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The centromere is the chromatin-based platform which accumulates microtubule 

binding proteins during mitosis that in turn drive chromosome segregation. Despite 

their size (in the order of megabases in mammals) and their conserved role, 

centromeres are known to occasionally leave their usual comfort zone and “jump” to a 

novel chromosomal site (1, 2). These so-called neocentromeres are by most measures 

bona fide centromeres that produce productive sites for microtubule attachment and 

are segregated with high fidelity. A clue to this perplexing nomadic behavior came from 

the identification of a histone H3 variant, named CENP-A (or CenH3) which is 

incorporated into nucleosomes specifically at the centromere region (3–5). Histones 

bind DNA in a non-sequence specific manner and as such are ideal candidates to 

maintain local chromatin identity largely independent of the underlying DNA sequence. 

This notion led to the proposal that instead of a unique DNA sequence signature it is the 

presence of CENP-A containing nucleosomes that identifies the position of the 

centromere (6, 7). Consisted with this, CENP-A is a very stable component of 

centromeric chromatin that can survive through multiple mitotic divisions (8) and even 

appears to evade epigenetic reprogramming in the germ line (9). 

A strong prediction of the behavior of an epigenetic system is the ability to nucleate a 

structure or “mark” that in turn is propagated independent of the initial trigger, much 

like a seed that triggers subsequent autonomous growth of a crystal. Until very recently, 

such direct evidence for the epigenetic nature of the centromere was lacking. 

Centromeres were like the rocks on the Racetrack playa in California´s Death Valley. We 

know they can move but no-one ever caught them in the act of moving. A recent study in 

this journal (10) now provides a plausible solution to the analogous problem in 

centromere mobility. They, along with another report by Foltz and colleagues (11) go 

beyond the phenomenology of human neocentromeres and experimentally induce the 

formation of a new centromere. 

Both studies, one in Drosophila S2 cells and one in Human tissue culture cells employ 

chromosomally integrated arrays of bacterial Lac operator (LacO) sequences which 

form a recruitment platform for the ectopically expressed Lac repressor protein (LacI). 

The Drosophila study takes the bold approach of simply fusing Drosophila CenH3 (also 

known as CID) directly to the LacI protein. They tether it to the LacO site far removed 

for endogenous centromeres. Although highly artificial, these CenH3 molecules, literally 

dragged in by their tails, assemble locally into nucleosomes. Critically, they in turn 
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recruit more CenH3 that is not pulled in by LacI tethering but rather as a consequence 

of the initial CenH3 pool and expands laterally beyond the LacI binding sites. This 

demonstrates a positive feedback mechanism where CenH3 can be recruited to a 

“naïve” chromatin site in a manner dependent of CenH3 already there. Epigenetic 

inheritance in a nutshell. 

The Foltz team takes a slightly different approach. Here, it is not CENP-A (human 

CenH3) that is forced onto the LacO domain but rather HJURP, a chaperone they show 

acts as a bona fide CENP-A specific chromatin assembly factor. Indeed, creating a local 

concentration of HJURP at a novel site is sufficient to nucleate CENP-A chromatin on the 

LacO array (11). HJURP is the seed that sows the epigenetic centromere. It does not 

form a part of the stable centromere structure but its transient presence is sufficient to 

kick-start the process. 

Is the formation of an ectopic CenH3 chromatin domain sufficient to nucleate a 

functional centromere? An earlier report from Cheeseman and colleagues used the same 

powerful LacO technique, to co-tether CENP-C and CENP-T, two centromere 

components acting downstream of CENP-A, onto an ectopic chromosomal site. 

Remarkably, this was sufficient to trigger the recruitment of other members of the 

centromere as well as proteins that are part of the kinetochore, the microtubule binding 

complex driving chromosome segregation during mitosis (12). Indeed, at least 

transiently, this naive locus now becomes the site that power chromosome movement 

suggesting that the primary role of CENP-A nucleosomes upstream is to recruit CENP-C 

and –T to the centromere. These findings were further extended by recent work in vitro 

demonstrating that an array of CENP-A nucleosomes is sufficient to nucleate a 

functional kinetochore in Xenopus extracts (13). 

Previous attempts to generate neocentromeres in cells by simple CENP-A 

overexpression were met with mixed results, with success in Drosophila (14) but failure 

in human cells (12, 15). However, similar to ectopic nucleation of CENP-C and –T (12), 

direct tethering of CenH3 (10) or its chaperone HJURP (11) resulted in efficient 

recruitment of all centromere and kinetochore components tested that in turn can 

mediate efficient capture of microtubules emanating from the mitotic spindle and drive 

chromosome movement. In effect, a dicentric chromosome with two active centromeres 

is created. While the consequent mitotic failure and cell death highlights the detrimental 

consequences of such dicentric chromosomes, they preclude determining whether these 

new-born centromeres are in fact, heritable. The work by the Heun laboratory solved 

this conundrum by analyzing ectopic, plasmid-based artificial chromosomes that are not 

essential for cell viability (10). These can replicate but have no means for active 

segregation during mitotic division leading to rapid loss from a dividing population. As 

on chromosomal sites, tethering of CenH3 to LacO containing plasmids leads to the 

recruitment of kinetochore proteins, microtubule binding and indeed to the stable 

inheritance. Importantly, seeding of such centromeres requires LacI-bound CenH3 to be 

present only transiently. This pool is subsequently replaced by endogenous self-

replicating pools of CenH3 allowing the ectopic plasmid-based centromeres to be 

maintained for over a month in culture. This solves a long standing question in the 



centromere field, and indeed in the broader field of epigenetics. Centromeric chromatin 

is not only required for centromere function but its creation is sufficient to nucleate a 

centromere and render it heritable. 

What are the outstanding questions? Although seeding of CenH3 allows small episomal 

plasmids to be propagated, it is unclear whether it would be sufficient to support 

centromeres on chromosomal sites. The Heun team has recently reported that force 

expression of CenH3 in Drosophila cells triggers neocentromere function primarily 

adjacent to pre-existing heterochromatin suggesting a role for these domains (14) in 

centromere formation as previously demonstrated in fission yeast (16, 17). Although 

naturally occurring human neocentromeres appear to lack heterochromatin (18), this 

raises the question as to whether the converse can occur as well and a CenH3 triggered 

neocentromere can recruit heterochromatin to solidify its fate. Lastly, the seeding and 

subsequent inheritance of the centromere now shown by Mendiburo et al implies that 

CenH3 is central to a self-templating positive feedback loop. What remains, is to 

demonstrate what components are part of such a loop and how it works. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 

Seeding and propagation of the epigenetic centromere. CenH3 is targeted to a naive 

chromatin locus either by direct fusion to locally bound LacI or through recruitment by 

the LacI-tethered chaperone HJURP. In either case artificially seeded CenH3 results in 

the nucleation of CenH3 nucleosomes. These in turn trigger the propagation of CenH3 

chromatin in a self-templating manner (likely through an adaptor intermediate) 

without the need for the initial LacI-seed. Once formed, CenH3 chromatin propagation 

and turnover through cell divisions reach an equilibrium resulting in stable inheritance 

of the epigenetic centromere mark. Note that the nature of the adapter is outside the 

scope of this perspective and is depicted here as a hypothetical molecule or complex 

that links CenH3 nucleosomes to new CenH3 histones either directly or indirectly. 
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