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Abstract

A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and
replacement of the CD3( chain that alters TCR signaling. However, genetic associations with SLE
in the human CD247 locus that encodes CD3( are not well established and require replication in
independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE
association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE
patients and 8 077 controls from four ethnically distinct populations. The strongest associations
were found in the Asian population (11 SNPs in intron 1, 4.99x104<P<4.15x1072), where we
further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-
rs858554; G-G-A-G-A; Phap=2.12><10‘5) that exceeded the most associated single SNP rs858554
(MAFcontrols=13%: P=4.99x10~4, OR=1.32) in significance. Imputation and subsequent
association analysis showed evidence of association (P<0.05) at 27 additional SNPs within intron
1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population
proportions, showed 5 SNPs with significant P-values (1.40x1073<P<3.97x10~2), with one
(rs704848) remaining significant after Bonferroni correction (Peta=2.66%1072). Our study
independently confirms and extends the association of SLE with CD247, which is shared by

various autoimmune disorders and supports a common T cell-mediated mechanism.

INTRODUCTION

Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic and potentially fatal
autoimmune disorder characterized by the production of autoantibodies that cause
widespread tissue damage. T-cells from patients with SLE have a number of phenotypic and
functional abnormalities (1,2). Some of the strongest confirmed genetic associations with
SLE obviously affect T-cells, including HLA-DR, which still exceeds all other associations
in significance, as well as PTPN22, a TCR signal modifier (3), and PTTG1 affecting
miR146a (4) that appears particularly relevant for regulatory T-cells (5). One of the most
characteristic aberrations, likely influential in altering intracellular signaling and subsequent
aberrant responses of T-cells, is the specific downregulation of the CD3( component of the
T-cell receptor complex (6,7), CD247. In SLE T-cells, this molecule is specifically replaced
by the Fc receptor y chain that is coupled with a different intracellular signaling pathway (8).
In addition to this demonstrated functional relevance, association of genetic polymorphisms
within CD247 with SLE has been discovered. Two reports have provided evidence for such
an association, identifying two 3' UTR SNPs in strong linkage disequilibrium and showing
association with differential CD3( expression (9) as well as with SLE (10) in a European
population. More recently, several SNPs within CD247 (particularly in intron 1) were also
found associated to SLE in Asian populations (11). Because the epidemiology of SLE has
demonstrated that the prevalence of disease differs substantially across ethnic groups, it is
logical that there exists significant genetic heterogeneity in the causes of SLE across
populations (12,13). This has been supported by the differential findings obtained in
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genome-wide association studies (GWAS) performed in different populations (14-19), with
novel loci such as RASGRP3 and WDFY4 found to be associated with SLE in Asian, but not
European populations. In this study, in order to further test the association of CD247 gene
with SLE in different populations, we typed 44 SNPs in a large multi-ethnic sample with
total 17 003 individuals.

RESULTS

Association study and imputation analysis in the Asian population

The strongest associations were found in the Asian population (11 SNPs in intron 1,
4.99x104<P<4.15x1072) (SNPs 14, 17, 24, 26, 27, 28, 30, 31, 32, 35, 36 as identified in
Table 1; also see Figure 1). The most associated rs858554 (SNP 31, MAFcontrols=13%)
reached a significance of P=4.99x10~4 (OR[95%CI]=1.32[1.13-1.55]) and a corresponding
P=1.50x10"2 after Bonferroni correction for multiple testing.

Several of the 11 significant SNPs were in very strong LD (r2>0.75): 14 and 17; 26, 27, 28
and 30; 32, 35 and 36. SNP 24 had moderate to strong LD with SNPs 26, 27, 28 and 30
(0.57>r2>0.67). The most significant, SNP 31, however showed weak LD with all other
SNPs in our dataset (r2<0.25) (Figure 2). Four SNPs (SNPs 14, 17, 24, 35) remained
nominally associated with SLE after conditional logistic regression analysis based on
rs858554 (SNP 31), and one newly gained significance: rs16859085 (SNP 29) (Table 1,
Figure 2). This suggests the existence of multiple genetic variants within CD247 implicated
in SLE.

Haplotypic association analysis in the Asian population identified a five-marker haplotype
containing five SNPs in intron 1 (rs12141731-rs2949655-rs16859085-rs12144621-
rs858554; G-G-A-G-A; identified in Figure 2) showing robust association with SLE
(Phap=2.12x1075).

Even though we investigated 42 SNPs in CD247, a proportion of the genetic variation in the
region was not assessed because of the size of the gene (Figure 1). To evaluate the potential
association of unobserved polymorphisms in this gene in the Asian population, we imputed
SNPs in chromosome 1 using data from HapMap as well as the genotypes observed at the 30
fully genotyped markers. In the CD247 gene, we obtained imputed genotypes meeting
minimum quality standards (MAF in controls > 0.05 and SNP INFO > 0.8) for 51 SNPs,
including 9 of the genotyped SNPs (Figure 1; identified with the SNP 1D in Supplementary
Table S1). Previously genotyped SNPs were imputed using the observed genotypes at the
other SNIPs, and a concordance rate >85% between imputed and observed genotypes was
obtained (Figure 1).

From the 51 imputed SNPs, 27 (including 7 of the genotyped SNPs) were associated with
SLE susceptibility (P<0.05) (Supplementary Table S1, Figure 1), the most significant of
which were rs858557, rs858556 and rs858553 (all with: P=4.82x1074, SNP INFO=1.04).
All these polymorphisms are located in intron 1 close to our most strongly associated typed
SNP rs858554.
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Our most significant findings are consistent with those from a previous report in Asian
populations (11) that resulted from the examination of GWAS data (19). In these studies, 14
SNPs in the CD247 gene locus (including both upstream and downstream regions of the
gene) were found to be significantly associated with SLE, five of which were inside the
CD247 gene (personal communication from authors of (19), May 2012), all located in intron
1 (as indicated by the dark blue dots in Figure 1). In our study, the 11 significant SNPs were
also all located in intron 1 (although in different variants; as indicated by the green dots in
Figure 1).

The plot of pairwise LD of the genotyped SNPs in our Asian samples (Figure 2) showed
very similar LD patterns to the plot of CHB HapMap samples (Supplementary Figure S1),
supporting the use of this reference dataset to check linkage between the significant SNPs in
our Asian cohort and those in CD247 from the GWAS data (19). We can see that the
significant GWAS SNPs and our SNPs (black squares and asterisks, respectively, in
Supplementary Figure S1) are physically close but in different LD blocks. Namely, the most
significant SNPs in both studies, our rs858554 (SNP 31) and the GWAS rs704853, are in
two different blocks located in intron 1. Furthermore, all the significant GWAS SNPs are in
weak LD (r2<0.25) among themselves and with our associated SNPs (Supplementary Figure
S1). Taken together, the results of both studies complement each other, pointing to the
existence of different variants in the same gene region that are not in strong LD and were
observed independently, which strengthens the general result. Imputation did not return
results for the top significant variants in Li et al. (11) and GWAS (19).

Non-Asian populations multiethnic association study, and meta-analysis

Five SNPS were significantly associated with SLE in the European ancestry samples
(1.12x1072<P<4.51x1072) including four SNPs within intron 1 (SNPs 14, 15, 35 and 36)
and one downstream of CD247 (SNP 1). In the other ethnicities, 3 SNPs were associated in
African ancestry (SNPs 6, 24 and 35, 5.92x1073<P<2.95x1072), and 1 SNP in the Hispanic/
Amerindian (SNP 36 P=3.39x1072) populations (Figure 3, Supplementary Table S2). None
of these SNPs, however, remained significant upon Bonferroni correction for multiple
testing. Nevertheless, several of these significant SNPs were common to the associated
SNPs in the Asian cohort, namely SNPs 14, 35 and 36 in the European ancestry, SNPs 24
and 35 in the African ancestry, and SNP 36 in the Hispanic/Amerindian ancestry (Figure 3).

The significant haplotype identified in the Asian population was not associated in these three
populations although the LD structures were similar (Supplementary Figure S2).

Cross-ethnic meta-analysis of the four populations, assuming an additive genetic model and
adjusted for population proportions, showed 5 SNPs with significant P-values
(1.40x103<P<3.97x1072), all located in intron 1 of CD247 (Table 2, Figure 3). One marker
was still significant after Bonferroni correction for multiple testing: rs704848 (SNP 36) with
Pmeta=2.66x1072,
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DISCUSSION

In this multiethnic association study, we independently validated and extended the previous
association of CD247 genetic variants with SLE, primarily in the Asian population.

Two studies have previously found an association of the 3’UTR of this gene with reduced
expression of CD3( (9) and SLE (10). In contrast, our discoveries highlight genetic
association in Asians in the 5’ region (intronl) of CD247. This is consistent with recent
studies performed in Asian populations (11). Considering the ethnic heterogeneities in the
epidemiology of SLE (12,13), these observations suggest a particular association of CD247
genetic variants in Asian populations. Although pointing to heterogeneity in the genetic
association of CD247 with SLE, most importantly, these results further support and
highlight the implication of this gene in SLE.

The CD247 gene spans 88 kb and has been mapped to chromosome 1g24.2. The first intron
spans about 78 kb, followed by seven other exons of the gene. The 11 significant SNPs in
the Asian population and 78% of the significant SNPs in the other three populations tested
lie in intron 1, suggesting a possible role in the regulation of CD247 expression (11). This
region is further highlighted by the imputation analysis (27 imputed SNPs reached
significance) and haplotypic association (Phap:2.12><10*5) in the Asians, and by an overall
significant meta-analysis of all four populations.

Gorman et al. (9) found two SNPs (in high LD), rs1052230 and rs1052231 in 3’UTR of the
gene being associated with CD247 expression levels in both SLE patients and healthy
controls. However, only weak association with disease risk was found for haplotypes in the
3’UTR region of the gene. In addition, Warchot et al. (10) found that rs1052231 conferred
increased risk of incidence of SLE. In our study, SNP rs1052230 did not show significant
disease association (P=0.2575), and imputation on rs1052231 was neither significant
(P=0.2950). These discrepancies from our results suggest an implicit genetic heterogeneity
in the different populations while principally providing further evidence of the involvement
of CD247 in SLE susceptibility.

Interestingly, other studies on autoimmune diseases also reported their main findings in
intron 1 of CD247 (20-25), supporting a common mechanism behind the involvement of this
gene in the etiology of these autoimmune disorders. A recent GWAS on systemic sclerosis
(SSc), an autoimmune disease that shares some autoantibody and clinical features with SLE,
identified CD247 as a major susceptibility gene (rs2056626, located in intron 1,
P=3.39x1079) (20). This association with SSc was replicated in two other cohorts (21,22). In
our study, rs2056626 was not genotyped but was found to be significantly associated when
imputed (P=1.42x10"2). Furthermore, this SNP is in strong LD (r?=0.75) with rs7523907
(SNP 14) (using HapMap data; release 23), which had P=3.00x1072 in our study. A meta-
analysis of GWAS in celiac disease and rheumatoid arthritis identified several non-HLA
shared loci, among which the SNP rs864537 in intron 1 of CD247 (Pcombined=2.20x10711)
(23). In our study, rs864537 was not genotyped (or imputed) and it is not in LD with any of
our SNPs (using HapMap data; release 23). Several GWAS also showed suggestive
association of CD247 with Crohn's disease (summarized in Wang et al., (24)), with the
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relevant SNPs being rs704853, rs12061855, rs1799704, rs2988276 and rs870875
(P=1.80x1073<P<2.40x1072). The SNP rs870875 was tested in our study but with no
association, and rs2988276 had a borderline association using imputed data (P=3.98x1072).
None of these SNPs is in high LD with any of our variants (using HapMap data; release 23).
Recently, a novel association with CD247 (rs1773560, in intron 1) was also identified for
juvenile idiopathic arthritis (P=2.57x1077) (25). This SNP showed an imputed association in
our study (P=1.83x1072) and is in strong LD (r?=0.71) with rs7523907 (SNP 14, significant
in our SLE study) and with rs2056626 (r2=0.94) (found associated with SSc) (using
HapMap data; release 23).

T cells are considered to be central to the pathogenesis of SLE because aberrations in their
functionality are very likely strongly contributing to the altered immune responses and
overproduction of pathogenic autoantibodies (26). CD247 encodes the T-cell receptor zeta
chain (CD3(), a component of the T-cell receptor (TCR)-CD3 complex (27). TCR{ is a
pivotal component of the TCR signaling machinery and vital for T cell activation. A
defective expression of the CD3(-chain has been associated with autoimmune diseases
including SLE (6, 7, 28) and rheumatoid arthritis (29,30), but also other conditions such as
tumors and chronic infection (31). It is one established reason for various functional
alterations in T cells in these conditions that TCR signaling through CD3( is replaced by
FcRy (8) and its associated Syk pathway that enhances calcium and cytoskeletal reactions
(32). This mechanism could be responsible for the shared association of several autoimmune
diseases with CD247. Another effect that seems particularly relevant for SLE is that CD3(
signaling reportedly augments IL-2 production (7), indicating that its loss likely contributes
to the defective IL-2 production that characterizes T cells in SLE (33). Potential mechanisms
as per how autoimmunity-associated genetic variants exert their effects may include
differences in expression, splicing and posttranslational processing, but their relevance is
still not clear (34). Our findings confirm the relevance of these effects for SLE pathogenesis
and highlight that the development of SLE is influenced by mechanisms shared with other
autoimmune diseases, which involve a role of the TCR signaling pathway that should be
further characterized. This is a part of several GWAS-identified risk loci shared between
SLE and other autoimmune disorders pointing to common immunological mechanisms (35).
In this study, we provide a replication establishing CD247 as a genetic risk factor for SLE,
which generates new implications for the pathogenesis of the disease and might lead to new
therapeutic targets for disease management.

PATIENTS AND METHODS

Study design

The genotype data used in this study were generated as a part of a joint effort of more than
40 investigators from around the world. These investigators contributed samples, funding,
and hypotheses on a combined array containing ~35,000 SNPs (Figure S1 from Lessard et
al. (36)). The Oklahoma Medical Research Foundation (OMRF) served as the coordinating
center, ran the arrays, and sent the data to a central facility for quality control at Wake Forest
Medical Center. These data were then distributed back to the investigators, who requested
the SNPs, for final analysis of their own respective hypotheses.

Genes Immun. Author manuscript.
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Patient and control samples

Genotyping

A total of 17 003 samples (8 922 SLE patients and 8 077 healthy controls; 4 with unknown
disease status) from four main populations with Asian, Hispanic/Amerindian, European and
African ancestry were initially enrolled in this multiethnic study. Details regarding the
characteristics of the study participants in each dataset were previously described (37). The
samples were assembled at the Oklahoma Medical Research Foundation (OMRF) after
collection in multiple institutions around the world, following ethics committee approval
and informed consent in accordance with the Declaration of Helsinki. Patients were
classified with SLE based upon using the American College of Rheumatology criteria (38).

A total of 44 SNPs in the CD247 region and 347 ancestral-informative markers (AlMs) were
genotyped using the Illumina iSelect technology (Illumina, San Diego, CA, USA). Extensive
quality control was performed following stringent criteria to select the SNPs to be used in
the analysis, namely well-defined cluster scatter plots, >90% call rates across the entire
study and in this specific set of SNPs, deviations from Hardy-Weinberg equilibrium with P
> 0.01 in controls and P > 0.0001 in cases (using the PLINK (39) Hardy-Weinberg
analysis), total proportion missing <5%, and P > 0.05 for differential missingness between
cases and controls. Only SNPs with MAF > 5% in both case and controls groups were
analysed for association in each population.

Samples with <90% call rate, excess heterozygosity, as well as first-degree relatives,
duplicates and individuals with self-reported vs. genetically determined gender
inconsistencies were excluded from the analysis as previously described (37).

EIGENSTRAT (40) was used to identify population substructure within the samples based
on AlMs. The AIMs were selected to distinguish four continental ancestral populations:
Africans, Europeans, American Indians, and East Asians (41,42). Principal components
from EIGENSTRAT outputs were used to identify genetic outliers from each population
cluster (as described in (37)). After quality control a total of 1 452 samples were excluded.
The final meta-dataset used in the analysis consisted of 15 551 subjects (8 214 SLE cases
and 7 337 controls): 2 488 Asian, 2 247 Hispanic/Amerindian, 7 248 European and 3 568
African. Characteristics of the study participants in each dataset are described in Table 3.

Two SNPs (rs1214603 and rs10918694) were excluded due to genotyping failure. Of the 42
SNPs with genotyping results, three further were excluded in all the four populations
(rs2995087, rs1214604 and rs704855), nine more in the Asians, nine more in the Hispanic/
Amerindians, eight more in the Europeans and six more in the African ancestry (African
American/Gullah) samples (Table 1, Supplementary Table S2) due to quality control issues
previously described (37). A final set of 39 SNPs were successfully genotyped in at least
one population (SNP ID 1-39; listed in Table 1 and Supplementary Table S2): 30 in the
Asian population; 30 in the Hispanic/Amerindians; 31 in the Europeans; and 33 in the
Africans.

Genes Immun. Author manuscript.
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Statistical Analysis

Multiple logistic regression (PLINK (39); additive genetic model) was used to test for SLE
association. Analysis was adjusted for the first three principal components calculated from
AlIMs, and gender. Conditional analyses based on the most strongly associated SNP
(rs858554) (results expressed as conditional P [Pcond] values) were performed with logistic
regression using PLINK (39), (additive genetic model; adjusted for the first three principal
components and gender). Results were considered significant below the conventional level
of P<0.05. Correction for multiple testing was performed using the conservative Bonferroni
method.

Haplotypic association was tested using PLINK (39) sliding window analysis. Linkage
disequilibrium (LD) plots for each cohort were created using Haploview 4.2 (43). We also
used the HapMap CHB (Han Chinese from Beijing, China, n=84) reference dataset
(downloaded from the International HapMap Project website; HapMap3, release 2;
chr1:165663570..165742500) to construct the LD plot of the reference Asian population and
check linkage between the significant SNPs in our Asian cohort and those in CD247 from
the GWAS data that we had access to (19).

Meta-analysis of the 19 SNPs with association data for the four populations were calculated
using Stouffer's Zienqg method implemented in METAP (44), weighted by sample size and
taking into account effect directions.

Imputation Analysis

SNPs not directly genotyped in the CD247 region for the Asian population, where we had
the strongest associations, were imputed with PLINK (39) using HapMap Phase Il and
specific reference panels for the Asian population (Release 23; 161 230 SNPs on
chromosome 1, 90 JPT+CHB founders). For every imputed SNP, PLINK provides an
information content metric INFO, ranging from 0 to 1 (although it can be greater than 1
occasionally). A higher INFO value generally means a better SNP imputation. All imputed
SNPs with MAF smaller than 0.05 and with INFO<0.8 were excluded. For genotyped SNPs,
PLINK calculates the concordance rate among observed and imputed genotypes (Figure 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Réqsults of association tests with SLE for observed and imputed single-nucleotide
polymorphisms (SNPs) in the CD247 gene. The Scaled diagram of the CD247 gene
structure is represented above the plots: exons are represented by black boxes and marked
with its corresponding number; 5’UTR and 3’UTR are represented by grey boxes; introns
are represented by black lines between exons. The top plot shows the negative logarithms of
the P-values for genotypic association (under the additive model and adjusted for the first
three principal components and gender) for the polymorphisms successfully genotyped by us
in the Asian population (green dots), and the significant SNPs from GWAS data (19) (dark
blue dots; personal communication from authors, May 2012). The second plot displays the
negative logarithms of the P-values for 51 SNPs in chromosome 1 imputed with high quality
(SNPs with a minor allele frequency, MAF>0.05, and SNP INFO>0.80, grey dots),

including SNPs that were previously genotyped (green dots). The bottom graph displays the
rate of concordance of observed and imputed genotypes. Broken horizontal lines in top and
second plots indicate a significance level of P=0.05. In all plots, the SNPs that had been
initially genotyped are represented with green dots.
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Asians

Figure 2.
Linkage disequilibrium plot for the 30 genotyped single-nucleotide polymorphisms (SNPs)

in CD247 in the Asian population. This plot was obtained using the genotyping data from
our study with Haploview 4.2 using the pairwise R-square color scheme in a grey scale. The
position of the most significantly associated haplotype is indicated. *Significant P-value
under the additive model and adjusted for the first three principal components and gender
(Pagj<0.05); **Significant P-value overpassing Bonferroni correction

(Pagj<0.0017); *Significant P-value from the association analysis conditioned on the most
significantly associated SNP, rs858554 (P;ong<0.05).
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Africans

EED]

Figure 3.
Results of association tests with SLE and meta-analysis in the four cohorts in our study,

specifically in intron 1 of the CD247 gene. The plots show the negative logarithm of the P-
value of genotypic association (under the additive model and adjusted for the first three
principal components and gender) for the observed polymorphisms genotyped in the: Asians
(first plot; 30 SNPs; green dots); Europeans (second plot; 31 SNPs; blue dots); Africans
(third plot; 33 SNPs; red dots); and Hispanic/Amerindians (fourth plot; 30 SNPs; pink dots).
The bottom plot shows the negative logarithm of the P-value for the meta-analysis (under
the additive model and adjusted for the first three principal components and gender). Only
SNPs with association results in the four study populations were tested (19 SNPs; black
dots).
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Table 3

Demographic characteristics of the four populations (after quality control)

Population Ancestry Samples after QC  Cases Age of onset (mean +SD)  Controls Male Female

Asian 2488 1246 26.4+0.3 1242 245 2243
European 7248 3842 33603 3406 1452 5796
African 3568 1669 34.0+0.3 1899 713 2855
Hispanic / Amerindians 2247 1457 29504 790 199 2048
Total 15551 8214 7337 2609 12942

Abbreviations: QC, quality control.

Populations: African ancestry includes 274 Gullah and 3 294 other African Americans; Hispanic/Amerindian ancestry includes 1 252 Hispanics
and 995 Native Americans. Information for Age of onset was available for most of the cases in each population.
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