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The retinal determination gene dachshund restricts cell
proliferation by limiting the activity of the Homothorax-Yorkie

complex
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ABSTRACT

The Drosophila transcriptional co-activator protein Yorkie and its
vertebrate orthologs YAP and TAZ are potent oncogenes, whose
activity is normally kept in check by the upstream Hippo kinase
module. Upon its translocation into the nucleus, Yorkie forms
complexes with several tissue-specific DNA-binding partners, which
help to define the tissue-specific target genes of Yorkie. In the
progenitor cells of the eye imaginal disc, the DNA-binding transcription
factor Homothorax is required for Yorkie-promoted proliferation
and survival through regulation of the bantam microRNA (miRNA).
The transit from proliferating progenitors to cell cycle quiescent
precursors is associated with the progressive loss of Homothorax and
gain of Dachshund, a nuclear protein related to the Sno/Ski
family of co-repressors. We have identified Dachshund as an
inhibitor of Homothorax-Yorkie-mediated cell proliferation. Loss
of dachshund induces Yorkie-dependent tissue overgrowth.
Conversely, overexpressing dachshund inhibits tissue growth,
prevents Yorkie or Homothorax-mediated cell proliferation of disc
epithelia and restricts the transcriptional activity of the Yorkie-
Homothorax complex on the bantam enhancer in Drosophila cells.
In addition, Dachshund collaborates with the Decapentaplegic
receptor Thickveins to repress Homothorax and Cyclin B expression
in quiescent precursors. The antagonistic roles of Homothorax and
Dachshund in Yorkie activity, together with their mutual repression,
ensure that progenitor and precursor cells are under distinct
proliferation regimes. Based on the crucial role of the human
dachshund homolog DACH1 in tumorigenesis, our work suggests
that DACH1 might prevent cellular transformation by limiting the
oncogenic activity of YAP and/or TAZ.

KEY WORDS: Dachshund, Yorkie, Homothorax, Drosophila eye
development, Progenitor proliferation, Organ growth

INTRODUCTION

Correct organ development relies on the balance between cell
proliferation, differentiation and death. The developing Drosophila
eye is a powerful model with which to study these mechanisms
and their integration because the progression through different
differentiation stages and its coordination with cell proliferation and
death is particularly obvious in the eye primordium (also known as
the eye imaginal disc) of late instar larvae (Baker, 2007; Wolff and
Ready, 1991). The eye disc derives from a group of cells set aside
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during embryogenesis that grows by random proliferation during the
first two larval stages. It is during the third and last larval stage (L3)
that retinogenesis starts at the posterior of the primordium, driven by
a moving differentiation wave, called the morphogenetic furrow
(MF), that progresses from posterior to anterior (Wolff and Ready,
1991). The first step in the differentiation process is the repression
of the TALE-class homeodomain transcription factor homothorax
(hth) in a fraction of progenitors by the Hedgehog (Hh) and the
Decapentaplegic (Dpp, an ortholog of vertebrate BMP2/4) signals
produced by cells at the MF (Bessa et al., 2002; Lopes and Casares,
2010). These naive and proliferating progenitors transit through a
few synchronous mitotic rounds (the first mitotic wave, FMW) into
G1 quiescent cells, called eye precursors. Next, precursor cells are
reached by the MF and either enter directly the differentiation
pathway or are induced by those postmitotic differentiating cells to
undergo a last terminal mitosis (or second mitotic wave, SMW) to
finally differentiate (Wolff and Ready, 1991). Therefore, in the L3
eye primordium, three different modes of proliferation coexist along
the anterior-posterior axis of the primordium: (1) asynchronous in
progenitors, (2) G1 synchronized precursors anterior to the MF and
(3) patterned mitoses during terminal differentiation behind the MF
(see Fig. 1 for a schematic).

Among several genes and pathways that have been implicated
in regulating cell proliferation of the eye disc (Kumar, 2011), the
Hippo (Hpo) signaling pathway plays a central role. This pathway
regulates organ growth in both Drosophila and mammals and has
been implicated in cancer as a tumor suppressor pathway (Pan,
2010). At its core, there are the two Ser/Thr kinases — Hpo and
Warts (Wts) (Udan et al., 2003; Wu et al.,, 2003b). When
activated, this core kinase module retains the transcriptional co-
activator Yorkie (Yki) in the cytoplasm, preventing Yki from
executing its transcriptional program. Upon its translocation into
the nucleus, Yki — which itself lacks a DNA-binding domain —
forms complexes with several tissue-specific DNA-binding
partners, which help to define the tissue-specific target genes of
Yki. In the wing and eye imaginal discs, Yki interacts with the
TEAD family transcription factor Scalloped (Sd), relieving the
repressive effect of Sd on the Hpo target genes Death-associated
inhibitor of apoptosis 1 (Diapl), expanded (ex) and Cyclin E
(CycE) (Koontz et al., 2013; Wu et al., 2008; Zhang et al., 2008).
Yki also interacts with the Smad family DNA-binding
transcription factor Mad to control the expression of the bantam
(ban) microRNA (miRNA) in the wing imaginal disc (Oh and
Irvine, 2011). Finally, Yki also forms a complex with Hth and,
together, they promote proliferation and survival of eye
progenitor cells by regulating directly the expression of, at
least, han (Nolo et al., 2006; Oh and Irvine, 2011; Peng et al.,
2009; Slattery et al., 2013; Thompson and Cohen, 2006). In this
tissue, although ban expression also requires Sd, Hth has no
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major effects on Diapl, ex and CycE expression (Peng et al.,
2009; Zhang et al., 2008).

The transition from eye progenitors to precursors, in addition to
the synchronization of the cell cycle, also implies an increase in the
expression of the eyes absent (eya), sine oculis (so) and dachshund
(dac) retinal determination genes, which are repressed by Hth in
progenitors cells (Bessa et al., 2002). Their three products have been
proposed to form a protein complex (Chen et al., 1997). Despite this
fact, the function of dac is not identical to that of eya and so. Unlike
eya or so (Bonini et al., 1993; Cheyette et al., 1994; Serikaku and
O’Tousa, 1994), dac seems largely dispensable for retinal
differentiation after it has been initiated, even though Dac
expression is maintained at high levels throughout this process by
the Hh and Dpp signals (Firth and Baker, 2009; Mardon et al.,
1994). Molecularly, dac encodes a nuclear protein with two human
homologs, DACHI1 and DACH2 (Chen et al., 1997; Davis et al.,
1999; Ikeda et al., 2002; Kim et al., 2002; Li et al., 2002). Dac can
bind double-stranded nucleic acids (Kim et al., 2002) and is capable
of activating transcription of a reporter gene in yeast (Chen et al.,
1997). However, no consensus binding site or direct transcriptional
target has yet been identified for Dac. Recent work indicates that
DACH genes act as tumor suppressors. DACH1 expression is
reduced in prostate, breast and uterine cancer, correlating with tumor
progression and invasiveness (Popov et al., 2010). DACH1 inhibits
oncogene-mediated breast oncogenesis in part by repressing cyclin
D1 through a c-Jun DNA-binding partner (Sunde et al., 2006;
Wu et al., 2006, 2007), and it prevents breast tumor stem cell
expansion (Wu et al., 2011). Moreover, DACH1 expression inhibits
DNA synthesis and growth in colony-forming assays in breast
and prostate cancer cells and has been shown to restrict the
transcriptional activity of the hormone receptors by recruiting
the NCoR and HDACI1 co-repressors (Wu et al., 2009). These
results point to a role of dac/DACH genes in cell proliferation and/or
survival.

Here, we have investigated whether dac has a role in controlling
tissue growth during Drosophila eye development. We have found
that Dac limits tissue growth by regulating Yki-Hth activity at
multiple levels. It restricts the transcriptional activity of the Yki-Hth
complex and cooperates with Dpp signaling to repress hth
expression. The antagonistic roles of dac and hth on Yki-driven
proliferation together with the mutual repression between Ath and
dac ensure that progenitor and precursor cells are under different
proliferation regimes.

RESULTS

Dac expression is complementary to that of Hth and spans
the G1 precursor domain

In L3 eye discs, the expression patterns of Dac and Hth are
complementary (Bessa et al., 2002; Fig. 1). Dac is expressed at
low levels in proliferating progenitors, which express high levels
of Hth and undergo an extended G2 phase detected by CyclinB
(CycB) accumulation (Lopes and Casares, 2010). In cells
approaching the MF, Dac expression increases, coinciding with
the loss of Hth and CycB at the FMW. High Dac expression is
detected in the G1-quiescent progenitors, straddling the MF and
the SMW, but fades again coinciding with the accumulation of
Hth in retinal accessory cells (Fig. 1A-A"). Therefore, the transit
from proliferating progenitors to cell cycle quiescent precursors
is associated with the switch from Hth to Dac expression.
However, during this transition, Hth and Dac transiently overlap
at intermediate expression levels, coinciding with the FMW
(Fig. 1B-C).
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Fig. 1. Non-proliferative cells express high levels of Dac and lose Hth.
(A-B”) L3 eye primordium showing the expression patterns of Dac (green in
A,A’,B,B’), Hth (red in AJA”,B,B”) and CycB (blue in A,A”). (A-A"”) Standard
confocal section with anterior to the left and dorsal up on this and all
subsequent eye disc panels. (B-B”) Cross section through the eye primordium
with anterior to the left and apical side up. The morphogenetic furrow (MF) is
indicated by the white lines. The first (FMW) and second mitotic wave (SMW)
are marked by the yellow dashed lines in A-A”. The double arrows on each
side of the MF in B-B” represent the transition domain co-expressing Dac and
Hth. Scale bar: 50 ym. (C) Expression profiles of Dac (green), Hth (blue) and
CycB (red) along the eye disc in A-A” and B-B".

Dac prevents Hth-induced cell proliferation

The complementarity between the Hth and Dac expression patterns,
and the fact that Hth has been shown to repress the premature
upregulation of dac (Bessa et al., 2002) prompted us to test the
functional significance of this repression. We first analyzed whether
the repression of dac is necessary for Hth to promote proliferation.
In agreement with this possibility, GFP-marked hth-expressing
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Fig. 2. Dac is sufficient to repress Hth

a

function and expression. All panels except F
show L3 eye imaginal discs, containing clones
positively labeled with GFP (green) and
expressing (A,A’,D) UAS-hth, (B-C) UAS-dac
or (E,G-G”) UAS-hth plus UAS-dac. Discs are
stained with (A,A’) anti-Dac (magenta) or
(B,B’) anti-Hth (magenta) or (G,G") anti-Dac
(blue) and anti-Hth (red) or (C-E) phalloidin
(phall), to outline tissue shape. The dashed
lines in A’,C-E indicate the MF. Yellow dashed

lines in A’ outline clones in A positively labeled

with GFP. The crops in B,B’,G-G” are
magpnifications of the region delimited by the
dashed lines. Scale bars: 50 ym. (F) Surface
area in ym? of clones induced in the eye
imaginal disc and expressing UAS-dac,
UAS-hth or both. The mean for UAS-dac is
1658 pm? (n=10), for UAS-hth is 6035 um?
(n=7) and for UAS-dac plus UAS-hth is

1576 pm2 (n=12). Error bars indicate s.e.m.

P
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**P=0.003 (Student’s t-test.).

clones showed decreased levels of Dac in the precursor domain
(Fig. 2A,A’). In the converse experiment, in which dac was
overexpressed in GFP-marked clones, only small clones,
comprising just two to three cells, were recovered (Fig. 2B-C) and
in those recovered in the proliferative hth-expressing domain, Hth
expression was cell-autonomously lost (arrows in Fig. 2B’). These
clones were undergrowing compared to GFP control-marked clones
(supplementary material Fig. S1), indicating that Dac is sufficient to
reduce cell proliferation. Because Hth is required for the survival
and proliferation of eye progenitor cells (Bessa et al., 2002; Peng
etal., 2009), the growth defect of dac-expressing clones might result
from the loss of Ahth. However, re-expressing hth in dac-
overexpressing clones did not restore cell proliferation in the
progenitor domain (Fig. 2E,F). On the contrary, overexpressing
dac reduced the overgrowth of Ath-expressing clones to levels
comparable to those of dac-only expressing clones (Fig. 2F,
P=0.003; and compare E to D). Because in these clones, dac
overexpression did not affect the nuclear localization of ectopic Hth
(Fig. 2G-G™), Dac is therefore capable of reducing cell proliferation
independently of its effect on Ath expression.

To determine whether the repressive effect of Dac on Hth-
induced proliferation is specific to the eye epithelium, we analyzed
the effect of overexpressing dac and Ath in the wing imaginal disc,
where endogenous Dac protein is expressed only in a few restricted
patches (Mardon et al., 1994). hth-expressing clones were recovered
in the prospective hinge and notum areas of the wing imaginal disc,
where hth is normally expressed (Azpiazu and Morata, 2000;
Casares and Mann, 2000; supplementary material Fig. S2B).
However, clones ectopically expressing either dac alone or both dac
and hth grew poorly, no matter where they were induced in the wing
disc (supplementary material Fig. S2A-D). Therefore, Dac reduces
cell proliferation independently of its effect on /#h expression, and it
acts parallel to or downstream of Hth in imaginal epithelia.
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Dac restricts Yki-mediated overgrowth

The fact that Hth promotes progenitor growth through Yki (Peng
et al., 2009) raised the possibility that Dac also represses Yki-
induced cell proliferation. We therefore investigated this possibility
by analyzing the functional interaction between Dac and
Yki. Whereas dac-overexpressing clones grew poorly (Fig. 3A;
supplementary material Fig. S1), clones overexpressing yki
overgrew throughout the eye disc (Fig. 3B,D). However, growth
of yki-overexpressing clones was significantly suppressed when
cells also overexpressed dac (Fig. 3C,D; P=0.008). Overexpressing
dac also limited the overgrowth of po mutant clones in this tissue
(Fig. 3K, P=0.0342; and compare J to LLH). To rule out the
possibility that Dac blocks the ability of Yki to promote cell
proliferation by repressing kth, we analyzed the ability of Dac to
repress the growth of clones overexpressing both yki and Ath. Even
in the presence of a GFP-tagged form of Hth, dac overexpression
was still able to strongly suppress the growth of yki+ clones
(Fig. 3G, P=0.0024, and compare F and F” to E and E".

We also analyzed the effect on Yki activity of expressing dac
ectopically in the wing disc. Overexpressing yki with the nubbin-
Gal4 (nub-Gal4) driver, which targets the wing pouch and the inner
ring (Azpiazu and Morata, 2000), doubled the size of the nub
domain when compared with that of control nub-Gal4 discs
expressing GFP (nub>GFP, supplementary material Fig. S2F H;
P<10~%). Consistent with previous observations (Ziosi et al., 2010),
Hth is required for Yki-dependent tissue growth in this tissue, as
reducing Hth levels using double-stranded RNA interference
(dsRNAi) constructs (hth-IR+) partially but significantly
suppressed the growth of nub>yki-overexpressing wing discs
(supplementary material Fig. S3, P<107*). This effect likely
resulted from a reduction in Yki-mediated cell proliferation in the
inner ring, as Hth expression is restricted to this region within the
nub-Gal4 domain (Casares and Mann, 2000). In contrast to
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Fig. 3. Dac blocks Yki-induced tissue
growth. All panels, except D,G and K, show

L3 eye imaginal discs containing clones
positively labeled with (A-C,H-J) GFP (green)
or (E-F”) GFP-Hth (greenin E,F; gray in E',F’)
and expressing (A,H) UAS-dac, (B) UAS-yki,
(C) UAS-dac plus UAS-yki, (E-E”) UAS-yki,
UAS-GFP-hth and UAS-CD2 or (F-F”) UAS-
yki, UAS-GFP-hth and UAS-dac, or (I) mutant
for the hpo***” allele or (J) mutant for the
hpo*?#” allele and expressing UAS-dac. Discs

dac yki* dac*
yki*

are stained with (A-C,H-J) phalloidin (phall,

magenta) to outline tissue shape or (E-F”)
anti-Yki (red in E,F; gray in E”,F”) and anti-Dac
(blue in E,F; gray in E”,F”). The dashed lines
in A-C,H-J indicate the MF. Scale bars: 50 pm.
(D) Surface area of clones expressing UAS-
dac, UAS-yki or both. The mean for UAS-dac
is 2359 ym? (n=17), for UAS-yki is 9159 pm?
(n=2) and for UAS-dac plus UAS-yki is

2517 um? (n=59). Error bars indicate s.e.m.
**P<0.008 (Student’s t-test). (G) Surface area
of clones expressing UAS-yki, UAS-GFP-hth

N
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o

and UAS-CD2 or UAS-dac. The mean for
UAS-yki, UAS-GFP-hth and UAS-CD2 is
9924 um? (n=27), and for UAS-yki, UAS-GFP-
hth and UAS-dac is 2681 ym? (n=11). Error
bars indicate s.e.m. **P<0.0024 (Student’s
t-test). (K) Surface area of clones expressing
UAS-dac or mutant for hpo*2#” or mutant for
h,oo"z"’7 and expressing UAS-dac. The mean
for UAS-dac is 4854 um? (n=10), for hpo*>#’ is

Clonal Area per disc um?

17,870 um? (n=22) and for UAS-dac and

m?

overexpressing yki, expressing dac ectopically with nub-Gal4
reduced the size of this domain by half compared with that of
nub>GFP controls (supplementary material Fig. S2E,H; P<10™%)
and significantly suppressed the overgrowth resulting from yki
overexpression (supplementary material Fig. S2G,H; P<10~%). The
presence of dac was also able to prevent the growth of clones
co-expressing vki and a GFP-tagged form of Ath (supplementary
material Fig. S4; P=0.0019). Dac is unlikely to inhibit the
overgrowth by promoting apoptosis of yki-overexpressing cells,
because we detected similar low levels of apoptosis in nub>dac,
nub>yki and nub>dac+yki wing discs (supplementary material
Fig. S2I-L’). Taken together, we conclude that Dac blocks the
ability of Hth and Yki to promote cell proliferation. Dac might act
downstream of or in parallel to Yki-Hth. Alternatively, Dac might
restrict the activity of the Yki-Hth transcriptional complex.

Dac restricts tissue growth by limiting Yki function

To investigate whether Dac is required to limit tissue growth in the eye
disc, we analyzed the effects of loss of Dac function in clones of a null
allele. dac mutant clones located in internal regions of the primordium
showed a delay in the onset of photoreceptor differentiation and
abnormal ommatidial arrangements, as reported previously (Mardon
et al., 1994). When we compared the size of dac mutant clones,

hpo42'47 is 11,000 me (n=6). Error bars
indicate s.e.m. *P=0.0342 between clones
mutant for hpo*?*” with or without UAS-dac or
P=0.0128 between clones with UAS-dac and
mutant or wild type for hpo (Student’s t-test).

-

Clonal Area per disc p

0
dac* hpo hpo
d’alJt:+

marked by the absence of GFP, with that of their wild type ‘twin’
clones, marked by two copies of GFP, we found that dac mutant clones
were, on average, 1.7 times larger than the twin clones (P=0.0069;
Fig. 4A,B). Thus, dac restricts tissue growth in the eye disc.

If one of the functions of Dac is to restrict the ability of the Hth-
Yki complex to promote cell proliferation, decreasing Yki levels
should suppress the growth of dac mutant cells. To test this
possibility, we downregulated Yki function in two ways. First, we
knocked Yki expression down by the use of a dsRNAi construct
(yki-IR+). yki-IR+ clones were seldom recovered in the anterior
region of the eye primordium and, when recovered, were very
small (Fig. 4D,I). When dac mutant clones were simultaneously
yki-IR+, the recovery rate and size of the clones was reduced to that
of yki-IR+- only clones (Fig. 41, P<10~*; and compare E to C).
Second, we overexpressed the upstream Hpo pathway regulator ex,
as increased Ex levels are expected to block Yki activity by
promoting its phosphorylation (Hamaratoglu et al., 2006; Hariharan
and Bilder, 2006; McCartney et al., 2000) and through direct
binding (Badouel et al., 2009; Oh et al., 2009). As expected, clones
overexpressing ex grew poorly (Fig. 4G,I), and suppressed the
growth of dac mutant clones (Fig. 41, P<10~*; and compare H and
F). We conclude that Yki function is required for the growth of dac
mutant tissues.
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Fig. 4. Overgrowth of dac mutant tissues requires Yki. All panels, except B
and I, show L3 eye discs. (A) dac® mutant clones marked by the absence of
GFP (green) and outlined by yellow dashed lines. Wild-type twin spots are
outlined by white dashed lines. (B) Surface area of dac® mutant clones (no
GFP) and their wild-type twin spots (two copies of GFP) per disc in pm?. The
mean for dac®is 4987 um2 and for wild-type twin spot is 2775 |Jm2 (n=25). Error
bars indicate s.e.m. ***P=0.0069 (Student’s t-test). (C-H) Clones labeled with
GFP (green) and (C,F) mutant for dac® or (D) expressing UAS-yki-IR**%%R2,
(E) mutant for dac® and expressing UAS-yki-IR*°’°R2 (G) expressing UAS-ex
or (H) mutant for dac® and expressing UAS-ex. Discs are stained with (C-E)
anti-DE-Cad to outline tissue shape (magenta) or (F-H) anti-Hth (magenta).
The dashed lines indicate the MF. Scale bars: 50 um. (l) Surface area in ym? of
clones for the five genotypes in C-H. The mean for dac® is 15,470 ym? (n=17),
for UAS-yki-IR is 8519 pm? (n=23), for dac®, UAS-yki-IR is 6939 um? (n=29),
for UAS-ex is 3103 pm? (n=35) and for dac®, UAS-ex is 5389 ym? (n=8). Error
bars indicate s.e.m. ***P<10~* (Student's t-test).

Dac restricts tissue growth by inhibiting ban expression

Hth and Yki together ensure the maintenance and proliferation of
the eye progenitor population by up-regulating ban (Peng et al.,
2009). We therefore tested whether Dac restricts Yki-Hth-
dependent cell proliferation by preventing ban expression. To do
so, we used a GFP ban sensor that is repressed by the ban miRNA.
Consequently, the GFP levels are inversely proportional to the
levels of the han miRNA (Brennecke et al., 2003). Thus, in wild-
type eye discs, the expression of the GFP ban sensor was
complementary to the expression of a /acZ enhancer trap insertion
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dac
ban-sponge*

ban-s;:onge‘

dac

Fig. 5. ban expression is affected by Dac levels and is required for

the growth of dac mutant clones. All panels, except F, show L3 eye discs.
(A-A”,B-B") Discs expressing the GFP-ban sensor (magenta in A,A”, green in
B and gray in B’) and containing (A-A”) dac® mutant clones marked by the
absence of arm-LacZ (green in A,A’) or (B-B”) clones expressing UAS-dac,
stained with anti-Yki (red in B and gray in B”) and anti-Dac (blue in B and gray in
B”). Yellow arrows in A’, A”, B and B” indicate the (A’,A”) reduction or (B,B")
accumulation of the GFP ban sensor in clones mutant for dac or
overexpressing dac, respectively. (C-E) clones labeled with GFP (green) and
(C) mutant for dac® or (D) expressing UAS-ban-sponge or (E) mutant for dac®
and expressing UAS-ban-sponge. Discs are stained with anti-Dac (magenta).
Scale bars: 50 pm. (F) Surface area in pm? of clones for the three genotypes
in C-E. The mean for dac® is 14,300 pm? (n=22), for UAS-ban-sponge is
8026 um? (n=45) and for dac®, UAS-ban-sponge is 6618 um? (n=29). Error
bars indicate s.e.m. ***P<0.0001 (Student’s t-test).

in the ban locus (ban-LacZ) (supplementary material Fig. SSA-A"),
with low expression levels in proliferating progenitors and higher
levels in differentiating photoreceptors (Peng et al., 2009). dac
mutant clones recovered posterior to the MF showed reduced
expression of the GFP ban sensor (Fig. SA-A"), associated with an
increase in ban-LacZ levels (supplementary material Fig. SSB-B”).
By contrast, loss of dac had only weak effects on the expression of
Yki target genes that require the Yki DNA-binding partner Sd but
not Hth (Peng et al.,, 2009; Zhang et al., 2008). Thus, a lacZ
enhancer trap insertion in the Diapl gene (Diapl-LacZ) was only
weakly upregulated at the border of some dac mutant clones located
in internal regions of the primordium (supplementary material
Fig. S5C-C”). CycE levels were not significantly affected by
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Fig. 6. Dac limits Yki-Hth-mediated transcriptional stimulation on
restricted ban enhancers. (A) Schematic of the ban locus. Orange lines
indicate the ban reporter constructs (Oh and Irvine, 2011) used to perform the
transcriptional assays in B. (B) Graph of the fold changes of firefly luciferase
over Renilla luciferase control in Dmel cell extracts transfected with the
indicated ban luciferase reporters and the nuclear factors Yki, Hth, Mad and
Dac. Error bars indicate s.e.m.; n=4. (C) Western blots from Dmel cell extracts
transfected with the indicated nuclear factors Yki, Hth, Mad and Dac and
blotted with (upper panel) anti-HA, which marks HA::Dac, (middle panel) anti-
Hth or (lower panel) anti-Flag, which marks Flag::Yki (upper and lower bands)
and Flag::Mad (upper band).

removing dac function (supplementary material Fig. SSE-E”),
whereas Ex levels were slightly reduced (supplementary material
Fig. S5D-D”). Conversely, clones expressing dac ectopically in the
progenitor domain upregulated the GFP ban sensor (Fig. 5B-B”).
Furthermore, expressing dac ectopically along the anterior-posterior
boundary of the wing disc, using the patched-Gal4 (ptc-Gal4)
driver, resulted in increased levels of ban sensor activity along this
domain (supplementary material Fig. S6, compare B and B’ to A).
Thus, Dac inhibits ban expression.

We then tested whether the effects of dac on growth depend on ban
levels. dac mutant clones expressing a bantam-sponge (ban-sponge)
tagged with dsRed, which prevents direct ban mRNA cleavage
(Becam et al., 2011), did not grow better than wild-type clones
expressing the ban-sponge (Fig. 5F, and compare D to E). Moreover,
the presence of the ban-sponge suppressed the growth of dac mutant
clones (Fig. 5F, P<0.0001; and compare E to C). Conversely,
expressing ban ectopically restored the growth of nub>dac-
overexpressing tissues (supplementary material Fig. S6C-F). We
conclude that Dac restricts tissue growth in the eye disc mainly by
inhibiting ban expression.

Dac inhibits Yki-Hth-mediated transcriptional stimulation

of ban

We next investigated the mechanism by which Dac restricts the
expression of ban by testing the effect of Dac on the ban
enhancers br-2.5, br-3.9 and br-6.6 (Fig. 6A; Oh and Irvine,
2011). Their transcriptional activity was measured by luciferase
assays in Dmel cells transfected with Yki and Hth or with Mad or
with both Hth and Mad in the absence or presence of Dac, as

Dmel cells do not express dac (data not shown). As reported
previously (Oh and Irvine, 2011), cotransfection of Yki and Hth or
Mad stimulated the transcription of luciferase driven by all three
ban enhancers (Fig. 6B). Interestingly, cotransfecting Mad did not
enhance the Yki-Hth-dependent expression of luciferase on either
of the enhancers, indicating that the Yki-Mad and Yki-Hth
complexes do not cooperate in ban expression. Strikingly, the
presence of cotransfected Dac significantly reduced the Yki-Hth-
dependent transcriptional stimulation of the br-2.5 and br-3.9
luciferase reporters from 11.7- to 6.4-fold (P=0.0006) and from
9.7- to 4.7-fold (P=0.0052), respectively (Fig. 6B). However,
although the br-6.6 luciferase reporter also responded to Yki-Hth,
luciferase levels were not affected by cotransfected Dac,
suggesting that Dac restricts Yki-Hth-dependent transcriptional
stimulation in an enhancer-specific manner. The inhibitory effect
of Dac on the expression of the br-2.5 and br-3.9 reporters was not
due to Dac-mediated loss of Hth, as cotransfecting Dac did not
downregulate Hth (Fig. 6C). Moreover, this effect depended on
Hth, as expressing dac did not affect the Yki-Mad-mediated
transcriptional stimulation on any of the three han enhancers
(Fig. 6B). Co-transfected Dac also significantly reduced the Yki-
Hth-dependent transcriptional stimulation of the br-2.5 luciferase
reporter in DL2 cells, from 6.9- to 3.9-fold (£<0.0001), but not the
basal expression level of this reporter. This effect requires both
Yki and Hth, as Dac did not affect the Yki- or Hth-dependent
transcriptional stimulation of this reporter (supplementary material
Fig. S7). Taken together, these results suggest that Dac represses
the transcriptional activity of Hth and Yki on restricted ban
enhancers.

Dac and Tkv cooperate to restrict proliferation and Hth
expression in the precursor domain

Because ectopic Dac represses Hth expression, we asked whether
Dac ensures the Gl synchronization in precursor cells prior to
photoreceptor differentiation by restricting Hth expression. However,
unlike loss of eya, which caused Hth accumulation (supplementary
material Fig. S§A-A"), loss of dac in the internal region of the eye
primordium was not sufficient to derepress Hth (supplementary
material Fig. S§B-B”; Fig. 7A,A’), nor to cause CycB accumulation in
the Gl domain (Fig. 7D,D’). Thus, the overgrowth of dac mutant
clones does not result from ectopic Hth expression but likely from
de-repression of Yki-Hth transcriptional activity in the transition
domain where Hth and Dac overlap ahead of the MF.

Because Dpp has been shown to contribute to Hth repression
(Bessa et al., 2002; Lopes and Casares, 2010), we investigated
whether removing the function of the Dpp receptor Thickveins
(Tkv) in dac mutant clones was sufficient to fully de-repress Hth
and allow proliferation in the precursor domain. As reported
previously (Lopes and Casares, 2010), cells mutant for kv could
still downregulate Hth (Fig. 7B,B’) and CycB (Fig. 7E,E’),
indicating that they become arrested in G1. By contrast, double
mutant clones for tkv and dac accumulated Hth (Fig. 7C,C’") and
CycB (Fig. 7F,F’) even in cells close to the MF. We conclude that
Dac and Tkv synergize to repress Hth and ensure the transition
between progenitor and precursor cells, promoting the entrance into
G1 prior to photoreceptor differentiation.

DISCUSSION

In this report, we show that Dac controls tissue growth in the eye
disc by regulating Yki-Hth activity at multiple levels. It counteracts
Yki-Hth-dependent ban expression and cooperates with Dpp
signaling to repress Ath expression (Fig. 8).
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Fig. 7. Loss of dac and tkv derepresses Hth and CycB. All panels show L3
eye imaginal discs. Mutant clones for (A,A’,D,D’) dac®, (B,B",E,E’) tkv* or
(C,C',F-F) both tkv* and dac®, marked by the absence of GFP (greenin A,B,C,
D,E,F) oroutlined by yellow dashed lines in A’,B",C’,D’,E’,F’. Discs are stained
with (A-C’) anti-Hth (magenta) or (D-F’) anti-CycB (magenta). Scale bars:

50 ym.

Dac is an inhibitor of Yki-Hth transcriptional activity

Our work demonstrates that Dac does not act as a general Yki inhibitor,
but rather limits the ability of the co-transcription factor Yki and the
DNA-binding partner Hth to activate transcription on the enhancers of
growth-promoting genes, such as ban. First, Dac acts in parallel to or
downstream of Yki and Hth, as Dac is capable of preventing Yki- and/
or Hth-dependent cell proliferation (Figs 2, 3; supplementary material
Figs S2, S4). Second, Dac limits the expression of ban (Fig. 5;
supplementary material Figs S5, S6), a direct target of Yki-Hth (Peng
et al., 2009) (Fig. 6). Third, Yki and its downstream target ban
promote growth in dac mutant tissue (Figs 4, 5). Fourth, in Dmel and
DL2 cells, Dac restricts Yki-Hth- but not Yki-Mad-mediated
transcriptional stimulation (Fig. 6). Fifth, like Hth, Dac has no
major effect on Ex, Diapl and CycE expression (supplementary
material Fig. S5).

To exert this function, Dac could be directly recruited to Yki
targets through binding to Hth. Alternatively, Dac might be brought
to other DNA-binding sequences to counteract Yki-Hth-dependent
gene expression. The finding that the b7-6.6 enhancer responds to
Yki-Hth but not to Dac (Fig. 6) gives support to this second
possibility. Moreover, DACH1 has been shown to interact with a
DNA-binding sequence that resembles the FOX (Forkhead box-
containing protein) binding site (Zhou et al., 2010), but also
counteracts the effect of Ras, ErbB2 and Myc on the cyclin D1
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Fig. 8. Model of the mechanism by which Dac controls cell proliferation in
the eye disc by regulating Hpo pathway activity at multiple levels. Prior to
photoreceptor differentiation, Hh expressed by photoreceptor cells triggers
Dpp expression in the MF (in gray). Together, they induce high dac expression
(Firth and Baker, 2009) and in concert with Dac, prevent hth expression to
promote cell cycle quiescence in this domain. In the transition domain, where
Dac and Hth are expressed at intermediate levels, Dac restricts the
transcriptional activity of the Yki-Hth complex on Yki targets such as ban to limit
cell proliferation. By contrast, in the proliferation domain, Hth expressed at high
levels prevents dac expression and, together with Yki, promotes ban
expression to allow for cell proliferation.

promoter through binding to c-Jun or CREB (Sunde et al., 2006; Wu
et al., 2006, 2007). Because DACH1 interacts with the nuclear
receptor co-repressor (NCoR), mSin3A and histone deacetylases
(HDAC:S) (Popov et al., 2009; Song et al., 2003; Tskvitaria-Fuller
et al., 2003; Wu et al., 2003a,b), the interaction of Dac with Hth
might bring general co-repressors of the transcriptional machinery
to the ban enhancers.

Surprisingly, Dac not only limits ban expression in the
presumptive thorax where Yki and Hth promote tissue growth
(supplementary material Fig. S3; Ziosi et al., 2010), but also affects
the expression of the ban sensor in the wing blade (supplementary
material Fig. S6). In this tissue, Yki has been shown to control ban
expression through its interaction with Sd and Mad (Oh and Irvine,
2011; Slattery et al., 2013). Although Dac has no effect on Yki-
Mad-mediated transcriptional stimulation of the ban enhancers
br-2.5 and br-3.9 (Fig. 6), in the wing blade, ectopic Dac might
limit han expression by restricting the activity of the Yki-Mad or
Yki-Sd complexes on additional enhancers. In addition, Dac
appears to regulate the expression of distinct sets of patterning
genes depending of the cellular context, as dac is also required for
establishing the segmental pattern of Notch ligand and fringe
expression in the leg imaginal disc, for sensory organ, genitalia and
sex comb development and for proper neuronal differentiation
(Atallah et al., 2014; Keisman and Baker, 2001; Martini et al., 2000;
Miguel-Aliaga et al., 2004; Okamoto et al., 2012; Rauskolb, 2001).

Dac and Hth control the pattern of cell proliferation in the
eye disc

In the progenitor domain, Dac levels are kept low as a result of high
levels of Hth expression (Bessa et al., 2002). This regulation
sustains the Yki-Hth-induced proliferation of progenitors (Peng
et al., 2009), which would otherwise be restricted by the inhibitory
effect of Dac. In cells approaching the MF, while Hth is repressed,
Dac is upregulated (Fig. 1). During this transition, both Dac and Hth
are transiently co-expressed, and Dac might alter the transcriptional
properties of Yki and Hth on specific target genes, such as ban.
Interestingly, although Hth has been reported to regulate the
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proliferation of progenitor cells in conjunction with Yki (Peng et al.,
2009), our data argue that Hth additionally contributes to this
proliferation by repressing Dac, because Dac could potentially
block Yki function even in the presence of Hth (Fig. 3). In addition,
we have found that Dac is sufficient to repress Hth (Fig. 2).
However, in the transition from proliferating progenitors to cell
cycle quiescent precursors, Dac, expressed at high levels by Dpp
and Hedgehog (Hh) (Firth and Baker, 2009), requires the Dpp
signaling pathway to synergistically repress Hth expression (Fig. 7).
Thus, inhibitory interactions involving Dac and Hth coexist prior to
photoreceptor differentiation at two levels, transcriptional and
functional: Hth represses dac; this repression is alleviated by Dpp
produced at the MF and reinforced by increasing levels of Dac. In
addition, in the transition domain, where both Dac and Hth are co-
expressed (Fig. 1), Dac inhibits the transcriptional activity of Hth
and Yki. These multiple inhibitory interactions might constitute a
double safe mechanism to guarantee that the transition from
progenitors to precursors is perfectly coupled to the change in the
proliferative status (high to low yki activity) prior to photoreceptor
differentiation. Consistently, altering Dac or Hth levels affects tissue
growth (Figs 2, 3). Moreover, Dac and Dpp signaling are together
necessary to ensure the synchronous exit of progenitors from the
FMW, guaranteeing that precursors are all in the G1 phase (Fig. 7).
In this way, the Dac-dependent change in the proliferation status
would allow proper neuronal differentiation. Dac might also
regulate the ordered progression of neurogenesis in the nervous
system. In the optic lobe, as in the eye disc (Fig. 1), Dac expression
levels inversely correlate with Yki-dependent cell proliferation
during the transition from proliferating neuroepithelial cells into
differentiating lamina neurons (Kawamori et al., 2011).

Dac or DACHs and cancer

Altered expression of the human Dac ortholog DACH]1 has been
reported in a variety of human tumors (Popov et al., 2010). DACH1
has an instructive role in preventing proliferation, because its
expression inhibits oncogenic transformation of breast epithelial
cell lines (Wu et al., 2006) and breast tumor stem cell expansion
(Wuetal.,2011). Based on the high levels of conservation between
Drosophila Yki and Dac and their human counterparts, our work
suggests that mammalian DACH proteins might also inactivate the
transcriptional activity of YAP and/or TAZ (also known as
WWTRI1) on a subset of target genes by interacting with specific
YAP or TAZ DNA-binding partners. In agreement with this
possibility, DACH1 and YAP or TAZ regulate cyclin D1 expression
(Wu et al., 2006, 2007; Zhou et al., 2011). Therefore, we propose
that oncogenic transformation associated with increased YAP or
TAZ transcriptional activity could result not only from perturbation
of YAP or TAZ localization or levels (Pan, 2010), but also from
inactivation of the tissue-specific DACH co-repressors.

MATERIALS AND METHODS

Fly strains and genetics

The fly stocks used were dac’, UAS-dac” (Mardon et al., 1994), UAS-HA:
dac” (Tavsanli et al., 2004), eya™ (Bonini et al., 1998), thkv*, hpo**~*” (Wu
et al., 2003b), UAS-hth-GFP (Casares and Mann, 2000), UAS-yki (Huang
et al., 2005), UAS-yki:HA (Sidor et al., 2013), UAS-yki-IR?%%2 (NIG),
UAS-Ath-IR (VDRC #12763), UAS-ex (Udan et al., 2003), GFP-ban sensor
(Brennecke etal., 2003), ban-lacZ (Spradling etal., 1999), UAS-banF3%2?
(Rorth et al., 1998), UAS-ban-sponge (Becam et al., 2011), Diapl::lacZ
(Hay et al., 1995), ptc-Gal4 (Tang and Sun, 2002), nub-Gal4 (Calleja et al.,
1996) and da-Gal4 (Wodarz et al., 1995). Mutant clones for dac’ or thv*
or thv*, dac’ or eya®™ marked by the absence of GFP or arm-lacZ were
generated through mitotic recombination (Xu and Rubin, 1993). The

MARCM technique (Lee and Luo, 1999) was used to induce clones
expressing UAS-yki-IR**°%2 or UAS-ex or mutant for hpo***” and
expressing UAS-dac. Larvae were heat-shocked for 1 h at 37°C between
48 and 72 h after egg laying. Gain-of-function experiments using UAS-dac,
UAS-hth-GFP or UAS-yki were performed either using the flip-out method
for clonal analysis (Struhl and Basler, 1993) or using the nub-Gal4 driver for
expression in the prospective blade and distal hinge regions of the wing disc.
Crosses carrying UAS-dac and the corresponding controls were raised at
18°C, whereas others were raised at 25°C. To analyze the effect of dac on ban
activity, ptc-Gal4 females were crossed to w™; GFP-ban sensor/CyO; UAS-
dac/TM6B males.

Immunohistochemistry

Imaginal discs were dissected and fixed according to standard protocols.
The primary antibodies used were mouse anti-Dac (1:100, mAbdac2.3,
DSHB), rabbit anti-CycB (1:10, Jacobs et al., 1998), guinea pig anti-CycE
(1:1000, a gift from T. Orr-Weaver, Whitehead Institute, Cambridge, MA,
USA), guinea pig anti-Hth (1:5000, Casares and Mann, 1998), rabbit anti-
Hth (1:500, Kurant et al., 1998), mouse anti-GFP (1:1000, A11120,
Invitrogen), rabbit anti-GFP (1:1000, A11122, Invitrogen), mouse anti-p-
galactosidase (1:200, Z378B, Promega), rabbit anti-B-galactosidase
(1:1000, 55976, Cappel), rabbit anti-activated caspase 3 (1:150, 9661L,
Cell Signaling), rat anti-DE-Cad (1:50, CAD2, DSHB), rabbit anti-Ex
(1:200, a gift from A. Laughon, University of Wisconsin, Madison, WI,
USA) and rat anti-Yki (1:200, Genevet et al., 2010). Rhodamine-conjugated
phalloidin (Sigma) was used at a concentration of 0.3 uM. Fluorescently
labeled secondary antibodies were from Jackson Immunoresearch (1:200).
Imaging was carried out on Leica SP2 or SP5 confocal microscopes.

Quantification

The NIH ImagelJ program was used to perform measurements. The surface
area of dac mutant clones and their sibling twin spots was calculated in pum?
for each clone outlined separately. The total area of clones positively marked
by GFP was calculated as the sum of GFP signals per disc area. The surface
area of wing disc blades was calculated as the ratio of the surface area of the
nub>GFP or nub>dac-expressing area over the total surface area in um? for
each disc. Statistical analysis was performed with GraphPad Prism5
software, using Student’s #-test.

Molecular biology

Genomic DNA extracted from UAS-HA-dac” flies using the NucleoSpin®
Tissue kit (Macherey-Nagel) was used to amplify HA-dac using the
oligonucleotides 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTC-
GAAGGAGATAGAACCATGGATTCTGTGACAAGTGAACAG-3" and
5'-GGGGACCACTTTGTACAAGAAAGCTGGGTATTAGTTGGCGCT-
GCCGAAG-3’ and the Phusion DNA Polymerase (Thermo Scientific).
PCR products were then inserted in pPDONR™221 using the Gateway BP
method (Invitrogen). After sequencing the pEntry-dac, Gateway LR
reaction was performed to transfer HA-dac into pAHW.

Drosophila cell assays and western blotting

Schneider Drosophila line 2 (DL2) cells obtained from Dr Paul Scotti
(Horticulture Research, Auckland, NZ) and kindly provided by L. Teixeira
(Instituto Gulbenkian de Ciéncia, Portugal) were cultured in Schneider’s
medium supplemented with 10% fetal bovine serum and 1x penicillin-
streptomycin (Gibco). Dmel-2 cells (Invitrogen) were kindly provided
by M. Bettencourt-Dias (Instituto Gulbenkian de Ciéncia, Portugal)
and cultured in Express Five® SFM medium with 2 mM L-glutamine and
1% penicillin-streptomycin (Gibco). Transient transfections in six-well
plates and luciferase reporter assays were performed using Effectene
(Qiagen) and the Dual Luciferase Assay System (Promega), respectively,
according to the manufacturer’s instructions. Two independent experiments
were performed in duplicate. 125 ng of pAc5. I-Hth (Culi and Mann, 2003),
pAcS5.1-3xFlag::Mad, pGL3-br-6.6-luciferase, pGL3-br-3.9-luciferase,
pGL3-br-2.5-luciferase (Oh and Irvine, 2011), pAct5C-3xFlag::Yki
(Zhang et al., 2008), pAFW, pAHW and pAct5C-HA::Dac and 25 ng of
pAct5C-3xFlag::Renilla-luciferase (Invitrogen) were transfected and cells
were incubated for 72 h (Dmel cells) or 48 h (DL2 cells) before extraction.
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To detect protein expression, cells were lysed (50 mM Tris pH 7.4, 150 mM
NaCl, | mM EDTA pH 7.4, 1% NP-40) in the presence of protease (Roche
#04693159001) and phosphatase inhibitors (Sigma #S6508 and S7920).
Extracts were boiled and run on 8% SDS-PAGE gels, and transferred to
PVDF membranes (Amersham Hybond™-P, GE Healthcare). Blots were
blocked in TBST (10 mM Tris pH 7.4, 150 mM NaCl, 0.1% Tween-20), 5%
non-fat milk for 1 h at room temperature and incubated with rabbit anti-Hth
(1:5000, Kurant et al., 1998) or mouse anti-HA (1:1000, Covance, 11
MMS101P) or mouse anti-Flag (1:500, F1804, Sigma) in TBST, 1% non-fat
milk for 1 h at room temperature. After three washes, blots were incubated
for 1h at room temperature with horseradish peroxidase-conjugated
secondary antibodies (Jackson Immunoresearch) and revealed by ECL
using Amersham Hyperfilm ECL (GE Healthcare).
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