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TERT promoter mutations in 
pancreatic endocrine tumours are 
rare and mainly found in tumours 
from patients with hereditary 
syndromes
João Vinagre1,2,3,*, Joana Nabais4,*, Jorge Pinheiro5,*, Rui Batista1,2, Rui Caetano Oliveira6, 
António Pedro Gonçalves1,2, Ana Pestana1,2, Marta Reis1,2, Bárbara Mesquita1,2, 
Vasco Pinto1,2, Joana Lyra1,2, Maria Augusta Cipriano6, Miguel Godinho Ferreira4, 
José Manuel Lopes1,2,5,7, Manuel Sobrinho-Simões1,2,5,7 & Paula Soares1,2,7

One of the hallmarks of cancer is its unlimited replicative potential that needs a compensatory 
mechanism for the consequential telomere erosion. Telomerase promoter (TERTp) mutations were 
recently reported as a novel mechanism for telomerase re-activation/expression in order to maintain 
telomere length. Pancreatic endocrine tumors (PETs) were so far recognized to rely mainly on the 
alternative lengthening of telomeres (ALT) mechanism. It was our objective to study if TERTp mutations 
were present in pancreatic endocrine tumors (PET) and could represent an alternative mechanism to 
ALT. TERTp mutations were detected in 7% of the cases studied and were mainly associated to patients 
harbouring hereditary syndromes. In vitro, using PET-derived cell lines and by luciferase reporter 
assay, these mutations confer a 2 to 4-fold increase in telomerase transcription activity. These novel 
alterations are able to recruit ETS transcription factor members, in particular GABP-α and ETV1, to the 
newly generated binding sites. We report for the first time TERTp mutations in PETs and PET-derived 
cell lines. Additionally, our data indicate that these mutations serve as an alternative mechanism and in 
an exclusive manner to ALT, in particular in patients with hereditary syndromes.

Normal somatic cells hold a limited life span due to the cell divisions they are allowed1. Steps towards immor-
talization must include deceiving the intrinsic control mechanisms that monitor telomere size. To overcome this 
barrier, cells must either reactivate/re-express telomerase or rely on an alternative lengthening of telomeres (ALT) 
mechanism. Reactivation or re-expression of telomerase is thought to be present in up to 90% of human cancers 
and it is generally acknowledge that proliferative cancer cells maintain their telomere length2. The remaining 10% 
to 15% of human cancers do not have detectable telomerase activity and a subset of such cases maintain telomere 
length relying on ALT. In sporadic PETs, at variance with the majority of other human cancers, ALT is recog-
nized as the major mechanism for telomere elongation and mainly as a consequence of mutations in ATRX and 
DAXX genes3–5. Mutations in these genes are tightly associated with loss of expression of the respective proteins 
by immunohistochemistry and show a nearly perfect correlation with ALT phenotype3,6,7. Recently, two studies 
reported TERTp mutations in melanoma8,9. The initial proposed theoretical model of TERTp alterations presumed 
that the mutations lead to the creation of novel binding sites, with a consensus sequence 5′-CCCCTTCCGGG-3′, 
that generates a novel binding site for ETS transcription factors8,9. We and others reported the presence of these 

1Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal. 2Instituto 
de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, 4200-465, Portugal. 3Instituto de 
Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal. 4Instituto Gulbenkian 
de Ciência (IGC), Oeiras, 2780-156, Portugal. 5Departmento de Patologia, Centro Hospitalar de S. João, Porto, 4200-
319, Portugal. 6Departmento de Patologia, Centro Hospitalar de Coimbra, Coimbra, 3041-801, Portugal. 7Faculdade 
de Medicina da Universidade do Porto, Porto, 4200-139, Portugal. *These authors contributed equally to this work. 
Correspondence and requests for materials should be addressed to P.S. (email: psoares@ipatimup.pt)

received: 29 February 2016

Accepted: 21 June 2016

Published: 14 July 2016

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Access to Research and Communications Annals

https://core.ac.uk/display/74284208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:psoares@ipatimup.pt


www.nature.com/scientificreports/

2Scientific RepoRts | 6:29714 | DOI: 10.1038/srep29714

recurrent somatic mutations in a variety of human cancers and with different prevalences10–17. Although the 
major mechanism for telomere maintenance in PETs is ALT3,6, TERTp mutations could represent an alternative 
mechanism so far not described in such tumors. If so, PETs might behave similarly to what is observed in central 
nervous system tumors, mainly in glioblastomas, where TERTp and ATRX mutations are mutually exclusive, sug-
gesting that both genetic mechanisms can confer equivalent advantages14. Considering this possibility, we decided 
to search for the occurrence of TERTp mutations in a large series of PETs (n = 55) and three PET cell lines.

Results
TERTp mutations, a novel contributor for PETs genetics, were mainly present in cases asso-
ciated with hereditary syndromes. We detected TERTp mutations in four patients (7%), three females 
and one male. The association of TERTp mutation status and clinicopathological features is presented in Table 1. 
Three of the four (75%) TERTp mutated cases occurred in the setting of hereditary syndromes: two patients 
with multiple endocrine type 1 (MEN1) syndrome and a patient with Von Hippel-Lindau (VHL) syndrome 
(Table 2). Regarding the PET cell lines, one of the three (33%), QGP1, harboured a TERTp mutation. The muta-
tions detected in the four PETs and in the cell line were the −124:G > A alteration.

TERTp mutations, an alternative mechanism for telomere maintenance. We next sought to 
determine if TERTp mutations could represent an alternative event to ALT. In order to exclude ALT as a relevant 
mechanism in the TERTp mutated PETs we studied the best-known surrogate markers: ATRX and DAXX pro-
teins. We observed that none of the four cases with TERTp mutations had loss of expression of ATRX and DAXX 
(Supplementary Figure 1) thus minimizing the possibility of occurrence of ALT mechanism. The presence of 
ultra-bright, intra-nuclear foci of telomere FISH signals has also been used as a surrogate marker of ALT3,18; to 
confirm that ALT was not present in the four TERTp mutated cases we performed Tel-FISH. As a positive control 
for ALT telomere FISH in PETs we selected three PETs that had complete loss either of ATRX or DAXX protein 
expression (Fig. 1A–C). These cases presented distinctive ultra-bright foci of unbalanced size (pointed by arrows), 
the typical phenotype of ALT (Fig. 1A–C). In contrast, TERTp mutated cases did not present this phenotype 
(Fig. 1D–F).

TERTp mutations lead to augmented telomerase transcriptional activity in PETs-derived cell 
lines. Subsequent to the detection of TERTp mutation in PETs we investigated whether TERTp mutations are 
functional, in vitro, in PET-derived cell lines. By luciferase reporter assay, in comparison to the wild-type TERTp, 

TERT promoter genotype

wild-type mutated

Cases studied (n, %) 51 (93%) 4 (7%)

Age (range) 54 (14–75) 44 (32–55)

Location (n, %)

Head 23 (45%) —

Body 7 (14%) 2 (50%)

Tail 20 (39%) 2 (50%)

n.d. 1 (2%) —

Grade (n, %)

G1 35 (69%) 2 (50%)

G2 14 (27%) 2 (50%)

G3 2 (4%) —

pT stage (ENETS) (n, %)

T1 16 (31%) —

T2 20 (39%) 2 (50%)

T3 12 (24%) 2 (50%)

T4 3 (6%) —

pT stage (UICC/AJCC) (n, %)

T1 18 (35%) —

T2 18 (35%) 1 (25%)

T3 15 (30%) 3 (75%)

T4 — —

Lymph node metastasis (n, %) 17 out of 31 (55%) 3 (75%)

Distant metastasis (n, %) 5 (10%)1 1 (25%)2

Hereditary syndrome 
association — 3 (75%)3

Table 1. Clinicopathological information of the patients included in this study according to the TERT 
promoter genotype. n.dNot determined. 1All cases with liver metastasis, one of them with bone metastasis at the 
time of diagnosis. 2Liver metastasis at the time of diagnosis. 3Two MEN cases and one VHL.
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both mutations (−124:G > A and −146:G > A) conferred an approximately 2–4 fold increased transcriptional 
activity in three distinct PET-derived cell lines (Fig. 2A).

Figure 1. Tel-FISH in PETs. Cases depicted in panels A–C were selected due to loss of expression of ATRX 
and DAXX as a surrogate marker of ALT positivity; these cases presented large, ultrabright and unbalanced size 
telomere FISH signals (marked by the arrows), a phenotype indicative of ALT. Panels D–F, represent TERTp 
mutated cases 1, 3 and 4, respectively. In these cases, although some robust telomeres were present, we did not 
detect ultra-bright foci and the telomeres were balanced in size. One of the TERTp mutated cases was excluded 
from this analysis (case 2) for technical reasons, since no Tel-FISH signal was detected.

Case number Gender Age1 Location
PET 
type Size2 Microadenomas

Functional 
status

Germline 
mutations pT3 pT4

Lymph 
node 

metastasis
Distant 

metastasis Follow-up5

Status 
at last 

follow-up

1 F 39 body NET 
G1 44 yes insulinoma MEN1 p.Q453X 3 3 N1 M0 107 AWD

2 F 55 body NET 
G2 30 no non functional -6 2 2 N1 M0 9 DOD

3 M 51 tail NET 
G1 30 yes insulinoma MEN1 p.A572V 2 3 Nx M0 124 DOC

4 F 32 tail NET 
G2 94 yes non functional VHL p.S65W 3 3 Nx M1 (liver) 46 DOD

Table 2. Clinicopathological and molecular relevant data of the patients with PETs harboring TERT 
promoter mutations. 1years; 2mm; 3according to ENETS classification; 4according to UICC/AJCC classification; 
5months; 6No MEN1 or VHL mutations were detected. AWD – alive without disease; DOD – death of disease; 
DOC – death of other causes. Clinical presentations: Case 1: Primary hyperparathyroidism and insulinoma. 
Known family history, both the father and a sister with pancreatic tumour, a pituitary adenoma with prolactin 
production and primary hyperparathyroidism; Case 3: Recurrent episodes of hypoglycaemia, associated 
with insulinoma. No other crises following surgery. Posterior history of recurrent upper gastrointestinal 
haemorrhage associated with gastric ulcers. The presence of gastrinoma has never been confirmed.In both 
MEN1 cases there was no clinical or laboratorial evidence of other functioning-type NET. Case 4: bilateral 
retinal angiomatosis, cervical spinal hemangioblastoma, endolymphatic sac tumour, hepatic haemangioma and 
multiple renal cysts.
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ETS family members’ transcription factors are fundamental for transcriptional activation in 
PETs-derived cell lines. Using JASPAR transcription factor binding profile open-access database (http:// 
jaspardev.genereg.net/)19 we found that ETV1 and GABP-α were also attractive candidates since they also 
respond to similar consensus sequences (Supplementary Figure 2A). Following this, we took advantage of 
ChIP technique to test if the antibody-immunoprecipitated chromatin contained sequences of telomerase pro-
moter. In a qualitative analysis by conventional PCR we obtained a confirmation for the presence of TERTp 
sequences (Supplementary Figure 2A); in order to quantify these sequences, we performed RT-PCR of the immu-
noprecipitates (Fig. 2B). We observed that in QGP1 (TERTp mutated) cell line, significant higher amounts of 
ETS-members’ transcription factors were present in comparison to BON and CM cell lines (TERTp wild-type) 
(Fig. 2B). Besides ELK1 and ELK4, we also detected GABP-α and ETV1, thus indicating that these transcription 
factors have the ability to bind to TERTp regions in PETs-derived cell lines (Fig. 2B). Finally, by EMSA with 
stringent probes, that avoid the native ETS in the TERTp, designed for wild-type and −124 mutated promoter 
sequences, we observed the presence of a shift which was only detected with the probe containing the −124 
mutated sequence in the different cell lines (Supplementary Figure 2B).

Telomere maintenance in PETs-derived cell lines. The data obtained in QGP1 experiments supported 
the assumption that TERTp mutations are functional and can be an alternative to ALT mechanism. So, we decided 
to see whether or not the cell lines recapitulate the findings in PETs. At cell level, ALT phenotype is identified 
by the presence of ALT-associated Promyelocytic Leukemia (PML) protein nuclear bodies that contain large 
amounts of telomeric DNA20,21. In Fig. 3, we observe that the positive control for ALT, U2OS cell line and CM 
present significantly more co-localized telomeric DNA with PML than QGP1 cell line. Furthermore, when we 
counted the nuclei for the presence of co-localization of Tel-FISH/PML (Supplementary Figure 3) we observed 
very distinctive patterns in CM and QGP cell lines. These findings indicate that QGP1 portrays an ALT negative 
phenotype whereas CM is ALT positive.

Discussion
PETs had already been investigated for the presence of TERTp mutations and none were detected; however, the 
search was only performed in sporadic PETs14. In sporadic tumors ATRX/DAXX defects that result in ALT phe-
notype are present in 43–45% 4,22,23 of the cases. In contrast to this, the aforementioned ALT phenotype dropped 
to 6% in a subset of PETs from MEN1 syndrome patients6, thus leaving space for other putative mechanisms. 
None of the 4 cases of our series with TERTp mutations revealed loss of expression for ATRX or DAXX, a strong 

Figure 2. In vitro TERTp functional assays in the cell lines BON, CM and QGP1. (A) Normalized fold 
change in the reporter assays activity for the vectors mock, wild-type TERTp, −124 and −146 TERTp mutated 
vectors; Even though we only detected the −124 mutation in our samples, we also created a reporter for 
−146 mutation, the second most frequent alteration in other human cancers; (B) Quantitative analysis by 
RT-PCR of the ChIP revealed that QGP1 (TERTp mutated) cell line, presents significant higher amount of 
ETS transcription factors in comparison to BON and CM cell lines (TERTp wild-type). Additionally, to ELK1 
and ELK4, we detected that GABP-α and ETV1, with the ability to bind to TERTp regions. The results are an 
average of at least three independent experiments. Significance levels: P < 0.0001, ****; 0.0001 < P < 0.001, ***; 
0.001 < P < 0.01, **; 0.01 < P < 0.05; and P ≥ 0.05, *; and not significant (ns). Values are mean ± SEM.

http://jaspardev.genereg.net/
http://jaspardev.genereg.net/
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indication that in these tumors ATRX/DAXX genes do not seem to have mutations concomitantly with the TERTp 
alteration. Ideally, it would be necessary to genotype the ATRX and DAXX genes; however, due to the large tran-
script size of both genes and the absence of frozen tissue, it was not possible to follow this strategy. Furthermore, 
several studies have demonstrated a high correlation between the presence of mutation of ATRX/DAXX and 
loss of expression of the respective proteins3–6 thus allowing us to use protein expression as a surrogate marker 
for mutation presence. The detection of ATRX and DAXX proteins, excluding mutations in these genes, is also 
in agreement with the lack of ALT phenotype detection as observed in the Tel-FISH analysis. Altogether, these 
results fit with previous findings highlighting a duality of the genetic background in sporadic and hereditary 
PETs3,4,6,22 and present for the first time TERTp mutations as an alternative mechanism in PETs. Our results sup-
port also the assumption that TERTp mutations may play a role in hereditary PETs and that TERTp mutations and 
ALT are mutually exclusive, a feature observed also in central nervous system tumors14. In vitro, TERTp muta-
tions by luciferase reporter assay in the cell lines BON, CM and QGP1 presented a 2–4 fold increased, a value 
consistent with previous reports8,9. Even though we only detected the −124 mutation in our samples, we created 
a reporter for −146 mutation, the second most frequent alteration in other human cancers, that also presented 
increased transcription although with less activity than the −124 mutation. Until recently, ELK1 and ELK4 were 
pointed as the main transcriptions factors that would bind to the newly created binding consensus induced by the 
mutations. Additionally, we studied GABP-α because: Bell et al. reported GABP-α to be an important transcrip-
tion factor being able to recruit proximal ETS motifs24; Stern et al. demonstrated that TERTp mutation presents 
a mark of active chromatin and recruit GABP-α25; and Makowski et al. revealed that the recruitment of GABP-α 
is enable by the spatial architecture of native and the newly generated motifs in the TERTp region26. Overall, 
GABP-α allows the potentiation of TERTp activation24–26. Taking this into consideration, we decided to address 
ELK1, ELK4 and GABP-α and we included ETV1 based on binding consensus similarities and the fact that these 
transcription factors were expressed in the PET-derived cell lines. All the transcription factors were detected in 
a qualitative analysis by PCR amplification of the ChIP precipitates. Initially, we evaluated the ChIP qualitatively 
by PCR and we observed that the transcription factors were precipitating TERTp sequences in all the cell lines. 
At first glance, this result was intriguing but it is explained by the abundance of native ETS transcription factors 
binding sites in the telomerase core promoter24,27; there are at least 3 native ETS binding sites in the proximity in 
positions −91 bps, −93 bps and −190 bps upstream the ATG start site and flank the mutations around a 30 bps 
distance24. Quantitative analysis by RT-PCR of the ChIP revealed that QGP1 (TERTp mutated) cell line, pre-
sents significant higher amount of ETS transcription factors in comparison to BON and CM cell lines (TERTp 
wild-type). Remarkably, ETV1 and GABP-α immunoprecipitates presented higher abundance than ELK1 and 
ELK4 in the mutated cell line. GABP-α findings are in agreement with the three studies published recently that 
have pointed out GABP-α as the critical ETS transcription factor in a TERTp mutation context, being able to 
recruit proximal ETS motifs and potentiating TERTp activation in a mutant-specific manner24–26. Contrarily to 

Figure 3. PML immunofluorescence combined with Tel-FISH in U2OS, CM and QGP cell lines. U2OS 
cell line represents a universal positive control for ALT mechanism. CM cell line, a TERTp wild-type cell line, 
presented a high co-localization of telomeric DNA with PML exhibiting an ALT positive phenotype. QGP1, the 
TERTp mutated cell line does not present frequent co-localization of telomeric DNA with being ALT negative. 
These findings recapitulate the observations in our series of PETs.
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GABP-α, ETV1 results are more difficult to interpret at this moment. Finally, we observed that cell lines recapit-
ulate the findings in PETs; the cell line QGP1 harbouring a TERTp mutations did not present an ALT phenotype 
once again pointing out TERTp mutations as an alternative mechanism and in an exclusive manner. The finding 
that QGP1 is ALT negative concurs with novel data obtained by whole-exome sequencing that revealed that this 
cell line does not have mutations in ATRX and DAXX28.

Overall, we report for the first time TERTp mutations in PETs and PET’s-derived cell lines. TERTp mutations 
are noticeably prevalent in PET cases with a hereditary component. Our data indicates that TERTp mutations are 
functional and serves as an alternative and mutually exclusive mechanism to ALT in hereditary PETs. Previous 
studies reported that the prevalence of ATRX/DAXX defects were “late” events, associated with higher stage tum-
ors and increased size4,6,23. The suggestion that ATRX/DAXX defects leading to ALT occurs only in a later stage 
is compatible with the fact that in hereditary-associated tumors there is an anticipation in the manifestation of 
the neoplasia. Therefore, TERTp mutations could provide the additional growth advantage that would allow the 
growth beyond the microadenoma size without the need for ALT. Further studies are still necessary to clarify the 
role played by the different mechanisms for telomere maintenance in sporadic and hereditary PETs.

Methods
Tissues, patient characteristics, and follow-up data. Formalin-fixed and paraffin-embedded (FFPE) 
tumors were retrieved from the Pathology departments of Centro Hospitalar São João and Centro Hospitalar e 
Universitário de Coimbra. Clinical and follow-up data were obtained by contacting the patients’ general prac-
titioners and in-hospital registries databases. All the tumors were re-evaluated and classified according to the 
ENETS29 and the UICC/AJCC30,31 guidelines by the same pathologist (JML). A total of 55 pancreatic endocrine 
tumors (PETs) of 33 female patients and 22 male patients, with a mean age of 54 years (range 14–75 years) were 
studied. Two patients were submitted to surgical open biopsy and neoadjuvant therapy, 15 underwent enuclea-
tion, 14 were submitted to cephalic pancreaticoduodenectomy and 24 to distal pancreatectomy. The mean size of 
the tumors was 33 mm (range 5–100 mm); 23 tumors were located in the head, 9 in the body, 22 in the tail of the 
pancreas and 1 was of uncertain location. Three out 55 cases were confirmed to present a hereditary syndrome 
association. The majority (96%) were well-differentiated endocrine tumors, and 67% were NET G1, with less than 
2 mitoses per 10 high power-fields and a Ki67 index below 2%. Extrapancreatic extension was observed in 33% 
of the tumors; 35% had nodal metastases; 11% had evidence of distant metastases at the time of the diagnosis. 
Follow-up data were obtained from 49 patients, with a mean follow up time of 61 months (range 1–182 months). 
Relapse or disease progression was observed in 20% patients (n = 10) with a disease-related death rate of 8% 
(n = 4). All the procedures described in this study were in accordance with national and institutional ethical 
standards. According to Portuguese law, informed consent is not required for retrospective studies.

Cell lines. The PET cell lines used in this study corresponded to BON, CM, QGP1 and U2OS. The BON-1 cell 
line was cultured in 1:1 mixture of DMEM and F-12 glutamax mediums (Gibco, Massachusetts, USA). The CM 
and QGP1 were cultured in RPMI glutamax (Gibco). The U2OS was cultured in DMEM medium (Gibco). All the 
mediums were prepared with 10% fetal bovine serum (Gibco), 1% PenStrep (Gibco) and 0.5% Fungizone (Gibco).

DNA extraction, PCR amplification and genotyping. DNA from FFPE tissues was retrieved from 
10 um cuts after careful microdissection. DNA from cell lines was obtained from cell pellets. DNA extraction 
from FFPE and cell lines was performed using the Ultraprep Tissue DNA Kit (AHN Biotechnologie, Nordhausen, 
Germany) following the manufacturer’s instructions. To screen TERTp mutations, we analyzed the region con-
taining the −124 and −146 hotspots by PCR and followed by Sanger sequencing. TERTp mutation analysis was 
performed with the pair of primers: Fw: 5′-CAGCGCTGCCTGAAACTC-3′ and Rv: 5′-GTCCTGCCCCTT 
CACCTT-3′. Amplification of genomic DNA (25–100 ng) was performed by PCR using the Qiagen Multiplex 
PCR kit (Qiagen, Hilden, Germany) and according to the manufacturer′s instructions with Q solution (Qiagen). 
Sequencing reaction was performed with the ABI Prism BigDye Terminator Kit (Perkin-Elmer, California, USA) 
and the fragments were run in an ABI prism 3100 Genetic Analyzer (Perkin-Elmer). The sequencing reaction was 
performed in a forward direction, and an independent PCR amplification/sequencing, both in a forward and 
reverse direction, was performed in positive samples or samples that were inconclusive in the first amplification.

ATRX and DAXX immunohistochemistry (IHC). IHC for ATRX and DAXX was performed in rep-
resentative tumor tissue sections previously selected by a Pathologist. Deparaffinized and rehydrated sections 
were subjected to antigen retrieval treatment in a pressure cooker in 10 mM sodium citrate buffer pH 6.0 for 
5 minutes. The sections were incubated one hour in a humidified chamber with the primary antibodies ATRX 
(1:350, HPA001906) and DAXX (1:75, HPA008736) both from Sigma-Aldrich (Missouri, USA). Following the 
secondary antibody, the detection was obtained with a labelled streptavidin–biotin immunoperoxidase detection 
system (Thermo Scientific/Lab Vision, Fremont, USA) and the immunohistochemical staining was developed 
with 3,3′-diaminobenzidine substrate. Omission of the primary antibody incubation was used as negative control. 
Previously tested samples of normal pancreas were used as positive control.

Telomere Fluorescence In Situ Hybridization (Tel-FISH). FFPE sections were incubated in HistoClear 
II (National Diagnostics, USA), 100% (twice) at room temperature and 100% ethanol at −20 °C, for 10 minutes. 
Whole tissue slides were air-dried for a minimum of 30 minutes. For cultured cells, following fixation we performed 
an incubation 1:100 of the PML antibody (PG-M3, Santa Cruz Biotechnology). Subsequent incubation with the 
secondary antibody, cells were washed with PBS, three times 10 minutes. Cells were then fixed in 10% formalin 
for 20 minutes in the dark followed by two washes for 5 minutes in 0.05% Tween-20 in PBS. Cells were air-dried 
for a minimum of 30 minutes. Cells and FFPE tissue sections were denatured for 10 min in an oven (Memmert 
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GmbH) at 80 °C in hybridization buffer (70% formamide, 25 mM MgCl2, 1 M Tris pH 7.2, 5% blocking reagent 
(Roche, Basel, Switzerland) containing 2.5 g/ml Cye-3-labelled telomere specific (CCCTAA) peptide nuclei acid 
probe (Panagene, Daejeon, Korea), followed by hybridization for 2 h at room temperature in a humid-chamber in 
the dark. Slides were washed with 70% formamide in 2x SSC for 10 minutes, followed by 10 minutes wash with 2x 
SSC (twice). Sections were incubated with DAPI (Sigma-Aldrich), mounted and imaged on an Olympus Applied 
Precision DeltaVision core microscope with a camera Photometrics Cascade II 1024 EM-CCD. Z stacking was per-
formed (20 nm optical slices with x100 objective) followed by Applied Precision software SoftWorx deconvolution.

Luciferase Promoter Reporter Assay. Briefly, a wild-type TERTp region comprising the genomic area 
from −290 to the −47 bps from the initial codon was amplified by PCR using the thyroid cell line XTC-1 as the 
DNA template. The PCR product was then cloned into pGEM-T Easy vector (Promega, Wisconsin, USA). The 
plasmid generated was then digested with XhoI and KpnI enzymes (Fermentas, Massachusetts, USA) and the 
obtained insert was subcloned into the pGL3 luciferase expression vector (Promega), creating the TERTp wild 
type vector. Site directed mutagenesis was performed with QuickChange Lightning Site-Directed Mutagenesis 
Kit (Agilent Technologies, California, USA) and was used to generate the mutations (−124 and −146 G > A) 
from the wild type promoter. The final vectors, pGL3-TERTp wt, −124 and −146, were generated as reporter 
constructs containing the firefly luciferase-encoding gene under the control of the wild type, −124 and −146 
TERTp DNA motifs, respectively. Primers are available upon request. For the luciferase promoter assay, BON, CM 
and QGP1 cell lines were grown to 80% confluence, and transfected with 1 ug of the previously generated vectors 
(pGL3: wt, −124 and −146). Additionally, for normalization purposes, cells were co-transfected with 0.125 ug 
of pRL vector, Renilla luciferase. The transfection was performed with Lipofectamine 2000 (Lifetechnologies, 
Massachusetts, USA) in 12-well plates and accordingly to the manufacturer instructions. After 48 hours, the 
transfected cells were washed in a saline solution and stored at −80 °C for cell lysis. The remaining part of the 
assay was performed with the steadylite plus reporter gene assay system (PerkinElmer) and in accordance with 
the manufacturer instructions. Finally, the light counts from luciferase and renilla were obtained in a MicroBeta 
TriLux 1450 bioluminescence counter (PerkinElmer).

Chromatin immunoprecipitation (ChIP) assay and Real Time PCR (RT-PCR). ChIP experiments 
were performed using the SimpleChIP Enzymatic Chromatin IP Kit (Cell Signalling Technology, Massachusetts, 
USA) according to the instructions provided by the manufacturer. Briefly, BON, CM and QGP1 cells were grown 
until 90% confluence was reached and DNA-protein crosslinking was achieved by adding 1% formaldehyde 
directly in the culture medium. Digestion and isolation of the nuclei was accomplished after incubating the sam-
ples with 5 ul of micrococcal nuclease for 20 minutes at 37 °C. The quality of the chromatin preparations was 
assessed by electrophoresis in an agarose gel and only samples showing a pattern of chromatin fragments ranging 
100–1000 bps were used in the following steps: up to 5 ug of chromatin preparation was immunoprecipitated 
using 1 to 2 ug of the indicated antibodies and protein G magnetic beads. DNA was then eluted from the anti-
body/protein G beads, purified using spin columns and used as a template for PCR and RT-PCR experiments. 
PCR evaluation of eluted products was performed with the conditions described above. RT-PCR employed a Sybr 
Fast Master Mix (KAPA Biosystems Massachusetts, USA) with a program that consisted of 45 cycles of 30 seconds 
at 95 °C and 30 seconds at 62 °C. Aliquots of chromatin that were not immunoprecipitated (referred as “input”) 
were used to normalize the results, that was calculated using the following formula: 2−(∆Ct), where Ct = Ct TERTp 
immunoprecipitated − Ct TERTp input.

Electrophoretic Mobility Shift Assay (EMSA). Nuclear extracts of BON, CM AND QGP1 cells were 
obtained using the NE-PER Nuclear and Cytoplasmic Extraction Reagents Kit (Thermo Scientific, Massachusetts, 
USA), according to the instructions provided by the manufacturer, and the concentration of protein quantified 
using Bradford’s modified protein assay (Bio-Rad, California, USA). DNA oligonucleotides corresponding to the 
−124 and −146 regions of the TERTp were synthesized and labelled with biotin using the Biotin 3′ End DNA 
Labelling Kit (Thermo Scientific). The probes sequences are available upon request. The complementary oligonu-
cleotides were annealed using a thermocycler and the following program: 1 cycle of 60 minutes at 22 °C, 1 cycle 
of 5 minutes at 95 °C, 20 cycles of 1-minute beginning at 95 °C followed by a 1 °C decrease per cycle, 1 cycle of 
30 minutes at 75 °C and 40 cycles of 1 min beginning at 75 °C followed by a 1 °C decrease per cycle. EMSA binding 
reactions were prepared in H2O using the reagents contained in the LightShift Chemiluminescent EMSA Kit 
(Thermo Scientific) and consisted of 1x binding buffer, 1 ug/ul poly (dI.dC), 2.5% glycerol, 0.05% NP-40, 100 mM 
KCl, 2.5 mM MgCl2, 1 mM EDTA, 5 ug of protein nuclear extract and 20 fmol of biotin-labelled oligonucleotide 
(when indicated, 4000 fmol unlabelled oligonucleotide was also added as a competitive negative control). Binding 
reactions were incubated for 30 minutes at room temperature after which loading buffer was added. Samples were 
run on a 6% non-denaturing polyacrylamide gel, transferred to a nylon membrane and cross-linked in a UV 
chamber for 15 minutes. The membrane was developed in X-ray film using the Chemiluminescent Nucleic Acid 
Detection Module (Thermo Scientific) according to the instructions provided by the manufacturer.

Statistical analysis. Statistical analysis was conducted using GraphPad Prism version 6.0 f for Mac OS X 
(GraphPad Software, California, USA). The results are expressed as mean ± standard error of the mean (SEM). For 
the analysis of the luciferase activity and the relationship between the different reporter vectors we used a two-tailed 
paired t-test. Two-way ANOVA was used to compare the differences between the cell lines and the abundance of tran-
scription factors precipitated and evaluated by RT-PCR. Results were considered statistically significant whenever 
P < 0.05. As a GraphPad software default the values of statistical significance are represented as: P < 0.0001, ****;  
0.0001 < P < 0.001, ***; 0.001 < P < 0.01, **; 0.01 < P < 0.05; and P ≥ 0.05 as not significant (NS).
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