
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, The Francis CrickFrank Uhlmann

Institute UK

, Institute of BiochemistryYves Barral

Switzerland

Discuss this article

 (0)Comments

2

1

REVIEW

 Novel insights into mitotic chromosome condensation [version
1; referees: 2 approved]
Ewa Piskadlo, Raquel A. Oliveira
Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156 , Portugal

Abstract
The fidelity of mitosis is essential for life, and successful completion of this
process relies on drastic changes in chromosome organization at the onset of
nuclear division. The mechanisms that govern chromosome compaction at
every cell division cycle are still far from full comprehension, yet recent studies
provide novel insights into this problem, challenging classical views on mitotic
chromosome assembly. Here, we briefly introduce various models for
chromosome assembly and known factors involved in the condensation
process (e.g. condensin complexes and topoisomerase II). We will then focus
on a few selected studies that have recently brought novel insights into the
mysterious way chromosomes are condensed during nuclear division.
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Introduction: why do chromosomes condense during 
mitosis?
Mitosis was first described in the 19th century and has capti-
vated generations of scientists ever since. This fascinating process 
comprises the assembly of interphase chromatin into individual  
chromosomes and subsequently the equal separation of the genetic 
material between two daughter cells. Mitosis is undoubtedly 
an extremely complex operation that needs to be conducted and 
controlled precisely under the penalty of dismantling genome 
integrity. One of the key steps in mitosis is chromosome con-
densation – the compaction of the chromatin into well-defined 
rod-shaped structures (for other recent reviews, see 1–3). This 
process is cytologically very evident, yet both the internal struc-
ture of the mitotic chromosomes and the mechanisms by which 
this transformation is achieved remain quite elusive. To ensure that 
cell division is feasible within the cell space, vertebrate cells 
compact their DNA around 2–3 times more than in interphase, as 
estimated by chromatin volume measurements4,5 and Förster  
resonance energy transfer (FRET)-based assays between histones6. 
Spatial compaction, however, is not the only important outcome of 
condensation. The structural reorganization during condensation 
leads to the separation of the identical sister chromatids from each 
other (known as sister chromatid resolution). Several topological 
constraints arise throughout interphase (most notably during DNA 
replication) that result in the entanglement of the two DNA mol-
ecules. The resolution of such intertwines (i.e. individualization) is 

crucial for efficient and faithful chromosome segregation  
during mitosis. Condensation of chromatin into sturdy chro-
mosomes is also necessary to establish proper physical proper-
ties. Chromosomes must be stiff, resilient, and elastic enough to  
withstand forces coming from pulling microtubules and cytoplas-
mic drags during mitosis to prevent damage and breaks caused by  
external tensions.

Despite the utmost importance of chromosome condensation for 
the fidelity of mitosis, the molecular mechanisms that drive this 
process remain very unclear. Here we highlight recent findings 
regarding this process, discussed in the context of different models 
for mitotic chromosome condensation.

Models for mitotic chromosome architecture
Over the past few decades, detailed characterization of metaphase 
chromosomes, using different cytological approaches, has led to 
the proposal of several models for mitotic chromosome assembly 
(Figure 1).

Classical views on chromosome organization postulate that 
mitotic chromosomes result from chromatin fiber folding. DuPraw 
suggested that fiber folding occurs randomly, transversely, and 
longitudinally, with no intermediate levels of compaction7. However,  
mitotic chromosomes fold into a reproducible structure in every 
mitosis, at least to some extent. Mitotic chromosomes acquire a 

Figure 1. Schematic representation of current models for mitotic chromosome condensation. Adapted from Daban et al.21 
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reproducible length and display an invariable signature pattern of 
bands after staining with specific dyes, such as Giemsa. Moreo-
ver, specific DNA sequences occupy a reproducible position along 
the longitudinal and transverse axes of the chromosome8. Although 
some degree of randomness was observed within chromosomal 
domains9,10, chromosome assembly cannot be explained as a purely 
random process.

Alternatively, it has been suggested that metaphase chromo-
somes result from helical coiling events (helical-coiling model). 
The nucleo-histone fiber is proposed to be coiled up into a helix, 
which is hierarchically wound up into larger helices to achieve the 
compactness of the mitotic chromosome (Figure 1)11,12. This model 
has been widely accepted, as lower levels of chromatin organi-
zation were long postulated to result from hierarchical folding:  
wrapping of DNA around nucleosomes forms a 11 nm bead-on-
a-string structure that coils up into a 30 nm fiber. However, the  
existence of this 30 nm fiber in vivo is yet to be confirmed and has 
been recently highly debated13–15.

Using electron microscopy (EM) studies, Paulson and Laemmli16 
provided a novel view on chromosome organization. Upon histone 
removal, chromosomes revealed a scaffold or core that has 
the shape of intact chromosomes, surrounded by loops of  
chromatin attached to this central core17,18. These and subsequent 
studies led to the consolidation of the scaffold/radial-loop model, 
which argues that radial DNA loops extend out from a protein ele-
ment or scaffold positioned along the central axis of the chromatid.

In contrast to the scaffold model, analysis of the biophysical prop-
erties of mitotic chromosomes has challenged the idea that the 
continuity of mitotic chromosomes depends on its proteinaceous 
core. Taking advantage of the highly elastic behavior displayed by 
mitotic chromosomes, in vitro elasticity measurements revealed 
that the elastic response of mitotic chromosomes is lost after DNA 
digestion19. Mild protease treatment, in contrast, does not impair 
a reversible elastic response despite a progressively reduced force 
constant19,20. This led to the proposal of the chromatin-network 
model, in which chromatin itself is proposed to be the mechanical 
contiguous component of the mitotic chromosome.

More recent ideas for the internal folding of chromosomes sug-
gest that mitotic chromosomes are arranged into stacks of 6 nm 
layers21. Those layers would be perpendicular to the chromosome 
axis and contain around 1 Mb of consequent DNA. Such arrange-
ment of chromosomes has the advantage of explaining properties 
of G-bands and the geometry of chromosome translocations in a 
better way than other models.

Despite the differential contributions for chromatin/protein compo-
nents within chromosome organization, these models might not be 
mutually exclusive and stacks, coils, and radial loops may co-exist 
within a less ordered structure.

Known players of condensation
Despite the several unknowns on the precise molecular details of 
chromosome assembly, some key components are believed to be 
crucial for chromosome organization.

Condensins
Condensins are a conserved group of multi-subunit proteins  
(Figure 2a) fulfilling many roles in chromatin organization 
throughout the cell cycle, but their most prominent function is to 
ensure efficient chromosome segregation (reviewed in 22–24). 
They were first isolated from Xenopus egg extract, and immu-
nodepletion studies have suggested that this protein complex 
is required for proper chromosome condensation in vitro25,26.  
However, subsequent studies have challenged the view for con-
densin’s requirement in chromosome condensation, as chro-
mosomes do condense to a certain degree upon condensin’s  

Figure 2. Condensin complexes. A) Schematic representation 
of the structure of condensin complexes. In metazoans, there are 
two types of condensins, condensin I and condensin II. The SMC2/
SMC4 heterodimer is shared by both complexes, while the non-SMC 
subunits differ: CAP-D2, CAP-G, and CAP-H (Kleisin γ) for condensin 
I and CAP-D3, CAP-G2, and CAP-H2 (Kleisin β) for condensin II.  
B) Possible models for the condensins’ role in DNA compaction 
include DNA supercoiling, loop-holder, and topological linker.
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inactivation in several in vivo studies27–32. In addition to chromo-
some compaction, several studies revealed other roles for condensin 
in mitotic chromosome organization: maintenance of chromo-
somal structural integrity28,30,33 and resolution of topological DNA  
entanglements27,29–31,33. Recent studies, using novel protein inac-
tivation tools based on timely proteolytic cleavage of condensin 
complexes, revealed that condensin complexes (particularly  
condensin II) are indeed needed to support the structure of 
assembled meiotic chromosomes34. It should be noted that mei-
otic chromosomes are very different from their mitotic counter-
parts, as the mono-orientation of bivalents imposes pulling forces 
along the entire chromosome length (rather than simply at the  
pericentromeric regions). Thus, it remains to be addressed if  
condensins are required for chromosome condensation per se or 
simply to resist mechanical stress.

Importantly, it is yet to be determined how these different func-
tions on chromosome organization are brought about, if they result 
from differential activities of condensins on mitotic chromatin, or, 
alternatively, if a single condensin-driven reaction may account 
for all the reported phenotypes. In vitro studies revealed that 
condensins are able to introduce positive supercoils on circular 
DNAs35,36, which could account for chromosome compaction. Yet it 
is not clear if (and how) condensin supercoiling activity is required 
for in vivo chromosome condensation. Condensin subunits are 
also the major components of the chromosome scaffold18,37, and it 
has thus been proposed to hold chromatin loops at the central axial 
core of chromosomes. However, condensin I (but not condensin II)  
displays a highly dynamic association with mitotic chromosomes28,38,  
questioning the hypothesis that this complex is statically holding 
chromatin loops. Recent studies in budding yeast revealed that con-
densin complexes topologically embrace DNA molecules in vivo39, 
providing strong evidence that condensins may work as an intra-
chromosomal linker that brings together two distant segments of 
one sister chromatid and thereby promotes compaction. Further 
understanding on how condensin works on mitotic chromosomes 
is pivotal, not only to uncover the molecular mechanisms of these 
complexes but also to elucidate chromosome architecture itself.

Topoisomerase II
Topoisomerase II can introduce several changes in the topology 
of DNA molecules by driving both supercoiling and relaxing of 
the supercoils, and also the catenation and decatenation of DNA 
molecules40. Although some of these reactions can be brought 
about by topoisomerase I, only topoisomerase II can promote the 
resolution of catenated sister-DNA molecules. Topoisomerase II 
is able to decatenate intertwined DNAs by transiently cutting both 
strands of a DNA molecule, which are then resealed after passage 
through another DNA duplex (Figure 3). It is therefore essential 
for sister chromatid resolution and their efficient separation at the 
end of mitosis. Topoisomerase II is also a major component of the 
chromosome scaffold41, and it has long been debatable whether or 
not this enzyme promotes chromosome compaction in addition 
(or in parallel) to sister chromatid resolution.

Topoisomerase II was reported to be dispensable for chromosome  
condensation in some model organisms (Saccharomyces 
cerevisiae32, Xenopus laevis42, and human cells43). Nevertheless, 

other studies provide evidence that topoisomerase II is neces-
sary or at least contributes to establishing proper condensation 
and chromosome structure in Schizosaccharomyces pombe44,45,  
S. cerevisiae46, X. laevis47,48, Drosophila melanogaster49, chicken50, 
hamster51, or human52,53 cells. How exactly topoisomerase II  
could facilitate condensation, however, remains unclear.

Interplay between condensin I and topoisomerase II
Both condensin I and topoisomerase II localize to the central axis 
of mitotic chromosomes54,55 and both complexes have the ability to 
alter DNA topology. Thus, it has been speculated that these pro-
teins may cooperate (directly or indirectly) in establishing chro-
mosome compaction and organization. Condensin I was initially 
proposed to directly interact with topoisomerase II56, but later stud-
ies failed to provide evidence for a physical interaction between 
these proteins26,47,57. Nonetheless, depletion of condensins causes 
delocalization of topoisomerase II from the chromosome axis 
and decreases its decatenation activity54. Recent evidence further 

Figure 3. Topoisomerase II: DNA decatenation reaction driven  
by topoisomerase II. This enzyme cuts both strands of a DNA 
duplex and allows strand passage of a second duplex through 
the break. After strand passage, topoisomerase seals the break 
and releases both strands. It can thus promote the resolution of 
intertwines (catenations) between sister DNA molecules.
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supports the notion that during anaphase, topoisomerase is  
recruited to chromosome arms in a condensin-dependent manner58.

Importantly, topoisomerase II was shown to be particularly effi-
cient in decatenating (unlinking) supercoiled DNA molecules59. 
Given the condensins’ ability to introduce positive supercoiling, 
it has been proposed that the topology generated by condensin 
I could be attracting topoisomerase II in order to drive global  
decatenation59. This notion is further supported by studies that meas-
ure the efficiency of decatenation of circular mini-chromosomes  
in vivo, revealing that condensin promotes DNA decatenation57.

In contrast to the cooperation model, other studies support the 
idea that condensins and topoisomerase II may have antagonistic  
roles in chromosome assembly. Condensins were proposed to 
drive lateral compaction, while topoisomerase II was suggested to 
induce axial compaction50,60. The question of how condensins and 
topoisomerase II are able to cause directional compaction within 
separate sister chromatids without creating new links within indi-
vidual sister chromatids and tangling them together remains.

Kif4
Kif4 is a motor protein able to bind to mitotic chromosomes. Stud-
ies in vertebrate cells reveal that Kif4 contributes to the establish-
ment of a correct morphology and structure of chromosomes50,61. It 
is proposed to cooperate or work alongside condensin in shorten-
ing the lateral axis of chromosomes, possibly by creating loops of 
chromatin50, although little is known about the molecular mecha-
nisms in this process.

Histone modifications
During mitosis and concomitantly with chromosome condensa-
tion, the landscape of histone modifications is altered. Histone H1, 
the linker histone, is hyper-phosphorylated during mitosis62,63, 
and it was initially thought to directly participate in condensation. 
However, subsequent studies suggest that histone H1 phospho-
rylation is not necessary for condensation64,65 but nevertheless 
changes the overall chromatin structure66,67. Another key mitotic 
histone modification is the phosphorylation of serine 10 residue 
of histone 3 (H3 S10) by the mitotic kinase Aurora B68. The role 
for this modification in chromosome condensation has also been 
controversial69–71, although recent evidence proposes that it drives 
the recruitment of deacetylase Hst2, which, in turn, induces 
deacetylation of lysine 16 of histone 4. This change in the proper-
ties of the histone 4 tail promotes interaction with histones H2A 
and H2B from other nucleosomes72, thereby shortening the distance 
between neighboring nucleosomes. This would thus support the 
notion that histone modifications alone can promote the conden-
sation of chromosomes. It should be noted that several histones 
and histone modifications were also described to be a chromo-
somal “receptor” for condensin binding73–76. Thus, some histone 
modifications may not be a direct contributor for chromosome 
compaction but rather a facilitator by promoting the binding of 
specialized proteins that model DNA topology.

New insights from novel approaches
Chromosome condensation revealed by high-resolution 
imaging and novel quantification methods
The chromosome condensation field has been largely dominated 
by cytological analysis. Yet, only recently, and with the advances 
in imaging and imaging analysis techniques, the field has started 
to adopt sophisticated quantification methods to estimate changes 
in chromosome structure during mitosis, revealing not only the 
compaction state but also the kinetics of the process.

Although chromosome condensation was often thought of as a 
linear and gradual process, a new study suggests that in the early 
mitosis stages, chromosomes undergo a series of subtle compaction 
and expansion steps77. The authors applied a series of sophisticated 
imaging and image analysis methods to describe changes in con-
densation throughout mitosis. Until mid-prophase chromosomes 
compact, but at late prophase stages their morphology changes and 
they expand at the same time sister chromatids are being individu-
alized. This is followed by another compaction phase during pro-
metaphase and metaphase. These observations were anticipated by 
a theoretical model of condensation that predicted this compaction- 
expansion cycle78. This hypothesis assumes that compaction is 
causing more “stress” to chromatin, as tethering segments together 
induces constraints and accumulates higher potential energy. The 
expansion stage, therefore, releases such stress and lowers the 
potential energy of chromosomes. The mentioned tethers causing 
physical constraints could be of various natures, such as protein 
linkers (cohesin, condensins) or DNA catenations. The authors 
propose that the stress cycle is ensuring the usage of the energy 
stored during the early compaction events for the energy- 
consuming drastic changes in chromosome structure, such as 
individualization of sister chromatids in late prophase. A recent 
study, however, revealed that the resolution of sister chromatids 
starts early during prophase, concomitantly with chromosome 
compaction79. The authors used sequential replication labeling 
with two distinct nucleotide derivatives to differentially label 
each DNA strand, which combined with quantitative advanced 
imaging allowed the assessment of the resolution process with 
unprecedented temporal resolution. Thus, the aforementioned 
compaction-expansion cycles may not necessarily correlate with 
differential processes throughout prophase.

In addition to the estimation of global compaction on entire 
chromosomes, recent quantitative microscopic assays were devel-
oped to assess local compaction80. Using a fluorescent reporter to 
target specific loci, this study reveals that the fluorescence inten-
sity of the reporter varies depending on the compaction stage of 
chromosomes – the fluorescence is 2–2.5 times higher when chro-
matin is less compacted (interphase) than in mitotic, condensed 
chromosomes. This intensity variation was caused by quenching 
of bound fluorophore due to changes in the local environment 
created by packed chromosomes. The drop in fluorescence of 
reporters disappears if interactions between H2A and H4 histones 
are abolished, suggesting that the assay is primarily sensitive to 

Page 5 of 10

F1000Research 2016, 5(F1000 Faculty Rev):1807 Last updated: 25 JUL 2016



compaction at the level of neighboring nucleosomes. Therefore, 
it provides a convenient tool to study short-range condensation.  
Combining two different reporter genes along arms of a chromo-
some, it was possible to trace at the same time the axial (long-
range) contraction of chromosomes along their longitudinal axis 
(distance between the reporter loci) and the short-range compaction 
of the marked regions. Remarkably, short-range and axial compac-
tion have different kinetics during mitosis. In anaphase, short-range 
nucleosome-nucleosome compaction is happening before the axial 
decrease of chromosome length. Moreover, condensin depletion 
does not affect short-range compaction and, conversely, disturbing 
nucleosome-nucleosome interaction does not affect axial contrac-
tion. This led to the conclusion that short-range compaction and 
axial contraction are probably mostly independent and governed 
by different mechanisms. A common factor in both pathways is  
Hst2 deacetylase. By regulating H2A–H4 interaction, Hst2 pro-
motes short-range nucleosome-nucleosome interactions and 
compaction. Additionally, Hst2 was shown to contribute to axial  
contraction by promoting condensin activity. This study proves  
that obtaining accurate quantification of microscopic data is very 
often challenging but can lead to novel discoveries.

The minimal chromosome assembly system revealed by  
in vitro approaches
In vitro studies have brought major insights into many fields  
of biology. Separation of biological components into a control-
led artificial environment with less complexity allows simpler and 
more precise interpretation of data. It is undeniably true that the  
in vitro results cannot be always directly translated back to the  
in vivo situation. Nevertheless, once the component or  
process (like chromosome condensation) is studied in the  
in vitro environment, it is easier to understand it in the in vivo  
context.

A breakthrough towards this idea was the identification of the mini-
mal set of components that allows in vitro formation of a mitotic 
structure from uncondensed DNA in Xenopus egg extracts48. This 
reductionist approach demonstrated that out of thousands of pos-
sible proteins present in metaphase extract, only six factors, when 
combined, are sufficient to drive effective condensation. In addi-
tion to the “usual suspects” condensins and topoisomerase II, 
painstaking selection of other critical components further reveals 
the requirement of four other factors: nucleoplasmin, Nap1, and 
FACT (all of them are histone chaperone proteins) and embry-
onic core histones. In addition, the process was shown to be ATP 
dependent, which is necessary for enzymatic actions of condensins 
and topoisomerase II. This unique approach holds the promise of 
providing important insights into chromosome condensation by 
in vitro perturbations.

Lessons from studies on isolated chromosomes
Isolated entire chromosomes can be micromanipulated and sub-
jected to measurements of their mechanical properties. This 
approach, pioneered using large newt chromosomes19,20,81,82, allows 
a direct measurement of the physical characteristics of chromo-
somes. Chromosomes can be assessed for their elastic properties 
in various conditions by stretching them and determining the force 
needed to double the chromosomal length. A major recent advance 
was the ability to perform similar studies on much smaller human 

chromosomes83. Importantly, most of the prior observations were 
confirmed in human chromosomes, further supporting the idea 
that a scaffold of protein crosslinkers is not necessary to keep 
chromosome structure together, which is instead sustained by a 
network of intertwined DNA. Yet the absence of these “modulat-
ing proteins” leads to significant changes in the properties and 
morphology of this chromosome network.

Another in vitro approach has also been recently used to understand 
the roles of DNA catenation in human mitotic chromosomes84. 
DNA catenations have long been speculated to be critical in mitotic 
chromosome structure, yet measuring DNA catenation in vivo 
has been a virtually impossible task. To test this, the authors used  
metaphase chromosomes isolated from human cells placed in a 
microfluidics lab-on-chip system, which allowed simultaneous 
imaging and environment control. When native metaphase chro-
mosomes were treated with proteinase to remove all proteins, the 
resulting digested chromosomes were then challenged with vari-
ous physical obstacles. The chromosomes preserved their canonical 
X-like shape and sister chromatids are kept together by thin DNA 
fibers in the centromeric region. Importantly, disrupting catena-
tions, by chemical inhibition of topoisomerase II, caused drastic 
morphological changes along the entire length of the chromosome. 
Without functional topoisomerase II, the chromosomes become 
decondensed (elongated and rounded) and with less-defined axes 
along the arms. This led to the proposal that DNA catenation net-
works provided by topoisomerase II activity are crucial to maintain 
chromosome structure not only at the centromeres but also along 
the entire length of chromosome arms. It nevertheless remains to 
be determined if the same holds true in vivo, as it is possible that the  
in vitro manipulations may alone contribute to the observed pheno-
type.

Internal chromosomal linkages revealed by Chromosome 
Conformation Capture methods
During interphase, chromosomes have their characteristic patterns  
of physical interactions of distinct regions within a single chro-
mosome. It was recently shown in an elegant way that for the 
mitotic chromosome it does not really matter how it was previ-
ously folded during interphase85. When cells enter mitosis, each 
chromosome is somehow stripped of its interphase physical contact 
frequency pattern and acquires a homologous physical interaction  
pattern throughout its entire length (no compartmentalization 
of interaction within itself, meaning that only short-distance  
interactions occur). This absence of compartmentalization in mitotic 
chromosomes seems to be similar in all chromosomes, regard-
less of the chromosome identity or the cell type. The observed  
interaction map was confronted with models describing the fold-
ing, dynamics, and internal organization of mitotic chromosomes. 
Among others, it tackles the hierarchical model of packing DNA 
into chromosome structure and also a long-debated existence of 
internal scaffold in mitotic chromosomes. The authors argue that 
their experimental data do not fit with hierarchical folding mod-
els while models based on the existence of 80–120 kb long loops 
stay with the agreement with experimental work. Unfortunately, 
the authors were not able to anticipate whether or not chromo-
some structure contains a stiff scaffold around which chromatin is 
organized. A model in which the folding of interphase chromatin 
occurs in a two-step process, nevertheless, better explains their 
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findings. First, linear compaction occurs by creating loops of 
consecutive regions of the DNA of length 80–120 kb, possibly 
with the help of SMC complexes. The second step would be con-
sequent axial compaction achieved by interactions of neighbor-
ing loops. It needs to be further supplemented with more detailed 
description of how this transition from interphase to mitotic 
chromosomes could be conducted inside living cells.

Biophysical modeling combined with interaction mapping has also 
been recently applied to study chromosome condensation in budding 
yeast86. A computational model was built to simulate the behavior 
of a large DNA piece (300 kb). The chromatin was modeled as a 
bead-spring polymer, in which beads (nucleosome) are connected 
by springs (the DNA linkers between nucleosomes). Such a defined 
nucleosome chain was subjected to basic physics laws (Hooke’s 
law, Brownian movements, and others) without any additional  
a priori constraints. Simulations, further validated by in vivo meas-
urements of loci proximity, indicate that yeast interphase chroma-
tin behaves as an unconstrained nucleosome polymer. Addition of  
condensins (as stochastic intra-chromosomal linkers) promotes 
compaction of this array. Importantly, by modeling different modes 
for condensin binding, either connecting only two chromosomal 
regions or allowing interactions of two or three condensin-binding  
sites, the authors found that the binding of two (and no more) 
chromosomal regions reproduces the interaction maps found 
experimentally in mitotic cells. Moreover, these dynamic pair-wise  
interactions, in contrast to the attachment of more than two bind-
ing sites, were capable of promoting individualization of two sepa-
rate DNA molecules by favoring intra-chromosomal interactions. 
Thus, this study further supports the notion that chromosomes 
may be assembled through a chromatin self-organization process,  

constrained by condensin interactions, rather than organized by higher 
order assemblies of condensin complexes within chromosomes.

Conclusions and future perspectives
Mitotic chromosome condensation remains one of the great-
est mysteries in cell biology. Recent advances in the field start 
to shed light onto this problem, although it is fair to assume that 
we are still far from understanding the rules that govern mitotic 
chromosome assembly. Nevertheless, recent advances to dissect  
metaphase chromosome compaction fail to provide solid evidence 
for classical models of hierarchical folding or rigid protein scaf-
folds at the core of chromosome assembly. A multidisciplinary  
perspective of the problem, combining advanced imaging with  
in vivo and in vitro controlled manipulations, along with biophysi-
cal studies and modeling may in the future provide an integrative 
view to understand how chromosomes fold at the onset of every cell 
division process.
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