment in the presence of uncertainty.

We propose a probabilistic method with a Bayesian ap-

proach that uses past and present observations from the

environment. Tactile data from human-robot interaction is

then used as input for recognition of touch and control

of robot emotion. Four types of touch defined as hard,

soft, caress and pinch (see Figure 3) are used in this work
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Fig. 3. (top) Activation of tactile sensors for each type of touch applied by a human on the skin of the iCub humanoid and defined as hard, soft, caress

and pinch. (bottom) Data collected from each types of touch and characterised by pressure and duration features.



for recognition of touch, which are characterised by their

pressure and duration features.

The proposed probabilistic approach for touch recognition

implements the Bayes’ rule which combines prior proba-

bilities and the likelihoods obtained from a measurement

model. Our approach also uses a sequential analysis method

that estimates the posterior probability based on recursively

updating of observations. The benefits offered by our ap-

proach have been studied for classification of various stimuli

in robotics [20], [23], [24].

For our method we used tactile observations, composed of

pressure and duration features (x = {pressure, duration}), to

estimate the most probable type of contact (C ={hard, soft,

caress, pinch}) applied on the tactile sensors of the robotic

platform. The Bayes’ rule used in our approach recursively

updates the posterior probability P (ck|xt) by the product of

the prior probability P (ck|xt−1) and likelihood P (xt|ck).
These values are normalised by P (xt|xt−1) to obtained

probabilities that sum to 1. This process is defined as follows:

P (ck|xt) =
P (xt|ck)P (ck|xt−1)

P (xt|xt−1)
(1)

where ck ∈ C is the perceptual class to be estimated with

k = 1, 2, . . . ,K and xt observations over time t.

Prior: an initial prior probability P (ck) is assumed as

uniform for all the classes of touch C, where x0 are the

observations at time t = 0 and K = 4 is the number of

classes used in the task.

P (ck) = P (ck|x0) =
1

K
(2)

Likelihood: the measurement model to estimate the likeli-

hood is based on a multivariate normal distribution of a 2-

dimensional vector xt at time t with pressure and duration

features as follows:

P (xk|ck) =
1

2π|Σ|1/2
exp

(

−
1

2
(xt, µ)

TΣ−1(xt, µ)
)

(3)

where the multivariate normal distribution is characterised by

the mean vector µ and covariance Σ values from pressure

and duration features from tactile contact. Figure 4 shows

the likelihood for each type of contact.

The product from the prior probability and likelihood

are normalised by the marginal probabilities conditioned on

previous tactile interactions as follows:

P (xt|xt−1) =
K
∑

k=1

P (xt|ck)P (ck|xt−1) (4)

Decision making: sequential analysis allows to accumulate

evidence and make a decision once one of the hypotheses

from the perceived touch exceeds a belief threshold. This

method provides a decision making approach inspired by

the competing accumulators model proposed from studies in

neuroscience and psychology [25]. Thus, the perceptual class

is obtained using the maximum a posteriori (MAP) estimate

as follows:
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Fig. 4. Likelihood for each type of touch based on multivariate normal
distributions composed of duration and pressure features.

if any P (ck|xt) > θthreshold then

ĉ = argmax
ck

P (ck|xt)
(5)

where ĉ is the estimated class of touch at time t. The

belief threshold θthreshold allows to adjust the confidence

level, which affects the required amount of accumulation of

evidence and the accuracy of the decision making process.

To observe the effects on the perception accuracy, we defined

the belief threshold to the set of values {0.0, 0.05, . . . , 0.99}.

Thus, the estimated class of touch ĉ is used to control

the emotions, based on facial expressions, of the iCub

humanoid robot (see Section II-C). The flowchart of the

process described in this section for recognition of touch that

implements our probabilistic approach is shown in Figure 5.

C. Robot emotion control

We developed an architecture that integrates our proba-

bilistic approach for the control of emotions based on touch

and activation of facial expressions with the iCub humanoid

robot. This architecture, that receives tactile data and controls

facial expressions, is composed of sensation, perception,

decision and action layers as shown in Figure 5.

Collection and preparation of tactile data as described in

Section II-A are performed in the sensation layer. Our proba-

bilistic method described in Section II-B is implemented on

the modules located in the perception layer. The decision-

making process from the posterior probability distribution

is performed in the decision layer. Finally, the emotion

controller and memory module located in the action layer

are responsible for representing emotions, based on facial

expressions, and storing the set of emotions observed along

the interaction of a human with the iCub humanoid robot.

The emotion controller module receives the decision made

from our probabilistic method, which activates specific pat-

terns of LEDs (Light-Emitter Diodes) to show the corre-

sponding facial expression. In this work, the set of facial

expressions is defined by Fexpression, and implemented as

follows:



Semotional = Fexpression(ĉ) (6)

where ĉ is the output from the decision layer and Semotional

is the emotion selected and sent to the iCub humanoid

robot for activation of the facial expression. Examples of

facial expressions activated from the perceived touch during

human-robot interaction are shown in Figure 6.

All the modules in the control architecture were developed

in C/C++ language, whilst communication and synchronisa-

tion of modules were handled with the YARP (Yet Another

Robot Platform) library developed for robust control of

robotic systems.

III. RESULTS

A. Simulated robot touch

Our first experiment is the analysis of perception accuracy

for recognition of touch in a simulated environment. For

this task we used the five datasets for training and five

datasets for testing previously collected in Section II-A. The

task was to randomly drawn different types of touch from

the testing datasets with 5,000 iterations for each belief

threshold in {0.0, 0.05, . . . , 0.99}, and used them as input

in our probabilistic approach for perception of touch.

First, we analysed the performance in accuracy and reac-

tion time for perception of touch using individual duration

and pressure features, to compare them with the perfor-

mance achieved by combination of both features. Results

from these experiments were averaged over all trials and

for each belief threshold. Figure 7a shows the results for

perception accuracy for each belief threshold. Red colour

curve shows that the duration feature was not able to provide

accurate touch perception, obtaining a maximum accuracy

of 53.15% for a belief threshold of 0.99. Conversely, the

pressure feature shows an improvement in perception of

touch with a maximum accuracy of 87.20% for a belief

threshold of 0.99 (purple colour curve). The combination of

both duration and pressure features allowed to achieve better

perception of touch over the use of individual features (green

colour curve). This result shows an increment in perception

accuracy for increasing belief thresholds, obtaining a 95%

accuracy for a belief threshold of 0.99. We observed that

for the cases of individual pressure and combination of

features, the perception accuracy was gradually improved for

increasing values of belief threshold.

Results in Figure 7b shows the reaction time required to

make a decision for each belief threshold. On the one hand,

individual duration and pressure features presented a similar

behaviour (red and purple curves), where both features

required a mean of 6 tactile contacts to make a decision with

a belief threshold of 0.99. On the other hand, combination

of both duration and pressure features interestingly improved

the performance of reaction time, requiring only a mean of

4 contacts from the human-robot interaction to achieve the

highest perception accuracy using a belief threshold of 0.99.

These experiments show that our proposed method not only

allows to perform accurate perception of touch, but also to
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Fig. 5. Architecture for control of robot emotions. Five layers compose
the proposed architecture: Sensation, Perception, Decision, Action and
World. Tactile data is acquired and preprocessed in the Sensation layer.
Our probabilistic method for perception of touch is implemented in the
Perception layer. Decision layer is responsible for the decision making
process once a hypothesis has exceeded the belief threshold. Activation of
appropriate facial expressions in the robot is performed in the Action layer.
World layer contains the human-robot tactile interaction process.

reduce the number of tactile contacts to make a decision.

Both perception accuracy and reaction time are plotted in

Figure 7c for comparison of performances.

The confusion matrices for the duration feature, pressure

feature and the combination of them, show the accuracy for

recognition of each type of touch in a simulated environ-

ment (Figures 8a,b,c). The confusion matrix with duration

feature results shows that caress and pinch were successfully

recognised (100% and 99.6%), whilst for hard and soft the

recognition accuracy was very low (12% and 0.9%). The

confusion matrix with pressure feature results shows the

achievement of accurate recognition of hard, caress and

pinch (99.3%, 81.73% and 95.5%), and a less accurate

recognition of soft touch (72.2%). Finally, the confusion

matrix with results from the combination of features, clearly

presents the improvement for recognition of the four types of

tactile contact (hard, soft, caress, pinch), achieving high ac-

curate perception of touch (99.4%, 83%, 99.9% and 97.6%).

Fig. 6. Emotional expressions based on the activation patterns of eyebrows,
eyelids and mouth observed from the experiment of human-robot tactile
interaction in real environment.



Results not only show that our probabilistic method allows

the accurate recognition of touch from the skin of the iCub

robot, but also the improvement of perception accuracy and

reaction time based on the accumulation of evidence through

an iterative human-robot tactile interaction.

B. Real robot touch

For the second experiment, we performed recognition of

touch and control of emotions using the iCub humanoid

robot with human-robot interaction. For training our method,

we used the training datasets previously collected from the

robotic platform, whilst for testing, we collected tactile data

in real-time with human participants touching the artificial

skin of the iCub humanoid robot. In this experiment we used

the belief thresholds of 0.3 and 0.9.

The scenario for this experiment was the following: First,

the iCub humanoid robot started the task with a flat prior

knowledge about perception of touch from its skin, showing
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Fig. 7. (a) Perception accuracy versus belief threshold. (b) Reaction time
versus belief threshold. (c) Perception accuracy versus reaction time. These
results show the improvement in perception accuracy and reaction time for
the combination of features and increasing values of belied thresholds.

a neutral facial expression. Second, the robot waited for

a tactile interaction by a human in any part of its tactile

sensory systems (torso, upper arms, forearms). Next, once

the human touched the robot, it performed a data collection

and perception process based on our probabilistic approach.

Then, if for the current touch interaction the belief threshold

was not exceeded by the posterior probability, the robot

showed the same facial expression, which means that its

current emotional state did not change. Thus, the current

posterior probability is used to update the prior probability

for the next tactile interaction to allow the accumulation of

evidence along the human-robot interaction process. Oth-

erwise, once the posterior probability exceeded the belief

threshold, a decision was made to select the corresponding

emotional state from the set of facial expressions. The

complete interaction task was performed 20 times, to allow

the robot to display different emotions by the application of

different types of touch.

Figures 8d and 8e show the recognition accuracy achieved

for each type of touch and for both 0.3 and 0.9 belief thresh-

olds using real data from the iCub robot. For this experiment

we used combination of both duration and pressure features

extracted from tactile data. The confusion matrices were built

with the decisions made for each type of touch iteratively

applied by the human on the skin of the robot. On the one

hand, for the belief threshold of 0.3 (Figure 8d), the robot

was able to achieve accurate results for soft and caress, whilst

a low recognition accuracy was obtained for hard and pinch.

This confusion matrix shows a total accuracy of 70%. On

the other hand, for the belief threshold of 0.9 (Figure 8e),

our probabilistic method allowed the robot to accumulate

more evidence from the human-robot interaction, reducing

uncertainty and making reliable decisions to improve the

perception of touch for hard, soft, caress and pinch. The

confusion matrix shows that the robot was able to achieve a

total accuracy of 89.50%. The output from the recognition

process was used to control different emotions in the iCub

humanoid robot. The final control and activation of robot

emotions were based on the emotion controller module

included in our architecture presented in Figure 5. Thus,

the iCub humanoid robot was able to display happiness,

shyness, disgust and anger emotions in real-time, based on

the perceived human touch as observed in Figure 6.

(a) (b) (c) (d) (e)

Fig. 8. Confusion matrices for perception of touch in simulated and real robot touch. (a,b,c) Confusion matrices from simulated robot touch with perception
results for individual duration feature, pressure feature and combination of them achieving an accuracy of 53.15%, 87.20% and 95% for a belief threshold
of 0.99. (d,e) Confusion matrices from real robot touch using the combination of features, which achieved a perception accuracy of 70% and 89.50% for
belief thresholds of 0.3 and 0.9 respectively.



Overall, the results from the experiments demonstrate that

our probabilistic method is suitable for accurate perception

of touch and control of emotional expressions in robotics

with a human-robot interaction process.

IV. CONCLUSION

We presented a method for emotion control in robotics

though a human-robot tactile interaction. Robot emotions

were represented by facial expressions with the iCub hu-

manoid robot. Our method was able to accurately recognise

different types of touch, applied by humans on the skin of a

robotic platform, for control of robot emotion in real-time.

A Bayesian methods was developed for control of robot

emotional expression based on the perception of touch.

Our approach, together with a sequential analysis method,

provided accurate decisions. The robot was able to perceive

touch from humans by the accumulation of evidence through

a human-robot tactile interaction process. Accurate percep-

tion permitted to develop a robust control of robot emotional

expressions. Emotions in the iCub robot were represented by

facial expressions such as happiness, shyness, disgust and

anger controlled by different types of perceived touch such

as hard, soft, caress and pinch.

Our method was validated in simulated and real robot

touch environments. For the simulated robot touch we used

the testing and training datasets from the data collection pro-

cess. The simulated robot touch experiment was performed

using individual and combination of tactile features for a set

of belief thresholds. We achieved a maximum accuracy of

95% and mean reaction time of 4 tactile contacts with a belief

threshold of 0.99 and combination of tactile features. These

results outperformed the 53.15% and 87.20% accuracy, and

the mean reaction time of 6 tactile contacts achieved for the

use of individual duration and pressure features.

For the validation with real robot touch, a human-robot

tactile interaction was performed by human participants and

the iCub humanoid robot. Similar to the simulated robot

touch, we trained our method using the training datasets from

the data collection process. The experiment was repeated 20

times for each type of touch applied to the skin of the robot.

For each decision made by the robot, its emotional state

was controlled according to the perceived touch. The mean

perception accuracy achieved from all the trials was 70% and

89.50% for belief threshold of 0.3 and 0.9 respectively. The

results also showed an accurate control of robot emotions,

based on the activation and control of eyebrows, eyelids and

mouth in the robotic platform.

Touch plays an important role as a non-verbal channel

for human-robot interaction. This sensing modality is also

essential for the control of emotions and the development

of intelligent social robots. For future work, we plan to

investigate on the integration of multiple sensing modalities

such as vision, hearing and touch, for the control of robot

emotions using data from the environment in various formats

and achieve robust and intelligent systems for society.
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[12] L. Cañamero and J. Fredslund, “I show you how i like you-can you

read it in my face?[robotics],” Systems, Man and Cybernetics, Part

A: Systems and Humans, IEEE Transactions on, vol. 31, no. 5, pp.
454–459, 2001.

[13] T. Dalgleish and M. J. Power, Handbook of cognition and emotion.
Wiley Online Library, 1999.

[14] A. R. Damasio, The feeling of what happens: Body, emotion and the

making of consciousness. Random House, 2000.
[15] C. Smith and H. Scott, “A componential approach to the meaning

of facial expressions. in russell, ja & fernández-dols, jm (eds.) the
psychology of facial expression,” 1997.

[16] M. Scheeff, J. Pinto, K. Rahardja, S. Snibbe, and R. Tow, “Experiences
with sparky, a social robot,” in Socially Intelligent Agents. Springer,
2002, pp. 173–180.

[17] C. L. Breazeal, Designing sociable robots. MIT press, 2004.
[18] J. A. Prado, C. Simplı́cio, N. F. Lori, and J. Dias, “Visuo-auditory

multimodal emotional structure to improve human-robot-interaction,”
International journal of social robotics, vol. 4, no. 1, pp. 29–51, 2012.

[19] U. Martinez-Hernandez, T. J. Dodd, L. Natale, G. Metta, T. J. Prescott,
and N. F. Lepora, “Active contour following to explore object shape
with robot touch,” in World Haptics Conference (WHC), 2013. IEEE,
2013, pp. 341–346.

[20] U. Martinez-Hernandez, N. F. Lepora, and T. J. Prescott, “Active haptic
shape recognition by intrinsic motivation with a robot hand,” in World

Haptics Conference (WHC), 2015 IEEE. IEEE, 2015, pp. 299–304.
[21] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga,

C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor et al.,
“The icub humanoid robot: An open-systems platform for research
in cognitive development,” Neural Networks, vol. 23, no. 8, pp. 1125–
1134, 2010.

[22] U. Martinez-Hernandez, L. W. Boorman, and T. J. Prescott, “Telep-
resence: Immersion with the icub humanoid robot and the oculus rift,”
in Biomimetic and Biohybrid Systems. Springer, 2015, pp. 461–464.

[23] U. Martinez-Hernandez, T. Dodd, T. J. Prescott, and N. F. Lepora,
“Active bayesian perception for angle and position discrimination with
a biomimetic fingertip,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 5968–
5973.

[24] N. F. Lepora, U. Martinez-Hernandez, M. Evans, L. Natale, G. Metta,
and T. J. Prescott, “Tactile superresolution and biomimetic hyperacu-
ity,” Robotics, IEEE Transactions on, vol. 31, no. 3, pp. 605–618,
2015.

[25] R. Bogacz, “Optimal decision-making theories: linking neurobiology
with behaviour,” Trends in cognitive sciences, vol. 11, no. 3, pp. 118–
125, 2007.


