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Abstract

New experimental techniques in epigenomics allow researchers to assay a diversity of

highly dynamic features such as histone marks, DNA modifications or chromatin struc-

ture. The study of their fluctuations should provide insights into gene expression regula-

tion, cell differentiation and disease. The Ensembl project collects and maintains the

Ensembl regulation data resources on epigenetic marks, transcription factor binding and

DNA methylation for human and mouse, as well as microarray probe mappings and an-

notations for a variety of chordate genomes. From this data, we produce a functional an-

notation of the regulatory elements along the human and mouse genomes with plans to

expand to other species as data becomes available. Starting from well-studied cell lines,

we will progressively expand our library of measurements to a greater variety of sam-

ples. Ensembl’s regulation resources provide a central and easy-to-query repository for

reference epigenomes. As with all Ensembl data, it is freely available at http://www.

ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database

server at ensembldb.ensembl.org.
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Introduction

In addition to providing long-term storage of genetic infor-

mation across cell divisions, DNA is also a physical molecule

with dynamic biochemical activity. Complex interactions

with polymerases, transcription factors (TF) and enzymes

that modify histones and DNA (1–3) as well as its spatial

structure (4, 5) largely determine the functional activity of the

cell’s chromatin, in particular the controlled transcription of

genes (6), which in turn controls cell development (7).

Variants on the active sites of these interactions, or regulatory

elements (8), have been shown to be driving forces of evolu-

tion (9, 10) and disease (11).

Advances in laboratory assays have allowed us to meas-

ure this rich activity genome-wide. For example, histone

modifications and TF binding locations previously identi-

fied with chromatin immunoprecipitation followed by

microarray hybridisation (ChIP-chip) (12) now generally

employ high-throughput sequencing (ChIP-seq) (13, 14);

DNA methylation is assayed with MeDIP (15) or bisul-

phite sequencing (16); regions of open chromatin are iden-

tified with Formaldehyde-Assisted Isolation of Regulatory

Elements (FAIRE) (17), DNase-seq (18) or ATAC-seq (19).

These measurements can be used to identify regulatory

elements (20–22), but also characterise disease (23). To de-

tect any signal, it is crucial to survey many of these bio-

chemical features, often running many assays on a

considerable number of samples. For this reason, large

consortia have already produced vast reference datasets

(24–26).

To make sense of these large datasets, the Ensembl

Regulation resources provide a rich and powerful framework

to browse or query these data and enable cell types compari-

son. In addition to cell-type specific measurements, we pro-

vide a number of summaries, as well as mapping microarray

probes to the current reference sequences. Alongside all other

Ensembl resources (27–30), this data can be browsed on the

web, but also accessed programmatically through MySQL,

Perl or REST (31) for intensive queries. Finally, a BioMart

server (32) allows users to extract the required data in bulk.

Methods

Uniform processing of epigenomic data

We first select cell types for which we have sufficient data

to produce a segmentation (see below), and download all

the epigenomic datasets associated with those cell types in

the form of sequencing reads.

Since we are aggregating data from diverse sources, it is

vital to remove artefacts due to differences in analysis pipe-

lines. Moreover, scientific consortia generally have neither

the remit nor the resources to update their analysis results

each time the reference assembly or other genome annota-

tion is updated. We therefore remap all of the original data

onto the current reference genome, call peaks and normal-

ise the signal with our uniform pipeline (33).

Regulatory evidence

To assess the experimental evidence supporting the high

level annotation, Ensembl’s regulation resources provide

the underlying peaks and normalised sequence read cover-

age signals. This experimental data comes from various

public datasets (see Table 1). We track its provenance and

provide links to the raw data in primary database resources

such as the European Nucleotide Archive (ENA) (34),

ENCODE (26) or NCBI (25).

Genome segmentation

Genome segmentation tools such as Segway (35) or

ChromHMM (36) conveniently allow us to summarise mul-

tiple assays into a single annotation of the genome.

Essentially, they cluster genomic regions by their associated

experimental marks. They can thus replace multidimensional

measurements with cluster identifiers, or states. For human,

we provide Segway and ChromHMM segmentations of our

Table 1. Ensembl regulation experimental resources for release 77

Experimental resources

Species Data sets by Feature types

by class

Total features

Source Class

Human ENCODE: 423 Polymerase: 23 2 Experimental peaks: 11267991

Roadmap Epigenomics: 62 Histone mod: 241 46

Other: 22 TF: 196 213 Motif Features: 154884

Total: 507 Open Chromatin: 25 2

Mouse ENCODE: 16 Polymerase: 5 1 Experimental Peaks: 1016365

Other: 57 Histone mod: 26 12

Total: 73 TF: 29 24 Motif features: 126617

Open Chromatin: 3 1

Page 2 of 13 Database, Vol. 2016, Article ID bav119

 at 20801 Instituto G
ulbenkian de C

iÃ
¯Â

¿Â
½

ncia on A
pril 27, 2016

http://database.oxfordjournals.org/
D

ow
nloaded from

 

http://database.oxfordjournals.org/


Figure 1. Regulation tracks. Screenshot of the ‘Region in detail’ location view, upstream of the human TP53 gene. The default ‘MultiCell’ regulatory

features track is shown. Below, the regulatory features, segmentation, ‘TFBS & DNase1’ and ‘Histones and Polymerases’ tracks associated to cell

type GM12878. Finally, below again, the regulatory features annotated with activity for a few other cell types. Features that are inactive in a specific

cell type are greyed out. Various elements were clicked to reveal floating menus with feature specific data and links to detailed views or external

resources.
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data, in which we replace the state identifier numbers with

more evocative functional labels: predicted promoter with

TSS, predicted transcribed region, predicted promoter flank,

predicted enhancer, CTCF enriched, predicted repressed, pre-

dicted low activity and predicted heterochromatin.

The Ensembl regulatory build

The Ensembl Regulatory Build has been redesigned to pro-

vide a straightforward summary of all the data processed

above (33) (Figure 1). It is composed of consensus features

(called MultiCell in the interface) that describe the func-

tion of a region. These functional labels are either inferred

from the segmentation (promoter with TSS, promoter

flanking region, distal enhancer or CTCF binding site) or

directly from experimental measurements that are not ex-

plained by the segmentation (unannotated TF binding site–

TFBS–or unannotated open chromatin). Each MultiCell

feature is annotated with a cell type specific activity indica-

tor (active or inactive).

Motif features

Chromatin immunoprecipitation experiments locate gen-

omic fragments bound by a protein. Nonetheless, they do

not directly locate the exact TFBS at nucleotide resolution.

We therefore annotate TF binding peaks with overlapping

motif features, i.e. putative TFBS based on existing pub-

licly TFBS Position Weight Matrices (PWM) from JASPAR

(37).

We start by associating TFs used in ChIP experiments

to Ensembl gene IDs based on the antibody used in the

ChIP experiment. We then associate each JASPAR matrix

to Ensembl genes. If the JASPAR protein identifier is from

the correct species, this is done directly using Ensembl’s

database of cross-linked identifiers across bioinformatics

resources. Otherwise, the matrix is associated to the

Ensembl human gene with the best Blastp (38) alignment

to the JASPAR protein (blastp version: 2.2.15, parameters:

-M BLOSUM80 -m 8 -b 1 –i). This process allows us to use

any metazoan PWM for human and maximise the number

of TFs covered.

To annotate TFBSs, we start by taking all JASPAR TF

PWMs and do a lenient whole genome search for motif

matches using MOODS (39). We then select all the

matches that lie within observed ChIP-seq binding regions.

We discard any match whose score has a single tail p-value

above 5%, as estimated empirically from the distribution

of scores obtained by selecting matches on random regions

of the genome. Finally, we associate filtered matches to

overlapping experimental features and their associated

regulatory feature.

Of the 211 human TFs for which we have experimental

data, 45 have at least one associated PWM (in total, 97

PWMs are associated, see Supplementary Table 1).

Ensembl release 77 (October 2014) includes 154 884 dis-

tinct TFBS for human. Similarly, of the 23 mouse TFs for

which we have experimental data, 12 have an associated

PWM (19 PWMs in total, see Supplementary Table 2).

They are associated to 126 617 TFBS. Note that not all

TFs have an associated PWM in JASPAR. The fraction of

peaks with an associated motif hit, assuming a PWM is

known, is highly variable (see table S3), however for strong

binding pioneer TFs such as CTCF a PWM is found at a

substantial majority of binding sites.

DNA methylation

Both Reduced Representation and Whole Genome Bisulfite

Sequencing (RRBS/WGBS) data (16, 25, 26, 40) are provided

via the database, characterising 44 cell lines. This data was

processed with Bismark (41) with default parameters, and

replicate counts were merged. The number of converted reads

at each position was fitted to a mixture model of two beta-bi-

nomial distributions and a uniform discrete distribution con-

ditioned on the total number of reads at that position. This

model assumes that a base pair is fully methylated, fully

unmethylated or in an undetermined third state. For each

dataset, the parameters of these distributions were set by

Expectation Maximization (EM) across all the data points.

See Figure 2 for an example fit. Using these parameters, we

evaluated the posterior probability of all three states at each

Figure 2. Modelling bisulphite sequencing results with a Bayesian

model. The fraction of converted reads in bisulphite sequencing is cor-

related to the methylation status of the underlying DNA. We show here

a Bayesian model that fits the observed data by dividing the cytosines

into three categories: methylated (red), unmethylated (blue) and un-

known (green).
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observed position. If all three states had a posterior probabil-

ity>10�4, then the position was discarded.

Externally curated data

Ensembl stores a small set of externally curated datasets

pertinent to gene regulation. These include: a set of human

and mouse miRNA target predictions provided by

DIANA-TarBase (42), experimentally validated non-cod-

ing regions from the VISTA enhancer browser (43), and re-

gions highlighted by the FANTOM 5 project (44, 45).

Microarray probe mappings

Microarray probe mappings are provided for widely used

microarray platforms across several species. See

Supplementary Table S4 for a summary of the supported

platforms. These are primarily expression arrays, with a

smaller number of human methylation and comparative

genomic hybridization (CGH) arrays. Represented manu-

facturers include Affymetrix, Illumina, Codelink, Agilent

and Phalanx, as well as small number of custom array de-

signs. Our methods for mapping probes and the resulting

annotations were described in Ballester et al. (46).

Experimental metadata

Normalised annotation of experimental metadata (such as

the cell type and experimental factor) is essential for data

integration. Large-scale projects such as ENCODE

have led the way by using internal stable nomenclatures.

To improve traceability and data integration, we use the

Figure 3. Configuration panel and data selection matrix. This panel is available via the ‘Configure this page’ button in the location view. The

‘Regulation’ menu items describe the different types of data available. Lower down, the ‘Oligo Probes’ menu items provides access to microarray

probe mappings.

The ‘Open chromatin & TFBS’ item has been selected to reveal a configuration matrix. To assist first time users, a tutorial is presented, this tutorial

can be hidden or shown as desired.
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Experimental Factor Ontology (EFO) (47), and actively

work with the EFO curation team to correct or submit new

entries as required.

Data visualisation and access

Ensembl location view

Ensembl regulation data can be visualised in the Ensembl

genome browser (48). Figure 1 shows an example of the

main Location view, where regulatory features can be

observed alongside gene models and other user-selected

data. Clicking on a regulatory feature reveals a pop-up

menu with basic details: feature coordinates, stable ID, its

classification and mapped TF binding motifs. By default,

only the MultiCell regulatory features are displayed in this

view, but the display can configured to show additional

cell-specific annotations and regulatory evidence using the

configuration panel linked on the left hand side of the

page.

Experimental evidence for the MultiCell regulatory fea-

tures can be displayed as regions, generally ChIP-seq peak

calls. Clicking on a peak displays its type (e.g. DNase1 or the

specific TF name); the parameters that defined the region

from the data including score and peak summit representing

the position of highest sequencing read coverage; and a data

source such as an ENA accession. Additionally, the read

coverage density functions underlying the peaks, measured in

Reads Per Kilobase per Million mapped reads (RPKM), can

be displayed as curves.

Motif features (PWM alignments) are displayed as

black boxes within regulatory features and ChIP-seq peaks

of the corresponding TF. Clicking on a motif feature re-

veals a floating menu where the TF name, JASPAR PWM

ID and the ratio of the motif’s binding score divided by the

PWM’s optimal binding affinity are all highlighted within

a Motif Information table.

The regulatory segmentation data is shown as a con-

tinuous line across the genome whose colour changes with

the local classification. Clicking on a segment reveals its

classification, its exact genomic location, and the analysis

used to generate the segmentation.

DNA CpG methylation can be displayed as markers,

whose color moves along a gradient from yellow (hypo-

methylated) through to green then blue (hyper-methy-

lated). A click reveals the methylation information for any

given cytosine, when zoomed out these changes to provid-

ing summary information for the selected region.

Other externally curated sets of functional elements (ex-

pression quantitative trait locus–eQTL–regions, miRNA

targets and VISTA regions) can also be displayed as feature

tracks, with appropriately detailed feature menus.

Configuring the location view

The Regulation tracks can be configured in the

‘Regulation’ section of the display configuration panel

Figure 4. Regulatory Feature ‘Summary’ view. This view displays the

genes overlapped by the regulatory element of interest, along with ac-

tivity information in all available cell types. In this case, the red pro-

moter is constitutively active, but the nearby cyan CTCF binding site is

active in only 4 cell types.
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Figure 5. Regulatory feature ‘Details by cell line’ view. This view displays all the evidence surrounding a regulatory feature of interest, either as re-

gions (ChIP-seq peaks) or signal functions. At the top, a solid multicolored bar represents the segmentation for the desired cell types. Note the se-

lector buttons above the window.
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(Figure 3). The submenu items restrict the panel to subsets

of available tracks.

Because of the large number of available cell types and ex-

periments, many of the experimental tracks are organised in

tables where each column is specific to a cell type and each

row to a type of assay. A search box facilitates filtering the

list of available factors. Clicking or dragging the mouse se-

lects single or multiple tracks. Pointing the mouse above an

axis label reveals a button to select or deselect all the cells on

that row or column. For each column, the user can choose

between displaying regions (peaks), or plots of sequencing

read coverage depth (signal).

The display of microarray probe mappings can be config-

ured from the top-level ‘Oligo Probe’ section in the configur-

ation menu.

Inspecting a regulatory feature

Clicking on a regulatory feature stable ID leads to a

‘Regulation’ tab, where more detailed information is dis-

played about that feature, including cell-specific annota-

tions and supporting regulatory evidence that are usually

not displayed in the Location view. On the top of the

screen, large icons lead to different displays. Each display

starts with the location of the feature and a summary of its

activity in each cell type, followed by a specialised view:

Summary: a lightweight view that displays the ’MultiCell’

regulatory feature and its activity in different cell types

(see Figure 4).

Details by cell line: Cell-specific features are shown along-

side their supporting evidence (Figure 5). To aid inter-

pretation, vertical red lines delineate the core region of

the selected regulatory feature. Buttons at the top of the

display bring up modal windows to quickly toggle cell

types and experimental evidence on or off (see Figure 6).

Feature Context: A display of wider genomic context

around the chosen regulatory feature (see Figure 7).

Evidence: A tabular view displaying the list of all support-

ing evidence peaks for that regulatory feature. The table

header allows the user to filter and export the table.

Example use case

The applications of this regulatory annotation are expected

to expand with time. Key current uses include prioritising

regulatory variants and observing the dynamics of gene ex-

pression regulation. For example, oestrogen receptor gene

ESR1 is known to have an alternate distal promoter in

osteoblasts and some cancer cell lines (49). This alternate

promoter is clearly identified in the Regulatory Build, as

shown in Figure S5.

Experimental Meta-data

Tracking the origin of experimental evidence is essential

for traceability and reproducibility. We store experimental

meta-data in the Ensembl ‘Funcgen’ database, and these

Figure 6. Regulatory Feature ‘Details by cell line’, cell type and experimental evidence selectors. (A) At the top of the ‘Details by cell line view’ (Figure

5) a button labelled ‘Select cells’ displays this modal window, which allows the user to quickly toggle cell types on or off. (B) Similarly, the ‘Select evi-

dence’ button displays this modal window, which allows the user to quickly toggle experimental tracks on or off.
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data can be accessed through the browser. Selecting an ex-

perimental peak reveals a link to the original data. This

link is labelled with either a sequence archive ID (referring

to the exact set of sequencing reads used in the Ensembl

analysis) or a project name such as ENCODE if the data

has not yet been submitted or deposited in an archive.

Selecting this link leads to an Experiment view, containing

a summary table of all available experiments, and a more

detailed Sources table describing the sources of the selected

feature. The summary table can be used to filter the con-

tent of the detailed Sources panel, allowing easy access and

comparison of the meta-data for all the experiments incor-

porated into the Regulatory Build. By clicking links in the

summary table, filters on cell type, project name and evi-

dence type can be added or removed. The system automat-

ically composes the filters to display the desired datasets.

In the Sources table, the ‘source’ and ‘project’ fields link

out to the location of the source data (either in a sequence

archive or on an associated project page) and the project

website respectively. Other fields here include evidence

type and name, links to the cell type EFO definition,

PWMs and associated encoding genes for TF experiments.

More fine-grained filtering is again enabled in the table

header search box, allowing searches for more specific fea-

ture types.

BioMart

Large-scale querying of Ensembl regulation data is possible

through the Ensembl BioMart interface (32), which can

output large numbers of features in several formats includ-

ing tab-delimited text. Using the ‘Ensembl Regulation’

database (see Figure 8) as a starting point the user can se-

lect a regulation data set for a given species. The human

and mouse data sets contain regulatory features, as well as

regulatory evidence (experimental peaks), binding motifs

(TFBS PWM mappings) and other regulatory regions (ex-

ternally curated data). The Drosophila data set currently

contains the latter only.

Using filters, data for specific cell lines and/or specific

experimental factors can be selected as can regulatory fea-

tures overlapping specific genomic regions (e.g. upstream

genes of interest).

Microarray probe mappings and transcript annotations

can be obtained through the ‘Ensembl Genes’ database, by se-

lecting the relevant array related filters or external attributes.

Methylation data are not currently available through

BioMart.

Within the Variant Effect Predictor

The Ensembl Variant Effect Predictor (VEP) (50) has re-

cently added regulatory features to its set of predicted

Figure 7. Regulatory Feature ‘Feature context view’. This view displays

the general context 25 kb upstream and downstream of a feature, with

genes and neighbouring elements. As in the summary view, for each

cell type inactive features are greyed out, with sparse coloured lines

indicating their underlying function. At the bottom, FANTOM5 elements

and TarBase target regions are indicated.
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consequences that can be associated with single nucleotide

polymorphisms (SNP) or de novo variants. This provides

an additional source of evidence for the effect of variants

that, although significantly associated to diseases or other

phenotypes, have currently little functional annotation

since they often fall outside known coding regions. The

VEP also reports whether a variant falls in a TFBS binding

motif and, in the case of SNPs, whether it lies in a highly

informative position of the TFBS, with potentially signifi-

cant effects on the TF binding affinity (see Figure 9).

Programmatic data access

As with other Ensembl resources, regulation data can be ex-

tracted using a specific Perl Application Programming

Interface (API) or by directly accessing the public funcgen

MySQL databases at ensembldb.ensembl.org. The Ensembl

website hosts specific funcgen tutorials and documentation

describing this access (http://www.ensembl.org/info/docs/

funcgen/index.html). For other programming languages,

key extraction functions are offered via the RESTful inter-

face (31).

Data downloads

Ensembl regulation data is also available for download on

the FTP site (http://www.ensembl.org/info/data/ftp/index.

html). This includes separate GFF files for each cell specific

and MultiCell Regulatory Build (RegulatoryFeatures), as

well as supporting experimental evidence (Annotated

Features) and PWM alignments (MotifFeatures).

Discussion

The Ensembl regulation resources will continue to grow

and evolve, accompanying the fields of genome regulation

and epigenomics as new results are produced and new ex-

perimental techniques and analyses are developed. Firstly,

in terms of scale, we expect the number of available cell

types to climb rapidly to the hundreds, as more groups are

contributing epigenomes to the global research community

via the International Human Epigenome Consortium

(IHEC) and other efforts. In particular, tissue samples will

progressively replace the cell line models used thus far,

which will enable us to detect regulatory features with

greater sensitivity, since we are likely missing a consider-

able number of dynamic tissue-specific elements such as

enhancers.

Since our focus is to provide complete cell type specific

annotations, we cover only chosen cell types, and do not

attempt to include all publicly available epigenomic data-

sets. These data can nonetheless be visualised in Ensembl

using, for example, the IHEC data portal’s track hub func-

tion (http://epigenomesportal.ca/ihec/).

Figure 8. Constructing a BioMart query. This figure exemplifies the construction of a BioMart query to obtain all regulatory features for K562, within the

region 1:1000 000–10 000 000 and display a varied number of properties for those regulatory regions, including their stable ids.

Figure 9. VEP output using motif feature information. Subsection of the VEP report on SNP rs694061. The VEP reports whether a SNP affects the bind-

ing affinity of a motif feature (i.e. whether position of the SNP contains at least 1.5 bits of information on the PWM).
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Our limited knowledge of TF binding motifs will need to

be addressed. Current public databases such as JASPAR (37)

only cover a fraction of existing TFs. Other techniques such

as UniPROBE (51) or SELEX (52) will allow us to describe

far richer binding interactions at enhancer and promoter

sites.

New technologies, such as chromatin conformation cap-

ture (53–55) will add a spatial component to our datasets.

This might in turn affect analysis tools, such as segmenta-

tion, which could take into account spatial proximity when

computing state likelihoods (56).

There will also be attempts to describe the cis-

interactions of the regulatory elements thus uncovered.

Already, signal correlation (43, 57), eQTLS (58, 59) and

chromatin conformation capture (60) are being improved

to eventually produce a map of the regulatory network of

the genome. As these approaches are refined, they will sig-

nificantly enrich the annotations of the features defined by

the Ensembl Regulatory Build.

Conclusion

Ensembl’s regulation resources aim to document all the

available knowledge on gene expression regulation and

epigenomics. We are progressively accumulating data on

as many cell types as possible, describing histone marks,

transcription factor binding, DNA modifications and tran-

scription factor binding motifs. Much like the research

field it is serving, this resource is still in an expansion phase

and resolutely turned towards new experimental

techniques.

Availability

All Ensembl data and source code are freely available and

may be downloaded in their entirety from the Ensembl

website. Each Ensembl release is maintained as an archive

web site for at least 3 years after the date of initial release.

Ensembl is updated approximately five times each year

with new data, genome assemblies, and sequenced gen-

omes. Additionally, the data is available through a pro-

grammatic interface and through the web-based Ensembl

Biomart.

Supplementary Data

Supplementary data are available at Database Online.
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