

American Journal of Primatology

New Density Estimates of a Threatened Sifaka Species (Propithecus coquereli) in Ankarafantsika National Park

Journal:	American Journal of Primatology
Manuscript ID:	AJP-13-0044.R3
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Kun-Rodrigues, Célia; Instituto Gulbenkian de Ciência, Population and Conservation Genetics Salmona, Jordi; Instituto Gulbenkian de Ciencia, Population and Conservation Genetics Group Besolo, Aubin; Université de Mahajanga, Rasolondraibe, Emmanuel; Université de Mahajanga, Rabarivola, Clément; Université de Mahajanga, Marques, Tiago; University of St. Andrews, Centre for Research into Ecological and Environmental Modelling; Universidade de Lisboa, Centro de Estatística e Aplicações Chikhi, Lounès; CNRS, UMR CNRS 5174 Evolution et Diversité Biologique; Instituto Gulbenkian de Ciência, Population and Conservation Genetics Group
Keywords:	Propithecus coquereli, distance sampling, population density, abundance, edge effect
	-

SCHOLARONE[™] Manuscripts

1	New Density Estimates of a Threatened Sifaka Species (Propithecus coquereli) in
2	Ankarafantsika National Park
3	
4	CÉLIA KUN-RODRIGUES1*, JORDI SALMONA1*, AUBIN BESOLO ² ,
5	EMMANUEL RASOLONDRAIBE ² , CLÉMENT RABARIVOLA ² , TIAGO A.
6	MARQUES ^{3,4} , AND LOUNÈS CHIKHI ^{1,5,6}
7	¹ Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, P-2780-156 Oeiras,
8	Portugal
9	² Université de Mahajanga, Faculté des Sciences, Campus Universitaire Ambondrona
10	BP 652 401 Mahajanga, Madagascar
11	³ Centre for Research into Ecological and Environmental Modelling, The Observatory,
12	University of St. Andrews, St. Andrews KY16 9LZ, Scotland
13	⁵ CNRS, Université Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Evolution &
14	Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
15	⁶ Université de Toulouse, UMR 5174 EDB, F-31062 Toulouse, France
16	
17	Short title: <i>P. coquereli</i> abundance in Ankarafantsika
18	Corresponding Authors
19	CKR: celiakrodrigues@gmail.com
20	JS: jordi.salmona@gmail.com
21	LC: lounes.chikhi@univ-tlse3.fr, chikhi@igc.gulbenkian.pt
22	*Shared first authorship.

ABSTRACT

Propithecus coquereli is one of the last sifaka species for which no reliable and extensive density estimates are yet available. Despite its Endangered conservation status [IUCN, 2012] and recognition as a flagship species of the northwestern dry forests of Madagascar, its population in its last main *refugium*, the Ankarafantsika National Park (ANP), is still poorly known. Using line transect distance sampling surveys we estimated population density and abundance in the ANP. Furthermore we investigate the effects of roads, forest edge, river proximity and group size on sighting frequencies and density estimates. We provide here the first population density estimates throughout the ANP. We found that density varied greatly among surveyed sites (from 5 to ~ 100 ind/km²) which could result from significant (negative) effects of roads, and forest edge, and/or a (positive) effect of river proximity. Our results also suggest that the population size may be $\sim 47,000$ individuals in the ANP, hinting that the population likely underwent a strong decline in some parts of the park in recent decades, possibly caused by habitat loss from fires and charcoal production and by poaching. We suggest community based conservation actions for the largest remaining population of Coquerel's sifaka which will (i) maintain forest connectivity, (ii) implement alternatives to deforestation through charcoal production, logging and grass fires, (iii) reduce poaching, and (iv) enable long term monitoring of the population in collaboration with local authorities and researchers.

KEYWORDS

Propithecus coquereli; distance sampling; population density; abundance; edge effect SHORT TITLE

47	Coquerel's sifake	<i>i</i> abundance in	Ankarafantsika
----	-------------------	-----------------------	----------------

48 INTRODUCTION

Madagascar has been identified as the region with the world's highest primate conservation priorities at the species, genus, and family level [Mittermeier et al., 2010]. Many lemurs such as sifakas (genus *Propithecus*) are emblematic of the island and may act as umbrella species for the conservation of other species, regions or habitats. This is the case for Coquerel's sifaka (Propithecus coquereli), and especially true in the Ankarafantsika National Park (ANP) which retains the largest *P. coquereli* population in the last large forest of northwestern Madagascar. Nevertheless, basic data on its ecology, distribution and population size are still missing. Given that the northwest of Madagascar is highly and increasingly fragmented and that many species are threatened by habitat loss and hunting [Mittermeier et al., 2010], an update is urgently needed to determine whether Coquerel's sifaka is still present and to estimate population density and size to identify conservation priorities and to develop management plans. *P. coquereli* is one of the only *Propithecus* species for which extensive and reliable density estimates are not yet available [reviewed in Salmona et al., 2013] (Table I). The species is distributed from the Betsiboka River to the Sofia River in the northwestern region of Madagascar [Mittermeier et al., 2010]. Despite a rather large geographic distribution, Coquerel's sifaka actually survive in a mosaic of fragmented dry forests separated by wide open landscapes.

The ANP is managed by the ANGAP/MNP (Association Nationale pour la Gestion des Aires Protégées/Madagascar National Parks), and people inhabit areas around the national road that crosses through the park and areas near the park boundary. In the ANP, forest loss is mainly driven by fires, logging for charcoal production or

71	construction, slash-and-burn agriculture, domestic livestock grazing [Radespiel &
72	Raveloson, 2001], and root gathering [JS, AB, ER, personal observation]. Razafy Fara
73	[2003] estimated a deforestation rate of 37.43 km ² per year in the ANP over a period of
74	44 years (1955-1999), such that ~45% of the surface of the ANP was covered by
75	savanna in 1999. Furthermore, Garcia & Goodman [2003] reported an official Raffia
76	exploitation area near Antsiloky Lake. Finally, despite the prohibition of hunting in the
77	protected area and both hunting and eating sifaka being subject to a traditional taboo for
78	most local people, P. coquereli was one of the most consumed vertebrates by Raffia
79	collectors [Garcia & Goodman, 2003]. Razafimanahaka et al. [2012] recently reported
80	that over 20% of the inhabitants admitted to eating sifaka in the previous year in the
81	commune of Tsiningia.
82	Although the IUCN has listed P. coquereli as Endangered since 1996 [IUCN, 2012],
83	it is still thought to be common in the ANP [Mittermeier et al., 2010]. The only density
84	estimates, dating from 1974 [Richard, 1978] and 1981 [Albignac, 1981], were
85	extrapolated from limited behavioral data (home range size) and confined to the location
86	of Ampijoroa. Since 1997, several authors have recorded encounter rates [Radespiel &
87	Raveloson, 2001; Schmid & Rasoloarison, 2002; Olivieri et al., 2005] and, in 1997,
88	Schmid & Rasoloarison [2002] attempted to estimate Coquerel's sifaka density, but did
89	not actually publish density estimates (Table II). Overall, there is still very little
90	information on <i>P. coquereli</i> both within and outside the ANP. There was thus an urgent
91	need to determine more robust density and abundance estimates of P. coquereli based
92	on several locations within its last main <i>refugium</i> , the ANP.
93	Researchers generally obtain density and population size estimates of lemurs – and
94	more specifically of sifaka species – through line transect distance sampling surveys

95	[e.g. Müller et al., 2000; Kelley et al., 2007; Quéméré et al., 2010; Meyler et al., 2012;
96	Salmona et al., 2013]. Here we followed a field approach similar to the one used by
97	Quéméré et al. [2010] and Salmona et al. [2013] to estimate the density and abundance
98	of P. coquereli in the ANP. A second objective was to test possible effects of
99	geographical features on P. coquereli density. A last objective was to compare four
100	commonly-used methods as in Meyler et al. [2012]: (a) the mean perpendicular distance
101	method (MPD) [Gates et al., 1968]; (b) the Kelker method [Kelker, 1945] (c) the Müller
102	method [Müller et al., 2000]; and (d) a conventional distance sampling analysis (CDS)
103	[Buckland et al., 2001]. To our knowledge, these are the first density and population
104	size estimates for P. coquereli incorporating distance sampling data from several sites
105	of the ANP, and the first attempt to compare different estimation approaches for a large,
106	group living, diurnal lemur species.
107	

108 METHODS

109 Study Area

We surveyed transects in the Ankarafantsika National Park (ANP), northwest
Madagascar (16.300 S, 46.817 E; Fig. 1). The Mahajamba and Betsiboka Rivers delimit
the park in the north-east and south-west respectively. The ANP has an area of 1,350
km² [Conservation International, 1994] and consists of a mosaic of dry deciduous
forests, savannas and small valleys. Sifakas are limited to forested habitat, which
represented ~1000 km² in 2000-2001 (our estimates from data of Moat & Smith
[2007]).

From August to early September 2009 we visited four localities (Fig. 1): Beronono,
located at the extreme north-east of the ANP; Vavan'i Marovoay in the center-east;

Ampijoroa, located along the "Route Nationale 4" (RN4) that crosses the ANP; and
Bealana situated in the extreme south-west of the Park.

122 Field Procedures

At each site, we delineated three to six transects regularly marked with flagging tape. In Bealana and Ampijoroa, we oriented transect lines from the edge to the interior of forest fragments using aerial maps. Because of field constraints, the remaining transect lines did not always start at the edge of a forest but nevertheless sampled locations at various distances from the edges, and avoided savannas and burnt forest patches. Transect length varied from 675 m to 2.747 m (Table III). We surveyed transects 4–6 times during 2–3 days, from 7:30 a.m. to 11 a.m. and 12:30 p.m. to 4 p.m., with an average velocity of 0.58 km.h⁻¹ (SD=0.24). Every day, several transects were followed by different two-member teams. On the following day, one member of each team changed team and transect to avoid observational biases among transects and to ensure that at least one team member had already walked a specific transect [Quéméré et al., 2010]. When we observed a sifaka group, we collected the following data: date, time, group size, GPS position, sighting distance of the center of the group (AOD, animal-to-observer distance) with a measuring tape, and angle to compute perpendicular distances (PD) to the transect. For each site, we calculated the total effort length, i.e., the length of each transect times the number of surveys, summed across transects.

Density and Population Size

Line transect distance sampling density estimates are obtained by dividing the

142 number of animals seen *n* by *esa*, the effective sampling area, i.e. $\hat{D}=n/esa$, where *esa* is

American Journal of Primatology

1	
2	
3	
4	
5	
6	
7	
8	
q	
10	
11	
12	
12	
13	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
39	
4U 14	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

143	the product of the length of transect L and twice the estimate of the effective strip (half)
144	width (ESW). We used both model-based and non-model-based methods to obtain ESW
145	and hence estimate sifaka densities, to (i) provide values comparable with studies using
146	Müller, MDP or Kelker methods and to (ii) compare methods.
147	Non-model-based methods are still widely used to estimate primates and lemur
148	density [e.g. Müller et al., 2000; Lehman et al., 2006a; Rasolofoson et al., 2007;
149	Beaucent & Fayolle, 2008; Gardner et al., 2009; Randrianambinina et al., 2010] in spite
150	of the emergence of newer computing techniques. These methods differ only in how
151	they estimate the effective strip width [Buckland et al., 2001; Marshall et al., 2008;
152	Meyler et al., 2012].
153	The mean perpendicular distance method (MPD) [Gates et al., 1968] estimates strip
154	width as the mean perpendicular distance (animal to transect) at which observers sighted
155	sifakas. This method implicitly assumes that the underlying detection function is
156	negative exponential, which presents an implausible shape under most scenarios, where
157	a much smoother function is expected.
158	The Kelker [Kelker, 1945] and Müller [Müller et al., 2000] methods are histogram
159	inspection techniques that use the shape of the distribution of observation distances
160	(perpendicular and animal to observer distance respectively) to define a "fall-off
161	distance" (FD) and estimate strip width. For each of these two methods, we chose the
162	FD with a 50% drop criterion on histograms plot with bins of 4 to 10 meters. The FD
163	was then chosen based on the frequency of the FD among, and visual inspection of the 7
164	histogram plots. We implemented the conventional distance sampling (CDS) method of
165	Buckland et al. [2001] using Distance 6.0 software [Thomas et al., 2010]. This method
166	uses a set of flexible semi-parametric functions to model a detection function, which

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
55
30
5/
58
59
60

1 2

167	represents the probability of detecting an animal as a function of the distance from
168	animal to transect. We tested the uniform, hazard-rate, half-normal and negative-
169	exponential detection functions and compared them using Akaike's Information
170	Criterion corrected for small samples (AICc) [Buckland et al., 2001]. To avoid
171	difficulties in fitting the tail of the detection function, we truncated 5% of the data, as
172	recommended by Buckland et al. [2001]. We tested the effect of cluster (social group)
173	size and period of the day (morning vs. afternoon) on the estimation of the detection
174	function using the Multiple-Covariate Distance Sampling (MCDS) analysis [Marques et
175	al., 2007]. We obtained the variance for the MCDS analysis via bootstraps with transect
176	as the resampling unit.
177	Distance 6.0 does not allow for stratification when cluster size is a covariate, but we
178	were interested in density estimates for each of the four study sites. For inference we

regression model in which *log*(cluster size) is regressed on *log*(estimated probability of detection) [Thomas et al., 2010] correcting for the fact that larger groups might be easier to detect. Density is then estimated as $\hat{D}=E(s)n/esa$.

used CDS with size bias regression: the mean group size, E(s), is estimated from a

For all methods, despite the fact that the habitats were not fully identical between transects and between sites, no assumption was made about the relationship between density and habitat type and we calculated ANP global density estimates using the average density of the four sites, considering these as random locations representative of the whole park.

We also used the data from Schmid & Rasoloarison's [2002] *P. coquereli* distance sampling survey conducted in 1997 in three additional sites (Ankarokaroka, Antsiloky and Tsimaloto). The information available in their study allowed us to use only the

MPD method. Due to the limited number of observations at the three sites it was not
possible to estimate an ESW in each of them and we therefore estimated a single ESW
that was applied to all three sites.

To test for significant differences in density between survey sites and methods, weused a modified independent samples t-test, the Z-test:

196
$$Z = \frac{D_1 - D_2}{\sqrt{SE(D_1)^2 + SE(D_2)^2}}$$

where D_i is the density estimate for site *i*; and $SE(D_i)$ represents the standard error of the D_i [Buckland et al., 2001; Bicknell & Peres, 2010], and Bonferonni correction to account for multiple comparisons. We acknowledge that the small number of transects within sites and the low number of observations for some sites leads to non-robust variance estimates, limiting the power of the test.

Finally, we estimated population size, multiplying the global density estimates by the

203 ANP total suitable forest area for *P. coquereli*. We calculated forest area in ArcGIS

v9.3, using forest layers from the Madagascar Vegetation Mapping Project

205 [http://www.kew.org/gis/projects/mad_veg/datasets.html; Moat & Smith, 2007].

207 Forest Edge, River and Road Effects

To determine whether forest edges, water basins (rivers and lakes) and roads had an effect on the distribution of *P. coquereli*, we compared the number of sifaka groups encountered at different distances from these features. We calculated distances between sifaka sightings and each geographic feature using ArcGIS v9.3 and the forest data from the Madagascar Vegetation Mapping Project [Moat & Smith, 2007]. We compared group sightings (observed distribution) with the distribution of weighted survey effort (i.e. the expected distribution if the tested feature had no effect on animal distribution)

2
3
4
4
5
0
6
7
'
8
٥
9
10
44
11
12
10
13
14
15
16
10
17
19
10
19
20
20
21
20
22
23
24
25
20
26
27
21
28
20
29
30
21
31
32
00
33
34
0.5
35
36
00
37
30
50
39
10
40
41
10
42
43
11
44
45
40
46
47
10
48
<u>4</u> 0
-0
50
51
51
52
52
55
54
6 5
55
56
57
J/
58
50
59
60

215	using Pearson's χ^2 Test for count data with 10,000 permutations. We assigned data to
216	two distance classes to determine the distance up to which we could detect an effect on
217	sifaka distribution: we sequentially increased the first distance class (0-100 m, 0-200 m,
218	0-300 m, and so on) until there was no significant difference in frequency between the
219	sightings and the survey effort for the first class. The second class consisted of the
220	sightings for the remaining distances from the feature. In the absence of edge, river or
221	road effects, we expected no difference between group sighting distribution (observed)
222	and sampling effort distributions (expected).
223	We estimated the effect of the national road crossing the ANP by plotting the
224	distance from this road for every site against site-specific densities calculated with the
225	MPD method, a procedure that allowed us to use Schmid & Rasoloarison's [2002] data.
226	We used linear regression to evaluate whether sifaka density responded to distance from
227	the national road across the seven sites. As a consequence of our small number of data
228	points for the regression, which gives low statistical power, we took marginally
229	statistically significant slopes in consideration.
230	This study was made in agreement with the laws of the countries of Portugal and
231	Madagascar. We received permission to conduct this research in Madagascar from
232	CAFF/CORE, the "Direction Générale de l'Environnement et des Forêts" and
233	Madagascar National Parks. This research adhered to the American Society of
234	Primatologists principles for the ethical treatment of primates.
235	
236	RESULTS

237 Density Estimates from Line Transect Surveys

American Journal of Primatology

1
2
2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
70 //1
41
42
43
44
45
46
47
48
40
49
50
51
52
53
54
55
55
50
5/
58
59
60

238	We detected a total of 291 individuals in 73 social groups over 118 km of surveyed
239	transects. Group size varied from 1 to 9 individuals (Table III) with an average of 4.03
240	ind/group (SD = 1.93). Despite considerable survey effort, only at Beronono we
241	achieved the minimum of 40 sightings required to accurately model detection functions
242	[Buckland et al., 2001] (Table III). The limited number of observations did not allow us
243	to compute an ESW for each site individually. Therefore, we estimated a global ESW
244	with pooled data, assuming similar detectability at all sites. This assumption is
245	reasonable given that similar habitats occur at each site and that the same observers
246	surveyed all sites during the same period. We also estimated density separately for
247	Beronono. The very small ESW difference between Beronono and the pooled data
248	(Table IV) estimated with the CDS analysis supports our assumption of similar
249	detectability across sites. Using the CDS method, the low AICc differences between
250	models did not allow us to identify clearly a best fitting detection function. We thus
251	kept the Hazard-rate function for further analysis, previously reported to be the best
252	detection function for Propithecus species in dry forest on much larger data sets
253	[Quéméré et al., 2010; Salmona et al., 2013]. The densities from all site and methods
254	showed considerable discrepancies, with average values per sites varying between 0.5
255	and 200 ind/km ² (Table IV). Regardless of method, however, Ampijoroa and Vavan'i
256	Marovoay sites showed markedly lower densities than Bealana and Beronono (Table
257	IV). Differences between high density sites (Beronono and Bealana) and low density
258	sites (Ampijoroa and Vavan'i Marovoay) were significant before applying Bonferroni
259	correction but only differences between high density sites and Ampijoroa remained
260	significant after Bonferroni correction (alpha= 0.0083, Table V).

3
4
5
0
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39
40
41 10
42 42
43 11
44 15
40
40
4/
48
49
50
51
52
53
54
55
56
57
58
59
60

261	Considering the CDS method as benchmark, the MPD method always produced
262	higher density estimates (twice higher), whereas the Kelker estimates did not depart
263	much from it. The Müller method failed to give similar estimates for Ampijoroa (Table
264	IV), one site out of four, the site with the lowest amount of sightings. For some of the
265	sites tested the estimated densities using the MPD method were outside the 95%
266	confidence intervals of the CDS method, but none of the differences between methods
267	were significant with the Z-test even without applying the Bonferonni correction.
268	Compared to the CDS method, discrepancies in the FD for the Müller and Kelker
269	methods led to higher discrepancies in ESW and density estimates for Beronono using
270	either the pooled or Beronono data (Table IV).
271	Inclusion of cluster size as a covariate led to a clear reduction in AICc (Table VI),
272	suggesting that cluster size positively influences detectability, <i>i.e.</i> at larger distances one
273	is more likely to detect larger vs. smaller groups. By contrast, we found no significant
274	effect of the time of the day (morning vs. afternoon) on the detection probability (Table
275	VI). The MPD analysis of Schmid & Rasoloarison's data [2002] shows low density
276	estimates ranging from 19 to 56 ind/km ² in Ankarokaroka and Antsiloky, respectively

277 (Table II), with a global ESW of 8.73 m.

278

279 Forest Edge, River and Road Effects

We detected a negative effect of the forest edge on sighting frequency up to 400 m from the edge of the forest (Fig. 2a). We found the same negative effect for three individual sites (Beronono, Vavan'i Marovoay and Ampijoroa), with an edge effect extending to 900 m inside of the forest for the latter two. Our sampling effort for

Bealana started far from the edge (268 m) which may explain why no edge effect was

American Journal of Primatology

2
3
4
5
5
6
7
8
o o
10
10
11
12
13
10
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
21
28
29
30
31
20
32
33
34
35
36
50
37
38
39
40
10
41
42
43
44
45
46
40
47
48
49
50
50
51
52
53
54
57
55
56
57
58
50
しご

60

apparent here. We found a positive effect of the river on sighting frequency up to 200 m
when we pooled the data from all the sites (Fig. 2b). *P. coquereli* sightings frequency
and density seems negatively affected by the national road proximity (Fig. 2c and 2d).
Linear regression showed that population densities increased with the distance of the
site from the national road (F=9.027; df=5, P=0.030; R²=0.64; Fig. 2c).

290

291 **DISCUSSION**

292 **Densities in ANP**

Comparing our results with those published in studies conducted in the last decades 293 suggests that the sifaka population in Ampijoroa underwent a major decline. Indeed, 294 Ampijoroa, which is located on the edge of the national road, is the most surveyed ANP 295 site (Table II). In 1962 and 1974, researchers sighted 27 and 12 groups, respectively 296 297 [Petter, 1962; Richard, 1974]. In 1981 and 1988 reasonably high densities were still reported [60-75 ind/km²; Albignac, 1981; Ganzhorn, 1988], whereas in 2001, Radespiel 298 299 & Raveloson [2001] reported no sightings of sifaka (Table II). During our 2009 study and despite a larger survey effort in Ampijoroa than in other sites, we sighted only 4 300 groups of *P. coquereli*, and estimated a low density of only 5 ind/km². This is an order 301 of magnitude less than the values found in the 1980s and less than most values found 302 for Propithecus species [e.g. Norscia & Palagi, 2008; Pichon et al., 2010, Salmona et 303 al., 2013] (Table I). It suggests that the density decreased from around 60-75 ind/km² in 304 305 the 80s [Albignac, 1981; Ganzhorn, 1988] to 5 ind/km² now in Ampijoroa, a decrease of more than 90%. 306

307

Page 14 of 39

308	In many regions of Madagascar, including the ANP, sifaka species are protected
309	from hunting and eating by local beliefs ("fady"), but this "fady" seems to be less and
310	less respected [Nicoll & Langrand, 1989]. Logging also appears to have increased in the
311	last decades in the park [Radespiel & Raveloson, 2001; Garcia & Goodman, 2003]. It is
312	very likely that human activities have reduced densities of <i>P. coquereli</i> . Nevertheless, it
313	would be important to identify other forces that may have an influence on densities
314	(vegetation type, micro-climate) beyond those derived from forest exploitation (charcoal
315	consumption, savanna fires). For instance, it is particularly surprising to find that the
316	lowest densities are found in Ampijoroa, where the tourism administration and main
317	research site are located. Here one would expect to find a more effective protection
318	reflected in highest densities than in more remote places. Moreover, Ankarokaroka and
319	Vavan'i Marovoay, the sites closest to Ampijoroa, also showed low densities and
320	encounter rates [Radespiel & Raveloson, 2001; Schmid & Rasoloarison, 2002] (Table
321	II). We met poachers in Vavan'i Marovoay during our surveys, and the forest was
322	highly disturbed by humans exploiting wood, roots and <i>Raffia</i> and by fires. The low
323	sifaka densities could therefore be caused by the presence in the ANP of poachers for
324	whom hunting lemurs is not "fady" and who may use the road as an easy entry to forest
325	resources. Moreover Vavan'i Marovoay is close to the national road, and from 2009-
326	2013, we have noticed a tremendous number of charcoal bags for sale along the road
327	between Andranofasika and Ambondromamy.
328	We realize that our conclusions are limited by the few groups sighted at Vavan'i
329	Marovoay and Ampijoroa. Therefore, an increased survey effort, with more sites,
330	transects per site, and repetitions per transect would be welcome in the future to
331	improve and validate our findings.

American Journal of Primatology

1	
2	
3	
4	
5	
6	
1	
ð	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
31	
30 30	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
บ∠ 52	
53 54	
55	
56	
57	
58	
59	
60	

3	3	2
_	_	

333 Comparison with Studies on Other Sifaka Species

334	Density estimates for Propithecus species vary widely among species, studies, sites
335	and over time, with values ranging from ~3 ind/km ² for <i>P. perrieri</i> [Banks et al., 2007],
336	to ~300 ind/km ² for some <i>P. coronatus</i> locations [Salmona et al., 2013] (Table I). The
337	range of densities estimated for P. coquereli is within the range reported for the other
338	sifakas, with the lowest densities comparable to the most endangered species (P.
339	perrieri) and the largest values comparable to several other species.
340	The number of individuals of Coquerel's sifaka living in the ANP is difficult to
341	estimate because densities appeared to vary widely across the Park. Thus, the
342	population size estimates extrapolated from our density estimates should be considered
343	preliminary. We present them here because absolute numbers are essential for
344	conservation purposes. Using the average estimated by the CDS approach, population
345	size of <i>P. coquereli</i> may be ~47,000 individuals in the ANP (Table IV). However, we
346	note that population size extrapolation was performed using a geographical dataset
347	produced with 1999-2001 satellite images [Moat & Smith, 2007]. If we consider the
348	high rate of deforestation in the ANP over the last century [Razafy Fara, 2003; Dollar,
349	2006], the suitable habitat surface one decade later might also have decreased, and our
350	number might represent an overestimate of the abundance of P. coquereli.
351	If we compare these values to those of other sifakas, the situation of <i>P. coquereli</i>
352	seems better than that of the Critically Endangered P. perrieri population in the
353	Analamerana special reserve for which the whole population is estimated at 915
354	individuals [Banks et al., 2007]. Quéméré et al. [2010] estimated ~15,000 individuals
355	for the Critically Endangered and sister species P. tattersalli. For P. coronatus, we

356	estimated that ~100,000 individuals may still survive across its whole distribution range
357	[Salmona et al., 2013], with 10,000-36,000 individuals in the surveyed area (Table I).
358	If <i>P. coquereli</i> maintains a relatively large population in ANP, it is most likely
359	because of the considerable size of the park. Indeed, it seems likely that the population
360	today is considerably smaller than it was in the past. Densities in Ampijoroa decreased
361	by about 90% since the 1970's. Also, the high discrepancies between sites with the
362	lowest densities close to the national road suggest that the density found now in
363	Ampijoroa is representative of a population affected by humans. If we use the
364	Ampijoroa former densities [Albignac, 1981; Ganzhorn, 1988] as representative of the
365	species before extensive human interference, and apply it to the whole ANP (thereby
366	simulating values before a likely but still hypothetical population decline), we would
367	calculate a population size of ~60-75,000 individuals in the park. It is important to
368	emphasize that this is the largest forested area in northwest Madagascar. All other P.
369	coquereli populations survive in smaller forest fragments, and are therefore more likely
370	subject to decline and possibly extinction. In fact, if nothing is done to protect
371	Coquerel's sifaka, densities of ~5-10 ind/km ² , as seen in Ampijoroa and Vavan'i
372	Marovoay, may extend to the whole ANP. This could mean that a population that had
373	~60-75,000 individuals originally would decrease by ~90-95% to perhaps 5,000
374	individuals in the next decade or two.
375	

376 Group Size, Time, Forest Edge, River and Road Effects

The MCDS analysis showed that group size in *P. coquereli* should probably be incorporated as a covariate when modeling the detection function used for density estimates. Cluster size (group size) has often been found to be a covariate when

American Journal of Primatology

380	modeling detectability for other species [e.g. Zerbini et al., 2006; Arnhem et al., 2008;
381	Braulik et al., 2012]. By contrast, the period of the day (morning versus afternoon) at
382	which transect were walked did not affect density estimates (Table S2). Sifakas, like
383	many primates, are known to have variable activity patterns during the day. They are
384	usually more active in the morning and in the late afternoon [Richard, 1974;
385	Mittermeier et al., 2010]. Here, the variable activity pattern does not seem to affect
386	detectability, suggesting that increased activity at the beginning and at the end of the
387	day may balance each other. In fact we performed our surveys over several hours of
388	high and low activity both in the morning and in the afternoon, hence perhaps averaging
389	out any possible effect caused by these diurnal activity shifts.
390	The presence of a size bias, larger groups being easier to detect, is readily accounted
391	for by CDS, size bias regression, or MCDS, which allows the effect to be modeled.
392	However, the effect of group size on detectability should lead to biased results from the
393	other 3 methods we considered, because the observed group size is biased up, and the
394	non-model-based methods fail to account for this fact. Group size could influence
395	density estimates in other sifaka species, and in other forest dwelling species with
396	variable group size. The best analysis would therefore be a MCDS model with cluster
397	size as a covariate, but because Distance does not allow this, we only used here the CDS
398	analysis with group size bias regression.
399	Depending on the species, forest edges can have a positive, negative or neutral effect
400	on the distribution of individuals [e.g. Lehman et al., 2006a, 2006b, 2006c; Quéméré et
401	al., 2010; Meyler et al., 2012]. In the case of <i>P. coquereli</i> , McGoogan [2011] found that
402	groups tend to concentrate inside the forest, avoiding the edges in ANP. Our results
403	confirm this tendency. There seems to be a 400 m buffer zone, which may extend up to

900 m in some locations, where the groups are less frequent. This figure is congruent
with McGoogan's [2011] finding that several biotic variables, such as plant density and
species richness, were greater in the interior of the forest beyond the first 400 m from
the edge at Ampijoroa during dry season. These changes in food availability together
with greater human presence, and hunting pressure at the edges could explain the
avoidance of edges by sifakas in ANP. Additional surveys at different seasons and at
more localities may help to clarify this pattern.

We were not able to disentangle site from river effects given that the distribution of *P. coquereli* regarding rivers is site specific. Nevertheless rivers appear to have a positive effect detected globally until 200 m. Rivers may be attractive to sifakas because of enhanced food availability close to the water sources during the dry season. However further studies, especially during the dry season, will be necessary to confirm this hypothesis.

We found that the national road (RN4), which crosses the ANP, had a substantial negative effect on the presence and density of *P. coquereli*. The road, which links Mahajanga to the main cities of Madagascar, including the capital, is crossed everyday by hundreds of vehicles, and facilitates human access to the forest for logging, charcoal production and hunting [JS, AB, ER, personal observation]. Assuming that hunting and logging are more likely to occur along the road and that hunted species might experience a negative edge effect [Lehman et al., 2006a], the confounded effect of road and edge could explain the low densities at Ampijoroa, and the high densities found in remote areas (i.e. Beronono and Bealana; Fig. 2c). Interestingly, Ouéméré et al. [2010]

found no significant edge effect for *P. tattersalli* in the north of Madagascar, maybe
because *P. tattersalli* is less hunted than *P. coquereli*, the forests are much smaller in
the Loky-Manambato region and the forest experiences less charcoal production, root
gathering and fires than in the ANP [JS, AB, ER, personal observation]. Indeed,
Quéméré et al. [2010] suggested that when forests are small, it may become difficult to
identify a "core" area.

435 Comparison of Methods

Altogether we found a good agreement of the Kelker, Müller to the CDS method across most sites. The mean perpendicular distance method however always showed higher density values than the CDS method, doubling even the global density for the ANP. Several authors have already cautioned against its use, especially for endangered species, because of this bias [e.g. Sterling & Ramaroson, 1996; Link et al., 2010;

441 Meyler et al. 2012].

While the Kelker and Müller methods gave results similar to the CDS method in most cases, we nevertheless recommend the CDS method because its density estimates were relatively robust whether we used the global data set or only the Beronono data. On the contrary, the Kelker method showed a substantial increase in the density estimates when only the Beronono data were used (>30%; Table IV). We note that the crucial step of defining the FD was difficult for *P. coquereli*. The arbitrariness of the choice of the FD, which strongly influences the final density estimates, suggests that methods requiring this step should be avoided or used with caution. The Müller method, based on animal-to-observer distance, fails conceptually to represent an ESW and Buckland et al. [2010] have argued against its use. Nevertheless, since most studies on

452 sifaka densities have used older methods (Table I), using them in parallel to the CDS
453 method can still be useful for comparison purposes. We emphasize that the bias for the
454 MPD is a function of the true unknown detection function (which might be different
455 across years and/or sites), and hence, even for comparison purposes MPD might lead to
456 erroneous conclusions.

Conservation Implications

Overall, population density seems to be decreasing in some areas of the ANP if not throughout the park. Since the recovery from demographic declines in small isolated populations is long and never certain, we can estimate that low population densities may be a major issue for *P. coquereli*, a problem exacerbated by the species' slow development and long generation time (probably between 6 and 15 years, based on data from P. verreauxi; [Richard et al., 2002; Lawler, 2007]). Most sifakas are easy to approach and thus easy to hunt. Despite being "fady" for most of the locals, Coquerel's sifaka, like other closely related species, are hunted [Garcia & Goodman, 2003; Golden, 2009; Jenkins et al., 2011; King et al., 2012; Razafimanahaka et al., 2012; Salmona et al., 2013]. Habitat loss and fragmentation may increase forest edge [Fahrig, 2002] and landscape disconnectivity. Habitat fragmentation negatively affects other sifaka species [Irwin et al., 2010] and other lemurs [e.g. Lehman et al., 2006a; Irwin et al., 2010]. From 1955 to 1999, ~80% of the ANP forest cover suffered degradation [Razafy Fara, 2003], and from 1990 to 2000 the park lost \sim 20% of its original forest cover [Dollar, 2006], most probably to fire, charcoal production, and root gathering. A concomitant increase in edge area would have depressed the number of sifakas.

American Journal of Primatology

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1/	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

475	To maintain a healthy, non-isolated and non-fragmented population in the last
476	remaining important refugium of P. coquereli, it will be important to decrease
477	deforestation rates. Efforts could focus on implementation of alternatives to (i) savanna
478	fires in the dry season (fires are set to promote for cattle grazing), (ii) charcoal
479	production and consumption, (iii) bushmeat consumption, and (iv) root gathering.
480	Reforestation is needed to maintain connections between forest patches within the park,
481	and between the park and forest fragments further north. Community awareness and
482	ecological education, especially along the national road, around the park and in towns
483	where charcoal and other forest products are purchased and consumed, would benefit
484	the long-term conservation of the habitat. Moreover, long term monitoring of the
485	population could allow assessing population trends and refining conservation strategy of
486	<i>P. coquereli</i> in a near future.
487	Finally, we want to stress that funding is urgently needed for protected area
488	managers to implement conservation strategies. Since the political turmoil of 2009,
489	deforestation and hunting rates have increased tremendously in Madagascar [Patel,
490	2010], while international funding has been to a large extent blocked [Schwitzer, 2011;
491	Froger & Méral, 2012]. No efficient conservation plan can be implemented in these
492	conditions and the situation could lead to a major decrease not only of the Coquerel's
493	sifaka populations, but also of many other endemic species inhabiting ANP and other
494	forests of Madagascar, together with the loss of the most endangered ones [Schwitzer et
495	al., 2013].

496

497 ACKNOWLEDGEMENTS

We thank the "Direction Générale de l'Environnement et des Forêts", the CAFF/CORE and Madagascar National Park for giving us permission to conduct this study. Moreover we thank all the staff and guides of the ANP for their continuous help and support. CKR was funded by an Optimus!Alive-IGC fellowship to LC. JS was funded by Fundação para a Ciência e a Tecnologia (FCT) grant SFRH/BD/64875/2009. The fieldwork was possible thanks to the continuous support of the University of Mahajanga, Madagascar, and the Groupement de Recherche International (GDRI), FCT grant PTDC/BIA-BEC/100176/2008, LC is also funded by FCT grant PTDC/BIA-BIC/4476/2012 and by the "Laboratoire d'Excellence (LABEX)" entitled TULIP (ANR-10-LABX-41). Part of the analysis work was made possible thanks to the 2012 field and analysis courses funded by the Rufford Small Grant Foundation, grant 10941-1. We also thank B. Le Pors for comments on previous versions of the manuscript.

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
ا بر مر	
40	
49	
50	
51	
52	
53	
54	
54	
50	
26	
57	
58	
59	
60	

510 **REFERENCES**

511	Albignac R. 1981. Lemurine social and territorial organization in Northwestern
512	Malagasy forest (restricted areas of Ampijoroa). In A. B. Chiarelli & R. S. Corricini
513	(Eds.), Primate Behavior and Sociobiology. Springer, Berlin. p 25-29.
514	Arnhem E, Dupain J, Vercauteren Drubbel R, Devos C, Vercauteren M. 2008. Selective
515	logging, habitat quality and home range use by sympatric gorillas and chimpanzees:
516	a case study from an active logging concession in southeast Cameroon. Folia
517	Primatol 79:1–14.
518	Banks MA, Ellis ER, Wright PC. 2007. Global population size of a critically
519	endangered lemur, Perrier's sifaka. Anim Conserv 10:254–262.
520	Beaucent S, Fayolle M. 2008. Etude de la communauté de lémuriens de la forêt
521	d'Ambodiriana, NE Madagascar. Lemur News 13:28–32.
522	Bicknell J, Peres CA. 2010. Vertebrate population responses to reduced-impact logging
523	in a neotropical forest. Forest Ecol Manag 259:2267–2275.
524	Braulik GT, Bhatti ZI, Ehsan T, Hussain B, Khan, AR, Khan A, Khan U, Kundi KU,
525	Rajput R, Reichert AP, Northridge SP, Bhagat HB, Garstang R. 2012. Robust
526	abundance estimate for endangered river dolphin subspecies in South Asia. Endang
527	Species Res 17:201–215.
528	Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. 2001.
529	Introduction to Distance Sampling. Oxford University Press, Oxford. p 103–108.
530	Buckland S, Plumptre A; Thomas L, Rexstad E. 2010. Line transect sampling of
531	primates: Can animal-to-observer distance methods work? Int J Primatol 31:485-
532	499.

2
3
1
4
5
6
7
Ω.
0
9
10
11
12
12
13
14
15
16
47
17
18
19
20
24
21
22
23
24
25
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
14
41
42
43
44
45
40
46
47
48
10
49
50
51
52
52
55
54
55
56
57
57
58
59
~~

Conservation International. 1994. Conceptual approach to a program of conservation 533

- and development at the Ankarafantsika Reserve Complex, Madagascar. 534
- 535 Conservation International: Washington, DC.
- Dollar L. 2006. Morphometrics, diet, and conservation of Cryptoprocta ferox. PhD 536
- thesis. University Program in Ecology, Duke University. 537
- Fahrig L. 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. 538
- Ecol Appl 12:346-353. 539
- Froger G, Méral P. 2012. Towards an institutional and historical analysis of 540
- environmental policy in Madagascar. Env Pol Gov 22:369-380. 541
- Ganzhorn JU. 1988. Food partitioning among Malagasy primates. Oecologia 75:436– 542
- 450. 543
- Garcia G, Goodman SM. 2003. Hunting of protected animals in the Parc National 544
- d'Ankarafantsika, north-western Madagascar. Oryx 37:115-118. 545
- Gardner CJ, Fanning E, Thomas H, Kidney D. 2009 The lemur diversity of the 546
- 547 Fiherenana-Manombo Complex, southwest Madagascar. Madag Conserv Dev 4:38-43.
- 548
- Gates CE, Marshall WH, Olson DP. 1968. Line transect method of estimating grouse 549
- population densities. Biometrics 24:135–145. 550
- Golden CD. 2009. Bushmeat hunting and use in the Makira Forest, north-eastern 551
- Madagascar: a conservation and livelihoods issue. Oryx 43:386–392. 552
- Irwin MT. 2008. Diademed sifaka (Propithecus diadema) ranging and habitat use in 553
- continuous and fragmented forest: higher density but lower viability in fragments? 554
- Biotropica 40:231–240. 555

2	
3	
4	
4	
5	
6	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
10	
00	
20	
21	
22	
23	
20	
<u> </u>	
25	
26	
27	
20	
28	
29	
30	
31	
22	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
40	
41	
42	
43	
11	
44	
45	
46	
47	
10	
40	
49	
50	
51	
51	
52	
53	
54	
55	
50	
50	
57	
58	
59	
60	
00	

556	Irwin MT, Johnson SE, Wright PC. 2005. The state of lemur conservation in south-
557	eastern Madagascar: population and habitat assessments for diurnal and cathemeral
558	lemurs using surveys, satellite imagery and GIS. Oryx 39:204–218.
559	Irwin MT, Wright PC, Birkinshaw C, Fisher BL, Gardner CJ, Glos J, Goodman SM,
560	Loiselle P, Rabeson P, Raharison J-L, Raherilalao MJ, Rakotondravony D,
561	Raselimanana A, Ratsimbazafy J, Sparks JS, Wilmé L, Ganzhorn JU. 2010. Patterns
562	of species change in anthropogenically disturbed forests of Madagascar. Biol
563	Conserv 143:2351–2362.
564	IUCN 2012. The IUCN Red List of Threatened Species. Version 2012.2.
565	http://www.iucnredlist.org . Downloaded on 17 October 2012.
566	Jenkins RKB, Keane A, Rakotoarivelo AR, Rakotomboavonjy V, Randrianandrianina
567	FH, Razafimanahaka HJ, Ralaiarimalala SR, Jones JPG. 2011. Analysis of patterns
568	of bushmeat consumption reveals extensive exploitation of protected species in
569	eastern Madagascar. PloS One 6:e27570.
570	Kelker GH. 1945. Measurement and interpretation of forces that determine populations
571	of managed deer. Unpublished Ph.D. thesis, University of Michigan, Ann Arbor.
572	Kelley EA, Sussman RW, Muldoon KM. 2007. The status of lemur species at
573	Antserananomby: an update. Primate Conserv 22:71–77.
574	King T, Rakotonirina LHF, Rakotoarisoa AH, Ravaloharimanitra M, Chamberlan C.
575	2012. Projet Tsibahaka: conserving the crowned sifaka Propithecus coronatus.
576	Lemur News 16:32–34.
577	Koenig P, Zavasoa A. 2006. Totale disparition du Propithèque de Coquerel
578	(Propithecus verreauxi coquereli) du nord de la réserve spéciale Bora (Province de
579	Mahajanga). Lemur News 11:38.

2	
3	
4	
5	
6	
7	
8	
g	
10	
11	
12	
12	
14	
14	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
50	
50	
50	
59	
nu	

580	Lawler RR. 2007. Fitness and extra-group reproduction in male Verreaux's sifaka: an
581	analysis of reproductive success from 1989–1999. Am J Phys Anthropol 132:267–
582	277.
583	Lehman SM, Rajaonson A, Day S. 2006a. Lemur responses to edge effects in the
584	Vohibola III classified forest, Madagascar. Am J Primatol 68:293–299.
585	Lehman, SM, Rajaonson A, Day S. 2006b. Edge effects and their influence on lemur
586	density and distribution in southeast Madagascar. Am J Phys Anthropol 129:232-
587	241.
588	Lehman SM, Rajaonson A, Day S. 2006c. Edge effects on the density of Cheirogaleus
589	<i>major</i> . Int J Primatol 27:1569–1588.
590	Link A, Luna AG, Alfonso F, Giraldo-Beltran P, Ramirez F. 2010. Initial effects of
591	fragmentation on the density of three neotropical primate species in two lowland
592	forests of Colombia. Endang Species Res 13:41–50.

- 593 Marques TA, Thomas L, Fancy SG, Buckland ST. 2007. Improving estimates of bird
- density using Multiple-Covariate Distance Sampling. The Auk 124:1229–1243.
- 595 Marshall AR, Lovett JC, White PC. 2008. Selection of line-transect methods for
- 596 estimating the density of group-living animals: lessons from the primates. Am J
- 597 Primatol 70:452–62.
- 598 McGoogan KC. 2011. Edge effects on the behaviour and ecology of *Propithecus*
- 599 *coquereli* in Northwest Madagascar. PhD Thesis, University of Toronto.
- 600 Meyers DM, Ratsirarson J. 1989. Distribution and conservation of two endangered
- 601 sifakas in northern Madagascar. Primate Conserv 10:81–86.
- 602 Meyler SV, Salmona J, Ibouroi MT, Besolo A, Rasolondraibe E, Radespiel U,
 - Rabarivola C, Chikhi L. 2012. Density estimates of two endangered nocturnal lemur

1	
2	
3	
4	
5	
6	
7	
י 8	
a	
9 10	
10	
11	
12	
13	
14	
15	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
~~	

604	species from northern Madagascar: new results and a comparison of commonly used
605	methods. Am J Primatol, 74:414-422.
606	Mittermeier RA, Louis EE, Richardson M, Schwitzer C, Langrand O, Rylands AB,
607	Hawkins F, Rajaobelina S, Ratsimbazafy J, Rasoloarison R, Roos C, Kappeler PM,
608	Mackinnon J. 2010. Lemurs of Madagascar (3rd Ed.). Washington DC: Conservation
609	International. p 550–553.
610	Moat J, Smith P. 2007. Atlas of the Vegetation of Madagascar / Atlas de la Vegetation
611	de Madagascar. Royal Botanic Gardens, Kew, London.
612	Müller P. 1997. Ökologie und ernährungsstraegie des kronensifakas (Propithecus
613	verreauxi coronatus). PhD thesis, Universität Zürich.
614	Müller P, Velo A, Raheliarisoa E-O, Zaramody A, Curtis DJ. 2000. Surveys of
615	sympatric lemurs at Anjamena, north-west Madagascar. Afr J Ecol 38:248-257.
616	Nicoll ME, Langrand O. 1989. Madagascar: revue de la conservation et des aires
617	protégées.WWF, Gland, Suisse.
618	Norscia I, Palagi E. 2008. Berenty 2006: census of Propithecus verreauxi and possible
619	evidence of population stress. Int J Primatol 29:1099–1115.
620	O'Connor S. 1987. The effect of human impact on vegetation and the consequences to
621	primates in two Riverine forests, southern Madagascar. Ph.D. thesis, University of
622	Cambridge, Cambridge, U.K.
623	Olivieri GL, Craul M, Radespiel U. 2005. Inventaire des lémuriens dans 15 fragments
624	de forêt de la province de Mahajanga. Lemur News 10:11-16.
625	Olivieri GL, Sousa V, Lounès C, Radespiel U. 2008. From genetic diversity and
626	structure to conservation: Genetic signature of recent population declines in three
627	mouse lemur species (Microcebus spp.). Biol Conserv 141:1257-1271.

2
3
4
4
5
6
2
1
8
õ
9
10
11
11
12
13
13
14
15
40
16
17
10
10
19
20
20
21
22
~~
∠3
24
25
25
26
27
21
28
29
20
30
31
32
32
33
34
25
35
36
27
31
38
30
55
40
41
40
42
43
ΔΛ
44
45
46
47
47
48
10
49
50
51
5
52
53
E A
54
55
56
50
57
58
EO
59
60

628	Patel ER. 2010. Madagascar's illegal logging crisis: an update and discussion of
629	possible solutions. Lemur News 15:2–6.
630	Petter JJ. 1962. Recherches sur l'écologie et l'éthologie des lémuriens malgaches.
631	Mémoires Museum National Histoire Naturelle, Paris (A) 27:1-146.
632	Petter JJ, Albignac R, Rumpler Y. 1977. Lemurine mammals (Primates, Prosimians).
633	Faune de Madagascar. Paris: Orstrom.
634	Pichon C, Tarnaud L, Bayart F, Hladik A, Hladik CM, Simmen B. 2010. Feeding
635	ecology of the crowned sifaka (Propithecus coronatus) in a coastal dry forest in
636	northwest Madagascar (SFUM, Antrema). Lemur News 15:43-47.
637	Quéméré E, Champeau J, Besolo A, Rasolondraibe E, Rabarivola C, Crouau-Roy B,
638	Chikhi L. 2010. Spatial variation in density and total size estimates in fragmented
639	primate populations: the golden-crowned sifaka (Propithecus tattersalli). Am J
640	Primatol 72:72-80.
641	Radespiel U, Raveloson H. 2001. Preliminary study on the lemur comunities at three
642	sites of dry deciduous forest in the Réserve Naturelle d'Ankarafantsika. Lemur
643	News 6:22–24.
644	Rambinintsoa A, Rigobert ZJ, Richar R, Xavier RJF, Brenneman RA, Louis EEJr. 2006.
645	A preliminary study on resident lemur populations in the Mariarano Classified
646	Forest. Lemur News 11:21–24.
647	Rasolofoson D, Rakotondratsimba G, Rakotonirainy O, Rasolofoharivelo T, Rakotozafy
648	L, Ratsimbazafy J, Ratelolahy F, Andriamaholy V, Sarovy A. 2007. Le bloc
649	forestier de Makira charnière de Lémuriens. Lemur News 12:49-53.
650	Razafy Fara L. 2003. Rapport sur l'actualisation de la carte de végétation du parc
651	national d'Ankarafantsika. ANGAP, GFA. p 26.

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
10
41
42
43
44
45
46
46
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59
60

652	Razafimanahaka JH, Jenkins RKB, Andriafidison D, Randrianandrianina F,
653	Rakotomboavonjy V, Keane A, Jones JPG. 2012. Novel approach for quantifying
654	illegal bushmeat consumption reveals high consumption of protected species in
655	Madagascar. Oryx 46:584–592.
656	Richard AF. 1974. Intra-specific variation in social organization and ecology of
657	Propithecus verreauxi. Folia Primatol 22:178-207.
658	Richard AF. 1978. Behavioral variation: case study of a Malagasy lemur. Bucknell
659	University Press, New Jersey.
660	Richard AF, Dewar RE, Schwartz M, Ratsirarson J. 2002. Life in the slow lane?
661	Demography and life histories of male and female sifaka (Propithecus verreauxi
662	<i>verreauxi</i>). J Zool 256:421–436.
663	Salmona J, Rasolondraibe E, Jan F, Besolo A, Rakotoarisoa H, Meyler SV, Wohlhauser
664	S, Rabarivola C, Chikhi L. 2013. Conservation status and abundance of the crowned
665	Sifaka (Propithecus coronatus). Primate Conserv.
666	Schmid J, Rasoloarison MR. 2002. Lemurs of the Réserve Naturelle d'Ankarafantsika,
667	Madagascar. In Alonso LE, Schulenberg TS, Radilofe S, Missa O (eds). 2002. A
668	Biological Assessment of the Réserve Naturelle Intégrale d'Ankarafantsika,
669	Madagascar. RAP Bulletin of Biological Assessment No. 23. Conservation
670	International. Washington, DC. p 73-82.
671	Schwitzer C. 2011. Editorial. Lemur News 16:1.
672	Schwitzer C, Mittermeier RA, Davies N, Johnson S, Ratsimbazafy J, Razafindramanana

- J, Louis Jr EE, Rajaobelina S (eds). 2013. Lemurs of Madagascar: A Strategy for
- their Conservation 2013–2016. Bristol, UK: IUCN SSC Primate Specialist Group,

1
2
2
1
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
11
44 15
45
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
53
00

675	Bristol Conservation and Science Foundation, and Conservation International. p
676	185.
677	Sterling E, Ramaroson MG. 1996. Rapid assessment of the primate fauna of the eastern
678	slopes of the Reserve Naturelle Intégrale d'Andringitra, Madagascar. Fieldiana Zool
679	85:293–305.
680	Sterling E, McFadden K. 2000. Rapid census of lemur populations in the Parc National
681	de Marojejy, Madagascar. Fieldiana Zool 97:265–274.
682	Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB,
683	Marques TA, Burnham KP. 2010. Distance software: design and analysis of
684	distance sampling surveys for estimating population size. J Appl Ecol 47:5–14.
685	Vargas A, Jiménez I, Palomares F, Palacios MJ. 2002. Distribution, status, and
686	conservation needs of the golden-crowned sifaka (Propithecus tattersalli). Biol
687	Conserv 108:325–334.
688	Zerbini AN, Waite JM, Laake JL, Wade PR. 2006. Abundance, trends and distribution
689	of baleen whales off western Alaska and the central Aleutian Islands. Deep-Sea Res
690	Oceanogr I 53:1772–1790.

36

Species	Site	Density (individuals /km²)	Field Method	Analysis Method	Estimated population size	Reference
P.coquereli	Ampijoroa	75	-	-	-	Albignac [1981]
	Ampijoroa	60	Home range and mean group sizes	-	-	Ganzhorn [1988]
	Ankarafantsika	5 - 93	LT-DS	CDS and other	52,123	This study
P.coronatus	North West	49 - 309	LT-DS	CDS	130,000 to 220,000	Salmona et al., [2013]
	Antrema	>300	Complete census	-	-	Pichon et al. [2010]
	Anjamena	172.6	LT-DS	Müller	-	Müller et al. [2000]
	Anjamena	543	Home range size	-	-	Müller [1997]
P.verreauxi	Berenty	41 - 1036	Complete census	-	-	Norscia & Palagi [2008]
	Berenty	211		-	-	O'Connor [1987]
P.tattersalli	Daraina region	34 - 90	LT-DS	CDS	11,000 to 26,000	Quéméré et al. [2010]
	Daraina region	17 - 28	LT-DS and Fixe Observation Point	-	6,100 to 10,000	Vargas et al. [2002]
P.edwardsi	Antserananomby	49	LT-DS	CDS	-	Kelley et al. [2007]
	Vohibola	2 - 73	LT-DS	Kelker	-	Lehman et al. [2006b]
	South Est	7.65	LT-DS	Kelker with AOD	39,528	Irwin et al. [2005]
P.diadema	Tsinjoarivo	7.61 - 20.4	Home range size		-	Irwin et al. [2008]
P.candidus	Makira	1.5 - 23.1	LT-DS	MPD Min Convex	-	Rasolofoson et al. [2007]
	Marojejy	40 - 90	LT-DS and random walking	Polygon	-	Sterling & McFadden [200
P.perrieri	Analamerana	3.11	LT-DS	Kelker	915	Banks et al. [2007]
	North	18 - 21.4	LT-DS and home range size	-	100 to 2,000	Meyers & Ratsirarson [198
	Analamerana	3 - 4	-	-	< 1,000	Petter et al. [1977]

Note: LT-DS: Line Transect Distance Sampling; CDS: Conventional Distance Sampling; AOD: Animal to Observer Distances; MPD:

Mean Perpendicular Distance.

694 Table II. Summary of census studies of *Propithecus coquereli* in northwestern Madagascar.

	Loca	ation			Survey	# groups	Mean	Group size	Group encounter	Density		
Site	NS	EW	Protected	Year	Period (month)	sighted	group size	range	rate (group/km)	(ind/km ²)	Method	Reference
Ampiioroa	-16.03	46.82	Y	1962	-	27	4	-	-	-	-	Petter [1962]
				1974	-	12	5.5	4 - 10	-	-	_	Richard [1974]
				1978	-	-	5	1 - 5	-	60	Home range	Richard [1978]
				1981	-	-	-	3 - 5	-	75	-	Albignac [1981]
				2000	Sept	-	-	_	0	-	_	Radespiel & Raveloson [2001]
				2007-2008		4	5.6 - 7.8	5 - 8	-	-	-	McGoogan [2011]
				2009	Jul-Aug	4	2.25	1 - 4	7.86E-05	5	CDS	This study
Ankarokaroka	-16.34	46.79	Y	1997	Feb	2	4	3 - 5	0.33	19	MPD	This Study (Data from Schmid &
												Rasoloarison [2002])
				2000	Sept		-	-	0	-	-	Radespiel & Raveloson [2001]
Antsiloky	-16.23	46.96	Y	1997	Feb	4	5.3	5 - 6	0.85	56	MPD	This Study (Data from Schmid & Rasoloarison [2002])
Bealana	-16.37	46.65	Y	2009	Aug-Sept	23	4.77	1 - 9	1.17E-03	77	CDS	This study
Beronono	-16.04	47.14	Y	2009	Aug	42	3.78	1 - 8	1.41E-03	93	CDS	This study
Bevazaha	-16.23	47.15	Y	2000	Sept	-			0	-	-	Radespiel & Raveloson [2001]
Ste Marie	-16.12	46.95	Y	2000	Sept	-	-	-	0	-	-	Radespiel & Raveloson [2001]
Tsimaloto	-16.23	47.14	Y	1997	Feb	4	3.3	2 - 5	0.23	23	MPD	This Study (Data from Schmid & Rasoloarison [2002])
Vavan'i Marovoay	-16.28	46.91	Y	2009	Aug	4	4.33	2 - 6	1.49E-04	10	CDS	This study
Ambarijeby	-14.94	47.71	Ν	2004	May-Jun	-	2.2	- (0.83	-	-	Olivieri et al. [2005]
Ambodimahabibo	-15.50	47.48	Ν	2004	Jul-Aug	-	2	-	0.5	-	-	Olivieri et al. [2005]
Ambongabe	-15.33	47.68	Ν	2003	Jul-Aug	-	2.5	-	0.44	-	-	Olivieri et al. [2005]
Anjiamangirana I	-15.16	47.74	Y	2004	Sept-Oct	-	1.67	-	0.33	<u> </u>	-	Olivieri et al. [2005]
Ankarafa	-14.38	47.76	Y	2004	Oct	-	-	-	0		-	Olivieri et al. [2005]
Bora	-14.86	48.21	Y	2004	Jun	1	2	-	0.18		-	Olivieri et al. [2005]
				2005	Dec	-	-	-	0	- /	-	Koenig & Zavasoa [2006]
Le Croisement	-16.86	47.03	Ν	2003	May	-	-	-	0	-	-	Olivieri et al. [2005]
Mahatsinjo	-14.79	47.78	Ν	2004	Sept	-	4.5	-	0.33	-	-	Olivieri et al. [2005]
Mangatelo	-16.41	46.97	Ν	2003	May-Jun	-	-	-	0	-	-	Olivieri et al. [2005]
Marosakoa	-15.26	48.30	Ν	2004	Jul	-	-	-	0	-	-	Olivieri et al. [2005]
Mariarano	-15.48	46.69	Ν	2003	Jul	-	3	-	0.5	-	-	Olivieri et al. [2005]
			Y Since 2006	2006	Nov	-	-	2 - 7	-	-	-	Rambinintsoa et al. [2006]
Maroakata	-16.08	47.30	Ν	2003	Aug-Sept	-	-	-	0	-	-	Olivieri et al. [2005]
Tananvaovao	-15.47	46.67	Ν	2003	Jul-Aug	-	3.5	-	1.43	-	-	Olivieri et al. [2005]
Tsiaramaso	-15.80	47.12	Ν	2003	Oct	-	2.67	-	1.11	-	-	Olivieri et al. [2005]
Tsinjomitondraka	-15.66	47.12	Ν	2004	Aug	-	2.69	-	2.17	-	-	Olivieri et al. [2005]

Note: Sites above and below the horizontal line are located respectively inside outside the ANP, for both parts, sites are arranged

alphabetically and data for each site is arrange chronologically. NS and EW: North-South and East-West GPS coordinates, in decimal

degrees, WGS84 format. Column four (Protected), "Y" means "yes" (protected) and "N" means "no" (not protected). Group size range

represents the minimum and maximum size of the group sighted during the survey. In all columns and rows, "-" means that information

was not available.

John Wiley & Sons

Table III. Des	cription s	igs by site	e.				
Site	# transects	Mean transect length (km) (SD)	Total effort length (km)	# groups sighted	Mean group size (SD)	Group size range	# individuals sighted
Total	16	1.36 (±0.54)	97.03	73	4.0 (±1.9)	1 - 9	291
Beronono	3	1.54 (±0.50)	7.33	42	3.7 (±1.7)	1 - 8	154
Vavan'i Marovoay	4	1.04 (±0.38)	20.07	4	3.8 (±2.1)	2 - 6	15
Ampijoroa	6	1.62 (±0.64)	50.87	4	2.3 (±1.5)	1 - 4	9
Bealana	3	1.04 (±0.18)	18.77	23	4.9 (±2.3)	1 - 9	113

700 Table III. Description summary of *P. coquereli* survey and sightings by site.

702 Table IV. Comparison of Coquerel's sifaka density estimated with different

703 methods.

							Densit	y (D)			Рори	ulation size	ze (A)
						95%	6 CI			Z-test		959	% CI
Sites	Method	Bins	FD	ESW	D	Lower	Upper	- SE	CV	P-value	А	Lower	Upper
All sites	Kelker	6;10	30	33.7	43.6	1.0	86.0	21.7	0.02		43,980	1,075	86,885
	Müller	8	24	24.0	41.9	0.0	84.0	21.3	0.02		42,321	121	84,522
	MPD			17.0	86.6	2.0	171.0	43.1	0.01		87,358	2,136	172,580
	CDS			25.7	46.4	2.0	90.0	22.7	0.02		46,853	1,938	91,768
Vavan'i Marovoay	Kelker				9.6	0.0	34.0	10.9	0.36				
	Müller				11.4	0.0	47.0	15.9	0.02				
	MPD				19.1	0.0	69.0	21.6	0.71				
	CDS				9.9	1.0	83.0	7.7	0.78				
Ampijoroa	Kelker				2.6	0.0	6.0	1.9	0.12				
	Müller				0.4	0.0	1.0	0.3	0.55				
	MPD				5.2	0.0	11.0	3.8	0.23				
	CDS				5.2	1.0	41.0	5	0.96				
Bealana	Kelker				83.0	7.0	145.0	35.2	0.49				
	Müller				67.7	3.0	121.0	30.2	0.02				
	MPD				164.9	15.0	288.0	69.8	0.97				
	CDS				77.4	28.0	215.0	25.4	0.33				
Beronono	Kelker			33.7	79.1	21.0	130.0	27.9	0.31	0.484			
	Kelker (Ber.)	4;5;10	20	23.5	113.3	30.0	187.0	40	0.44	0.464			
	Müller			24.0	88.2	0.0	166.0	42.7	0.02	0.970			
	Müller (Ber.)	4;5;10	20	20.0	97.9	0.0	185.0	47.6	0.74	0.879			
	MPD			17.0	157.1	41.0	259.0	55.5	0.62	0.626			
	MPD (Ber.)			13.4	199.5	53.0	329.0	70.5	0.78	0.030			
	CDS			25.7	93.3	31.0	283.0	32.4	0.35	0.045			
	CDS (Ber.)			23.7	96.5	34.0	274.0	35.4	0.37	0.945			

Note: Bins: histogram bins used for the choice of the FD value; FD: Fall of Distance;

ESW: Effective Strip Width; CV: Coefficient of Variation; MPD: Mean Perpendicular
Distance; CDS: Conventional Distance Sampling; Ber.: estimations specifically for
Beronono data (see text), when not specified. Z-test P-values for differences between
the density estimated with the global ESW and the density estimated with Beronono

709 data only.710

711	
712	Table V. Comparison of CDS density estimates using the Z-test.

Site	Ampijoroa	Bealana	Beronono
Vavan'i Marovoay	0.612	0.011	0.012
Ampijoroa		0.005	0.007
Bealana			0.7

713 Note: P-values obtained for the Z-test comparisons of results shown in Table IV. Bold font indicates

values that are significant for the Bonferroni corrected alpha value of 0.0083.

2	
З	
5	
4	
5	
6	
-	
7	
8	
õ	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
47	
17	
18	
10	
00	
20	
21	
22	
22	
23	
24	
<u>2</u> 7	
25	
26	
27	
21	
28	
20	
23	
30	
31	
20	
32	
33	
34	
0 -	
35	
36	
27	
51	
38	
39	
40	
40	
41	
12	
42	
43	
44	
45	
45	
46	
17	
4/	
48	
49	
50	
50	
51	
50	
52	
53	
54	
5	
55	
56	
57	
57	
58	

59

60

Table VI. Model selection using the DISTANCE software for density estimation. 716

					95%		
Model	# params	AICc	ESW	D	Lower	Upper	CV
CDS Half-Normal	1	485.7	25.7	38.6	17.6	84.7	0.39
CDS Hazard-Rate	2	487.2	27.5	40.5	18.4	89.0	0.39
CDS Negative-Exponential	1	486.7	22.8	35.2	15.4	80.5	0.42
CDS Uniform	1	485.9	24.6	38.9	17.7	85.4	0.39
MCDS (cluster size) Hazard-Rate	3	481.2	18.6	44.3	12.2	74.6	0.44
MCDS (time) Hazard-Rate	3	489.5	27.9	40.3	18.7	86.9	0.38
CDS Hazard-Rate (Beronono)	2		24.2	103.4	37.2	287.1	0.38
MCDS (cluster size) Hazard-Rate (Beronono)	3		24.9	107.1	61.3	158.2	0.32

717

Notes: # params: number of parameters; AICc: Akaike's Information Criterion 718 corrected for small samples; ESW: Effective Strip Width; CV: Coefficient of Variation; 719 720 MCDS: Multiple-Covariate Distance Sampling; Parenthesis: covariates tested. 1 - 4Jied L .d for Bei analysis computed with CDS for pooled data; 5 – 6 analysis computed with MCDS for 721 722 pooled data; 7 - 8 analysis computed for Beronono.

725 Figure 1. Map of Ankarafantsika National Park showing survey sites.

Figure 2. Effects of edges (a), rivers (b) and a national road (c and d) on sifaka

density in Ankarafantsika National Park. Panels a to c: comparisons of distributions

standardized by the uniform Kernel densities; Dark gray: *P. coquereli* group sightings
 distribution; light gray: survey effort distribution. Significant differences between

distribution, right gray, survey error distribution. Significant differences between distributions obtained using the Pearson's χ^2 Test for count data with 10,000

- permutations are indicated with: * for p-values < 0.05; ** for p-values < 0.01; *** for
- 733 p-values < 0.001. AMP Ampijoroa; ANK Ankarokaroka; VAV Vavan'i
- 734 Marovoay; ANT Antsiloky; TSI Tsimaloto; BEA Bealana; BER Beronono.