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Abstract

We present schema redescription as a methodology to characterize canalization in automata networks used to model
biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in
the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which
is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata
networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics – a crux of
complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the
dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the
convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and
measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known
model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this
model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its
behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the
identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to
stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but
we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that
orchestrates cellular activity – with the ultimate goal of explaining how do cells and tissues ‘compute’.
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Introduction and Background

The notion of canalization was proposed by Conrad Waddington

[1] to explain why, under genetic and environmental perturba-

tions, a wild-type phenotype is less variable in appearance than

most mutant phenotypes during development. Waddington’s

fundamental hypothesis was that the robustness of wild-type

phenotypes is the result of a buffering of the developmental process. This

led Waddington to develop the well-known concept of epigenetic

landscape [2,3], where cellular phenotypes are seen, metaphorically,

as marbles rolling down a sloped and ridged landscape as the result

of interactions amongst genes and epigenetic factors. The marbles

ultimately settle in one of the valleys, each corresponding to a

stable configuration that can be reached via the dynamics of the

interaction network. In this view, genetic and epigenetic pertur-

bations can only have a significant developmental effect if they

force the natural path of the marbles over the ridges of the

epigenetic landscape, thus making them settle in a different valley

or stable configuration.

Canalization, understood as the buffering of genetic and

epigenetic perturbations leading to the stability of phenotypic traits,

has re-emerged recently as a topic of interest in computational and

systems biology [4–10]. However, canalization is an emergent

phenomenon because we can consider the stability of a phenotypic

trait both at the micro-level of biochemical interactions, or at the

macro-level of phenotypic behaviour. The complex interaction

between micro- and macro-level thus makes canalization difficult to

study in biological organisms – but the field of complex systems has

led to progress in our understanding of this concept. For instance,

Conrad [3] provided a still-relevant treatment of evolvability [11] by

analysing the tradeoff between genetic (micro-level) instability and

phenotypic (macro-level) stability. This led to the concept of extra-

dimensional bypass, whereby most genetic perturbations are buffered

to allow the phenotype to be robust to most physiological

perturbations, but a few genetic perturbations (e.g. the addition of

novel genetic information) provide occasional instability necessary

for evolution. Conrad highlighted three (micro-level) features of the

organization of living systems that allows them to satisfy this

tradeoff: modularity (or compartmentalization), component redundancy,

and multiple weak interactions. The latter two features are both a form

of redundancy, the first considering the redundancy of components

and the second considering the redundancy of interactions or

linkages. Perhaps because micro-level redundancy has been posited

as one of the main mechanisms to obtain macro-level robustness,

the term canalization has also been used – especially in discrete

mathematics – to characterize redundant properties of automata

functions, particularly when used to model micro-level dynamical
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interactions in models of genetic regulation and biochemical

signalling.

An automaton is typically defined as canalizing if there is at least

one state of at least one of its inputs that is sufficient to control the

automaton’s next state (henceforth transition), regardless of the

states of any other inputs [12]. Clearly, this widely used definition

refers to micro-level characteristics of the components of

multivariate discrete dynamical systems such as automata

networks, and not to canalization as the emergent phenomenon

outlined above. Nonetheless, using this definition, it has been

shown that (1) canalizing functions are widespread in eukaryotic

gene-regulation dynamics [13]; (2) genetic regulatory networks

modelled with canalizing automata are always stable [14,15]; and

(3) realistic biological dynamics are naturally observed in networks

with scale-free connectivity that contain canalizing functions [16].

These observations suggest that the redundancy captured by this

micro-level definition of canalization is a mechanism used to

obtain stability and robustness at the macro-level of phenotypic

traits.

Since the proportion of such ‘strictly’ canalizing functions drops

abruptly with the number of inputs (k) [17], it was at first assumed

that (micro-level) canalization does not play a prominent role in

stabilizing complex dynamics of gene regulatory networks.

However, when the concept of canalization is extended to include

partially canalizing functions, where subsets of inputs can control the

automaton’s transition, the proportion of available canalizing

automata increases dramatically even for automata with many

inputs [18]. Furthermore, partial canalization has been shown to

contribute to network stability, without a detrimental effect on

‘evolvability’ [18]. Reichhardt and Bassler, point out that, even

though strictly canalizing functions clearly contribute to network

stability, they can also have a detrimental effect on the ability of

networks to adapt to changing conditions [18] – echoing Conrad’s

tradeoff outlined above. This led them to consider the wider class

of partially canalizing functions that confer stable network

dynamics, while improving adaptability. A function of this class

may ignore one or more of its inputs given the states of others, but

is not required to have a single canalizing input. For example, if a

particular input is on, the states of the remaining inputs are

irrelevant, but if that same input is off, then the state of a subset of

its other inputs is required to determine the function’s transition.

In scenarios where two or more inputs are needed to determine

the transition, the needed inputs are said to be collectively canalizing.

Reichhardt and Bassler [18] have shown that the more general

class of partially canalizing functions dominates the space of

Boolean functions for any number of inputs k. Indeed, for any

value of k, there are only two non-canalizing functions that always

depend on the states of all inputs. Other classes of canalizing

functions have been considered, such as nested canalizing functions

[14], Post classes [19] and chain functions [20]. All these classes of

functions characterize situations of input redundancy in automata.

In other words, micro-level canalization is understood as a form of

redundancy, whereby a subset of input states is sufficient to

guarantee transition, and therefore its complement subset of input

states is redundant. This does not mean that redundancy is

necessarily the sole – or even most basic – mechanism to explain

canalization at the macro-level. But the evidence we reviewed

above, at the very least, strongly suggests that micro-level

redundancy is a key mechanism to achieve macro-level canaliza-

tion. Other mechanisms are surely at play, such as the topological

properties of the networks of micro-level interactions. Certainly,

modularity, as suggested by Conrad, plays a role in the robustness

of complex systems and has rightly received much attention

recently [21]. While we show below that some types of modularity

can derive from micro-level redundancy, other mechanisms to

achieve modularity are well-known [21].

Here, we explore partial canalization, as proposed by Reich-

hardt and Bassler [18], to uncover the loci of control in complex

automata networks, particularly those used as models of genetic

regulation and signalling. Moreover, we extend this notion to

consider not only (micro-level) canalization in terms of input

redundancy, but also in terms of input-permutation redundancy to

account for the situations in which swapping the states of (a subset)

of inputs has no effect on an automaton’s transition. From this

point forward, when we use the term canalization we mean it in the

micro-level sense used in the (discrete dynamical systems) literature

to characterize redundancy in automata functions. Nonetheless,

we show that the quantification of such micro-level redundancy

uncovers important details of macro-level dynamics in automata

networks used to model biochemical regulation. This allows us to

better study how robustness and control of phenotypic traits arises

in such systems, thus moving us towards understanding canaliza-

tion in the wider sense proposed by Waddington. Before

describing our methodology, we introduce necessary concepts

and notations pertaining to Boolean automata and networks, as

well as the segment polarity gene-regulation network in Drosophila

melanogaster, an automata model we use to exemplify our approach.

Boolean Networks
This type of discrete dynamical system was introduced to build

qualitative models of genetic regulation, very amenable to large-

scale statistical analysis [22] – see [23] for comprehensive review.

A Boolean automaton is a binary variable, x[f0,1g, where state 0 is

interpreted as false (off or unexpressed), and state 1 as true (on or

expressed). The states of x are updated in discrete time-steps, t,

according to a Boolean state-transition function of k inputs:

xtz1~f it
1,:::,it

k

� �
. Therefore f : f0,1gk?f0,1g. Such a function

can be defined by a Boolean logic formula or by a look-up (truth) table

(LUT) with 2k entries. An example of the former is

xtz1~f (x,y,z)~xt ^ (yt _ zt), or its more convenient shorthand

representation f ~x ^ (y _ z), which is a Boolean function of k~3
input binary variables x,y,z, possibly the states of other automata;

^, _ and : denote logical conjunction, disjunction, and negation

respectively. The LUT for this function is shown in Figure 1. Each

LUT entry of an automaton x, fa, is defined by (1) a specific

condition, which is a conjunction of k inputs represented as a unique

k-tuple of input-variable (Boolean) states, and (2) the automaton’s

next state (transition) xtz1, given the condition (see Figure 1). We

denote the entire state transition function of an automaton x in its

LUT representation as F:ffa : a~1,:::,2kg.
A Boolean Network (BN) is a graph B:(X ,E), where X is a set of

n Boolean automata nodes xi[X ,i~1,:::,n, and E is a set of

directed edges eji[E : xi,xj[X . If eji[E, it means that automaton

xj is an input to automaton xi, as computed by Fi.

Xi~fxj[X : eji[Eg denotes the set of input automata of xi. Its

cardinality, ki~jXij, is the in-degree of node xi, which determines

the size of its LUT, jFij~2ki . We refer to each entry of Fi as

fi:a, a~1:::2ki . The input nodes of B are nodes whose state does not

depend on the states of other nodes in B. The state of output nodes is

determined by the states of other nodes in the network, but they

are not an input to any other node. Finally, the state of inner nodes

depends on the state of other nodes and affect the state of other

nodes in B. At any given time t, B is in a specific configuration of

node states, xt~Sx1,x2,:::,xnT. We use the terms state for

individual automata (x) and configuration (x) for the collection of

states of the set of automata of B, i.e. the collective network state.

Canalization and Control in Automata Networks
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Starting from an initial configuration, x0, a BN updates its

nodes with a synchronous or asynchronous policy. The dynamics of B is

thus defined by the temporal sequence of configurations that

ensue, and there are 2n possible configurations. The transitions

between configurations can be represented as a state-transition graph,

STG, where each vertex is a configuration, and each directed edge

denotes a transition from xt to xtz1. The STG of B thus encodes

the network’s entire dynamical landscape. Under synchronous

updating, configurations that repeat, such that xtzm~xt, are

known as attractors; fixed point when m~1, and limit cycle – with

period m – when mw1, respectively. The disconnected subgraphs

of a STG leading to an attractor are known as basins of attraction. In

contrast, under asynchronous updating, there are alternative

configuration transitions that depend on the order in which nodes

update their state. Therefore, the same initial configuration can

converge to distinct attractors with some probability [24,25]. A BN

B has a finite number b of attractors; each denoted by

Ai : i~1,:::,b. When the updating scheme is known, every

configuration x is in the basin of attraction of some specific

attractor Ai. That is, the dynamic trajectory of x converges to Ai.

We denote such a dynamical trajectory by s(x) Ai. If the

updating scheme is stochastic, the relationship between configu-

rations and attractors can be specified as the conditional

probability P(Aijx).

The Segment Polarity Network
The methodology introduced in this paper will be exemplified

using the well-studied Boolean model of the segment polarity

network in Drosophila melanogaster [26]. During the early ontogenesis

of the fruit fly, like in every arthropod’s development, there is body

segmentation [27,28]. The specification of adult cell types in each

of these segments is controlled by a hierarchy of around forty

genes. While the effect of most of the genes in the hierarchy is only

transient, a subset of segment polarity genes remains expressed during

the life of the fruit fly [29]. The dynamics of the segment polarity

network was originally modelled using a system of non-linear

ordinary differential equations (ODEs) [30,31]. This model

suggested that the regulatory network of segment polarity genes

is a module largely controlled by external inputs that is robust to

changes to its internal kinetic parameters. On that basis, Albert

and Othmer later proposed a simpler discrete BN model of the

dynamics of the segment polarity network (henceforth SPN) [26]. This

was the first Boolean model of gene regulation capable of

predicting the steady state patterns experimentally observed in

wild-type and mutant embryonic development with significant

accuracy, and has thus become the quintessential example of the

power of the logical approach to modelling of biochemical

regulation from qualitative data in the literature. Modelling with

ODEs, in contrast, is hindered by the need of substantial

quantitative data for parameter estimation [32–37].

The SPN model comprises fifteen nodes that represent intra-

cellular chemical species and the genes engrailed (en); wingless (wg);

hedgehog (hh); patched (ptc) and cubitus interruptus (ci) [29–31]. These

genes encode a number of proteins such as the transcription

factors Engrailed (EN), Cubitus Interruptus (CI), CI Activator

(CIA), and CI repressor (CIR); the secreted proteins Wingless

(WG) and Hedgehog (HH); and the transmembrane protein

Patched (PTC). Other proteins included in the SPN model are

Sloppy-Paired (SLP) – the state of which is previously determined

by the pair-rule gene family that stabilizes its expression before the

segment polarity genes – as well as Smoothened (SMO) and the

PH complex that forms when HH from neighbouring cells binds

to PTC. Figure 2 shows the topology and Table 1 lists the logical

rules of the nodes in every cell of the SPN. This model consists of a

spatial arrangement of four interconnected cells, a parasegment.

While the regulatory interactions within each cell are governed by

the same network, inter-cellular signalling affects neighbouring

cells. That is, regulatory interactions in a given cell depend on the

states of WG, hh and HH in adjacent cells. Therefore, six

additional (inter-cellular) ‘spatial signals’ are included: hhi+1,

HHi+1 and WGi+1, where i~1,:::,4 is the cell index in the four-

cell parasegment. In a parasegment, the cell with index i~1
corresponds to its anterior cell and the cell with index i~4 to its

posterior cell (see Figure 3). In simulations, the four-cell

parasegments assume periodic boundary conditions (i.e. anterior

and posterior cells are adjacent to each other). Since each

parasegment has 4|15~60 nodes, four of which are in a fixed

state (SLP), there are 256 possible configurations – a dynamical

landscape too large for exhaustive analysis. Even though the

original model was not fully synchronous because PH and SMO
were updated instantaneously at time t, rather than at tz1, here

we use the fully equivalent, synchronous version. Specifically, since

PH is an output node, synchronizing its transition with the

remaining nodes at tz1 does not impact the model’s dynamics.

The state of SMO influences the updating of CIA and CIR; but

since the update of SMO is instantaneous, we can include its state-

transition function in the state-transition functions of CIA and

CIR (which update at tz1) with no change in the dynamics of the

model as described in [38].

The initial configuration (IC) of the SPN, depicted in Figure 3,

and which leads to the wild-type expression pattern is known [26]:

wg4~en1~hh1~ptc2,3,4~ci2,3,4~1 (on or expressed). The re-

maining nodes in every cell of the parasegment are set to 0 (off, or

not expressed). Overall, the dynamics of the SPN settles to one of

ten attractors – usually divided into four qualitatively distinct

groups, see Figure 4: (1) wild-type with three extra variations (PTC

mutant, double wg bands, double wg bands PTC mutant); (2)

Broad-stripe mutant; (3) No segmentation; and (4) Ectopic (with

the same variations as wild-type). Albert and Othmer estimated

that the number of configurations that converge to the wild-type

attractor is approximately 6|1011 – a very small portion of the

total number of possible configurations (&7|1016) – and that the

broad-stripe mutant attractor basin contains about 90% of all

possible configurations [26].

Figure 1. (A) LUT for Boolean automaton f ~x ^ (y _ z) and (B)
components of a single LUT entry.
doi:10.1371/journal.pone.0055946.g001
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The inner and output nodes of each cell in a parasegment – that

is, every node except the input node SLP – that has reached a

stable configuration (attractor) are always in one of the following

five patterns.

N I1: all nodes are off except PTC, ci, CI and CIR.

N I2: same as I1 but states of ptc, PH, SMO, CIA and CIR are

negated.

N I3: all nodes are off except en, EN, hh, HH and SMO.

N I4: same as I3 but PTC and SMO are negated.

N I5: negation of I4, except PTC and CIR remain as in I4.

Figure 2. Connectivity graph of the SPN model. The fifteen genes and proteins considered in the SPN model are represented (white nodes).
The incoming edges to a node x originate in the nodes that are used by x to determine its transition. Shaded nodes represent the spatial signals
(states of WG, HH and hh in neighbouring cells). Note that SLP – derived from an upstream intra-cellular signal – is an input node to this network. The

self-connection it has represents the steady-state assumption: SLPtz1
i ~SLPt

i . Notice also that this graph represents the fully synchronous version of
the model, where modifications concerning PH and SMO have been made (see main text for details).
doi:10.1371/journal.pone.0055946.g002

Figure 3. A parasegment in the SPN model. Cells are represented horizontally, where the top (bottom) row is the most anterior (posterior) cell.
Each column is a gene, protein or complex – a node in the context of the BN model. The specific pattern shown corresponds to the wild-type initial
expression pattern observed at the onset of the segment polarity genes regulatory dynamics (xini); Black/on (white/off) squares represent expressed
(not expressed) genes or proteins.
doi:10.1371/journal.pone.0055946.g003
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For example, the wild-type configuration corresponds – from

anterior to posterior cell – to the patterns I3, I2, I1 and I5. Thus

the pattern I4 is only seen in mutant expression patterns. The

patterns I1 to I5 can be seen as attractors of the inner- and

output-node dynamics of each cell in a parasegment.

Besides the fact that the SPN is probably the most well-known

discrete dynamical system model of biochemical regulation, we

chose it to exemplify our methodology because (1) it has been well-

validated experimentally, despite the assumption that genes and

proteins operate like on/off switches with synchronous transitions

and (2) the model includes both intra-cellular regulation and inter-

cellular signalling in a spatial array of cells. The intra and inter-

cellular interactions in the SPN model result in a dynamical

landscape that is too large to characterize via an STG, while

adding also an extra level of inter-cellular (spatial) regulation. The

ability to deal with such multi-level complexity makes our

methodology particularly useful. As we show below, we can

uncover the signals that control collective information processing

in such (spatial and non-spatial) complex dynamics.

Methodology and Results

Micro-level Canalization via Schemata
In previous work, we used schema redescription to demonstrate that

we can understand more about the dynamical behaviour of

automata networks by analysing the patterns of redundancy present

in their (automata) components (micro-level), rather than looking

solely at their macro-level or collective behaviour [39]. Here we

relate the redundancy removed via schema redescription with the

concept of canalization, and demonstrate that a characterization of

the full canalization present in biochemical networks leads to a

better understanding of how cells and collections of cells

‘compute’. Moreover, we show that this leads to a comprehensive

characterization of control in automata models of biochemical

regulation. Let us start by describing the schema redescription

methodology. Since a significant number of new concepts and

notations are introduced in this, and subsequent sections, a

succinct glossary of terms as well as a table with the mathematical

notations used is available in Data S1.

From the extended view of canalization introduced earlier, it

follows that the inputs of a given Boolean automaton do not

control its transitions equally. Indeed, substantial redundancy in

state-transition functions is expected. Therefore, filtering redun-

dancy out is equivalent to identifying the loci of control in

automata. In this section we focus on identifying the loci of control

in individual automata by characterizing the canalization present

in their transition functions. First, we consider how subsets of

inputs in specific state combinations make other inputs redundant.

Then we propose an additional form of canalization that accounts

for input permutations that leave a transition unchanged. Later, we

use this characterization of canalization and control in individual

automata to study networks of automata; this also allows us to

analyse robustness and collective computation in these networks.

Wildcard schemata and enputs. Consider the example

automaton x in Figure 5A, where the entire subset of LUT entries

in F with transitions to on is depicted. This portion of entries in F

can be redescribed as a set of wildcard schemata, F ’:ff ’ug. A wildcard

schema f ’u is exactly like a LUT entry, but allows an additional

wildcard symbol, # (also represented graphically in grey), to appear

in its condition (see Figure 5B). A wildcard input means that it

accepts any state, leaving the transition unchanged. In other words,

wildcard inputs are redundant given the non-wildcard input states

specified in a schema f ’u. More formally, when the truth value of

an input Boolean variable i in a schema f ’u is defined by the third

(wildcard) symbol, it is equivalent to stating that the truth value of

automaton x is unaffected by the truth value of i given the

conditions defined by f ’u: (xjf ’u,i)~(xjf ’u,:i). Each schema

Table 1. Boolean logic formulae representing the state-transition functions for each node in the SPN (four-cell parasegment)
model.

�I �n�d�e�x Node State{TransitionFunction

1 SLPtz1
i

/0 if i~1 _ i~2; 1 if i~3 _ i~4;

2 wgtz1
i /(CIAt

i ^ SLPt
i ^ :CIRt

i ) _ (wgt
i ^ (CIAt

i _ SLPt
i ) ^ :CIRt

i )

3 WGtz1
i

/wgt
i

4 entz1
i

/(WGt
i{1 _WGt

iz1) ^ :SLPt
i

5 ENtz1
i

/ent
i

6 hhtz1
i

/ENt
i ^ :CIRt

i

7 HHtz1
i

/hht
i

8 ptctz1
i

/CIAt
i ^ :ENt

i ^ :CIRt
i

9 PTCtz1
i

/ptct
i _ (PTCt

i ^ :HHt
i{1 ^ :HHt

i{1)

10 PHt
i /PTCt

i ^ (HHt
i{1 _HHt

iz1)

11 SMOt
i /:PTCt

i _ (HHt
i{1 _HHt

iz1)

12 citz1
i

/:ENt
i

13 CItz1
i

/cit
i

14 CIAtz1
i

/CIt
i ^ (:PTCt

i _ hht
i{1 _ hht

iz1 _HHt
i{1 _HHt

iz1)

15 CIRtz1
i

/CIt
i ^ PTCt

i ^ :hht
i{1 ^ :hht

iz1 ^ :HHt
i{1 ^ :HHt

iz1

The subscript represents the cell index; the superscript represents time. Note that every node has a numerical index assigned to it, which we use for easy referral
throughout the present work. The extra-cellular nodes, hh,HH and WG in adjacent cells are indexed as follows: 16 to 21 denote hhi{1 , hhiz1 , HHi{1 , HHiz1 , WGi{1

and WGiz1 in this order.
doi:10.1371/journal.pone.0055946.t001
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redescribes a subset of entries in the original LUT, denoted by

Uu:ffa : fa f 0ug ( means ‘is redescribed by’).

Wildcard schemata are minimal in the sense that none of the

(non-wildcard) inputs in the condition of a schema can be ‘raised’

to the wildcard status and still ensure the automaton’s transition to

the same state. Because wildcard schemata are minimal,

Uu 6(Uw ^ Uw 6(Uu, Vf ’u, f ’w[F ’. In other words, a wildcard

schema is unique in the sense that the subset of LUT entries it

redescribes is not fully redescribed by any other schema. However,

in general Uu\Uw=1. This means that schemata can overlap in

terms of the LUT entries they describe. In Figure 5,

U1:ff1,f5,f9,f13g and U9:ff4,f5,f6,f7g, therefore

U1\U9:ff5g. The set of wildcard schemata F ’ is also complete.

This means that for a given LUT F there is one and only one set

F ’ that contains all possible minimal and unique wildcard

schemata. Since wildcard schemata are minimal, unique and they

form a complete set F ’, they are equivalent to the set of all prime

implicants obtained during the first step of the Quine & McCluskey

Boolean minimization algorithm [40]. Typically, prime implicants

are computed for the fraction of the LUT that specifies transitions

Figure 4. The ten attractors reached by the SPN. These attractors are divided in four groups: wild-type, broad-stripe, no segmentation and
ectopic. More specifically: (a) wild-type, (b) variant of (a), (c) wild-type with two wg stripes, (d) variant of (c), (e) broad-stripe, (f) no segmentation, (g)
ectopic, (h) variant of (g), (i) ectopic with two wg stripes, and (j) variant of (i). The wild-type attractor (a) is referred to as Awt in the results and
discussion sections.
doi:10.1371/journal.pone.0055946.g004
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to on. Then a subset of the so-called essential prime implicants is

identified. The set of essential prime implicants is the subset of

prime implicants sufficient to describe (cover) every entry in the

input set of LUT entries. However, to study how to control the

transitions of automata we use the set of all prime implicants, since

it encodes every possible way a transition can take place. The set

F ’ may also contain any original entry in F that could not be

subsumed by a wildcard schema. Although the upper bound on

the size of F ’ is known to be O(3k=
ffiffiffi
k
p

) [41], the more input

redundancy there is, the smaller the cardinality of F ’.
The condition of a wildcard schema can always be expressed as

a logical conjunction of literals (logical variables or their negation),

which correspond to its non-wildcard inputs. Since a wildcard

schema is a prime implicant, it follows that every literal is essential to

determine the automaton’s transition. Therefore, we refer to the

literals in a schema as its essential input states, or enputs for short. To

summarize, each enput in a schema is essential, and the

conjunction of its enputs is a sufficient condition to control the

automaton’s transition. It also follows that the set F ’ of wildcard

schemata can be expressed as a disjunctive normal form (DNF) – that

is, a disjunction of conjunctions that specifies the list of sufficient

conditions to control automaton x, where each disjunction clause

is a schema. The DNF comprising all the prime implicants of a

Boolean function f is known as its Blake’s canonical form [42]. The

canonical form of f always preserves the input-output relationships

specified by its LUT F . Therefore, the basic laws of Boolean logic

– contradiction, excluded middle and de Morgan’s laws – are

preserved by the schema redescription.

Schema redescription is related to the work of John Holland on

condition/action rules to model inductive reasoning in cognitive

systems [43] and to the general RR framework proposed by Annette

Figure 5. Schema redescription. (A) Subset of LUT entries of an example automaton x that prescribe state transitions to on (1); white (black)
states are 0 (1). (B) Wildcard schema redescription; wildcards denoted also by grey states. Schema f ’9 is highlighted to identify the subset of LUT
entries U9:ff4,f5,f6,f7g it redescribes. (C) Two-symbol schema redescription, using the additional position-free symbol; the entire set F ’ is
compressed into a single two-symbol schema: f ’’1 . Any permutation of the inputs marked with the position-free symbol in f ’’1 results in a schema in
F ’. Note that f ’’1 redescribes the entire set of entries with transition to on and thus jHhj~14. Since there is only one set of marked inputs, the
position-free symbol does not require an index. Although this figure depicts only the schemata obtained for the subset of LUT entries of x that
transition to on, entries that do not match any of these schemata transition to off (since x is a Boolean automaton).
doi:10.1371/journal.pone.0055946.g005
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Karmiloff-Smith to explain the emergence of internal representa-

tions and external notations in human cognition [44]. Our

methodology to remove redundancy from automata LUTs also

bears similarities with the more general mask analysis developed by

George Klir in his ‘reconstructability’ analysis, which is applicable

to any type of variable [45]. In addition, prime implicants have

been known and used for the minimization of circuits in electrical

engineering since the notion was introduced by Quine &

McCluskey [40]; similar ideas were also used by Valiant [46]

when introducing Probably Approximately Correct (PAC) learning.

Two-symbol schemata. We now introduce a different and

complementary form of redundancy in automata, which we

consider another form of canalization. Wildcard schemata identify

input states that are sufficient for controlling an automaton’s

transition (enputs). Now we identify subsets of inputs that can be

permuted in a schema without effect on the transition it defines

[39]. For this, a further redescription process takes as input the set

of wildcard schemata (F ’) of x to compute a set of two-symbol

schemata F ’’:ff ’’hg (see Figure 5C). The additional position-free

symbol (0m) above inputs in the condition of a schema f ’’ means that

any subset of inputs thus marked can ‘switch places’ without affecting the

automaton’s transition. The index of the position-free symbol, when

necessary, is used to differentiate among distinct subsets of

‘permutable’ inputs. A two-symbol schema f ’’h redescribes a set

Hh:ffa : faf 00h g of LUT entries of x; it also redescribes a subset

H’h(F ’ of wildcard schemata.

A two-symbol schema f ’’h captures permutation redundancy in a set

of wildcard schemata H’h. More specifically, it identifies subsets of

input states whose permutations do not affect the truth value of the

condition, leaving the automaton’s transition unchanged. In group

theory, a permutation is defined as a bijective mapping of a non-

empty set onto itself; a permutation group is any set of

permutations of a set. Permutation groups that consist of all

possible permutations of a set are known as symmetric groups under

permutation [47]. For Boolean functions in general, the study of

permutation/symmetric groups dates back to Shannon [48] and

McCluskey [49] (see also [50]).

Two-symbol schemata identify subsets of wildcard schemata

that form symmetric groups. We refer to each such subset of input

states that can permute in a two-symbol schema – those marked

with the same position-free symbol – as a group-invariant enput. Note

that a group-invariant enput may include wildcard symbols

marked with a position-free symbol. More formally, a two-symbol

schema f ’’ can be expressed as a logical conjunction of enputs –

literal or group-invariant. Let us denote the set of literal enputs on

the condition of f ’’ by X‘(X – the non-wildcard inputs not

marked with the position-free symbol. For simplicity, n‘~ X‘j j.
A group-invariant enput g is defined by (1) a subset of input

variables Xg(X that are marked with an identical position-free

symbol, and (2) a permutation constraint (a bijective mapping) on Xg

defined by the expression ng~n0
gzn1

gzn#
g , where ng~ Xg

�� ��, n0
g is

the number of inputs in Xg in state 0 (off), and n1
g is the number of

inputs in Xg in state 1 (on). We further require that at least two of

the quantities n0
g,n1

g and n#
g are positive for any group-invariant

enput g. We can think of these two required positive quantities as

subconstraints; in particular, we define a group-invariant enput by

the two subconstraints n0
g,n1

g, since n#
g is always derivable from

those two given the expression for the overall permutation

constraint. This precludes the trivial case of subsets of inputs in

the same state from being considered a valid group-invariant

enput – even though they can permute leaving the transition

unchanged. A two-symbol schema f ’’ has n‘ literal enputs and g
group-invariant enputs; each of the latter type of enputs is defined

by a distinct permutation constraint for g~1,:::,g. An input

variable whose truth value is the wildcard symbol in a given

schema is never a literal enput (it is not essential by definition).

However, it can be part of a group-invariant enput, if it is marked

with a position-free symbol. Further details concerning the

computation of wildcard and two-symbol schemata are available

in Data S2.

In our working example, the resulting two-symbol schema (see

Figure 5C) contains n‘~2 literal inputs: X‘~fi2~0,i3~1g. It

also contains one (g~1) group-invariant enput Xg~fi1,i4,i5,i6g
with size ng~4 and subconstraints n0

g~1 ^ n1
g~1. This rede-

scription reveals that the automaton’s transition to on is

determined only by a subset of its six inputs: as long as inputs 2

and 3 are off and on, respectively, and among the others at least one is on and

another is off, the automaton will transition to on. These minimal control

constraints are not obvious in the original LUT and are visible

only after redescription.

We equate canalization with redundancy. The more redundancy

exists in the LUT of automaton x, as input-irrelevance or input-

symmetry (group-invariance), the more canalizing it is, and the

more compact its two-symbol redescription is, thus jF ’’jvjF j. In

other words – after redescription – input and input-symmetry

redundancy in F is removed in the form of the two symbols. The

input states that remain are essential to determine the automaton’s

transition. Below we quantify these two types of redundancy,

leading to two new measures of canalization. Towards that, we

must first clearly separate the two forms of redundancy that exist

in 2-symbol schemata. The condition of a two-symbol schema f ’’
with a single group-invariant enput g – such as the one in

Figure 5C – can be expressed as:

^
ij[X0

‘

:ij ^
ij[X1

‘

ij ^
X
ij[Xg

:ij§n0
g

0
@

1
A ^ X

ij[Xg

ij§n1
g

0
@

1
A ð1Þ

where X 0
‘ is the set of literal enputs that must be off, and X 1

‘ is the

set of literal enputs that must be on (thus X‘~X 1
‘|X 0

‘ ). This

expression separates the contributions (as conjunctions) of the

literal enputs, and each subconstraint of a group-invariant enput.

Since we found no automaton in the target model (see below) with

schemata containing more than one group-invariant enput, for

simplicity and without lack of generality, we present here only this

case (g~1). See Data S3 for the general expression that accounts

for multiple group-invariant enputs (gw1).

All possible transitions of x to on are described by a set F1’’ of

two-symbol schemata. This set can also be expressed in a DNF,

where each disjunction clause is given by Expression 1 for all

schemata f ’’[F1’’: Transitions to off are defined by the negation of

such DNF expression: F0’’: :f ’’,Vf ’’[F1’’f g. Canalization of an

automaton x is now characterized in terms of two-symbol

schemata that capture two forms of redundancy: (1) input-irrelevance

and (2) input-symmetry (group-invariance). We next describe the

procedure to compute 2-symbol schemata for a an automaton x.

Readers not interested in the algorithmic details of this compu-

tation can safely move to the next subsection.

The procedure starts with the set of wildcard schemata F ’
obtained via the first step of the Quine & McCluskey algorithm

[40] (see above). The set F ’ is then partitioned into subsets H ’i
such that,

F ’~
[

i

H ’i:
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where each H ’i contains every schema x’[F ’ with equal number of

zeroes (n0), ones (n1), and wildcards (n#), with n0zn1zn#~k. In

other words, the H ’i are equivalence classes induced on F ’ by n0,

n1, and n#. This is a necessary condition for a set of wildcard

schemata to form a symmetric group. The algorithm then iterates

on each H ’i, checking if it contains a symmetric group; i.e. if it

contains wildcard schemata with all the permutations of the largest

set of inputs variables possible. If it does, it marks those input

variables as a group-invariant enput in H ’i and moves to another

subset H ’j . If it does not, then it checks for symmetric groups in

smaller sets of input variables within each set H ’i. It does this by

iteratively expanding the search space to include all subsets of H ’i
with cardinality jH ’ij{1. The procedure is repeated, if no

symmetric groups are found, until the subsets contain only one

wildcard schema.

Although several heuristics are implemented to prune the search

space, the algorithm is often not suitable for exhaustively searching

symmetric groups in large sets of schemata. However, the

individual automata found in models of biochemical regulation

and signalling networks typically have a fairly low number of

inputs. Therefore, schema redescription of their LUT leads to

manageable sets of wildcard schemata, which can be exhaustively

searched for symmetric groups. Indeed, as shown below, all

automata in the SPN model have been exhaustively redescribed

into two-symbol schemata. For additional details on the compu-

tation of schemata see Data S2.

Quantifying Canalization: Effective Connectivity and
Input Symmetry

Schemata uncover the ‘control logic’ of automata by making the

smallest input combinations that are necessary and sufficient to

determine transitions explicit. We equate canalization with the

redundancy present in this control logic: the smaller is the set of

inputs needed to control an automaton, the more redundancy

exists in its LUT and the more canalizing it is. This first type of

canalization is quantified by computing the mean number of

unnecessary inputs of automaton x, which we refer to as input

redundancy. An upper bound is given by,

kr(x)~

P
fa[F

max
h:fa[Hh

n
#
h

� �
jF j ð2Þ

and a lower bound is given by:

kr(x)~

P
fa[F

min
h:fa[Hh

n
#
h

� �
jF j ð3Þ

These expressions compute a mean number of irrelevant inputs

associated with the entries of the LUT F . The number of

irrelevant inputs in a schema f ’’h is the number of its wildcards n
#
h .

Because each entry fa of F is redescribed by one or more schemata

f ’’h, there are various ways to compute a characteristic number of

irrelevant inputs associated with the entry, which is nonetheless

bounded by the maximum and minimum number of wildcards in

the set of schemata that redescribe fa. Therefore, the expressions

above identify all schemata f ’’h whose set of redescribed entries Hh

includes fa. The upper (lower) bound of input redundancy,

Equation 2 (Equation 3), corresponds to considering the maximum

(minimum) number of irrelevant inputs found for all schemata f ’’h

that redescribe entry fa of the LUT – an optimist (pessimist)

quantification of this type of canalization. Notice that input

redundancy is not an estimated value. Also, it weights equally each

entry of the LUT, which is the same as assuming that every

automaton input is equally likely.

Here we use solely the upper bound, which we refer to

henceforth simply as input redundancy with the notation kr(x). This

means that we assume that the most redundant schemata are

always accessible for control of the automaton. We will explore

elsewhere the range between the bounds, especially in regards to

predicting the dynamical behaviour of BNs. The range for input

redundancy is 0ƒkr(x)ƒk, where k is the number of inputs of x.

When kr(x)~k we have full input irrelevance, or maximum

canalization, which occurs only in the case of frozen-state

automata. If kr(x)~0, the state of every input is always needed

to determine the transition and we have no canalization in terms

of input redundancy.

In the context of a BN, if some inputs of a node x are irrelevant

from a control logic perspective, then its effective set of inputs is

smaller than its in-degree k. We can thus infer more about

effective control in a BN than what is apparent from looking at

structure alone (see analysis of macro-level control below). A very

intuitive way to quantify such effective control, is by computing the

mean number of inputs needed to determine the transitions of x,

which we refer to as its effective connectivity:

ke(x)~k(x){kr(x) ð4Þ

whose range is 0ƒke(x)ƒk. In this case, ke(x)~0 means full

input irrelevance, or maximum canalization, and kr(x)~k, means

no canalization.

The type of canalization quantified by the input redundancy

and effective connectivity measures does not include the form of

permutation redundancy entailed by group-invariant enputs. Yet

this is a genuine form of redundancy involved in canalization, as in

the case of nested canalization [14], since it corresponds to the

case in which different inputs can be alternatively canalizing. The

two-symbol schema redescription allows us to measure this form of

redundancy by computing the mean number of inputs that

participate in group-invariant enputs, easily tallied by the

occurrence of the position-free symbol (0) in schemata. Thus we

define a measure of input symmetry for an automaton x, whose

upper-bound is given by

ks(x)~

P
fa[F

max
h:fa[Hh

n0h
� �

jF j ð5Þ

and a lower-bound by,

ks(x)~

P
fa[F

min
h:fa[Hh

n0h
� �

jF j ð6Þ

where n
0
h is the number of position-free symbols in schema f ’’h.

The upper bound of input symmetry (Equation 5) corresponds

to considering an optimist quantification of this type of canaliza-

tion. Here we use solely the upper bound, which we refer to

henceforth simply as input symmetry and denote by ks(x). Again,

the assumption is that the most redundant schemata are always

accessible for control of the automaton. The range for input

symmetry is 0ƒks(x)ƒk. High (low) values mean that permuta-
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tions of input states are likely (unlikely) to leave the transition

unchanged.

Canalization in automata LUTs – the micro-level of networks of

automata – is then quantified by two types of redundancy: input

redundancy using kr(x) and input symmetry with ks(x). To be able to

compare the canalization in automata with distinct numbers of

inputs, we can compute relative measures of canalization:

k�r (x)~
kr(x)

k(x)
; k�s (x)~

ks(x)

k(x)
ð7Þ

the range of which is ½0,1�: Automata transition functions can have

different amounts of each form of canalization, which allows us to

consider four broad canalization classes for automata: class A with

high kr(x) and high ks(x), class B with high kr(x) and low ks(x),
class C with low kr(x) and high ks(x), and class D with low kr(x)
and low ks(x). We will explore these classes in more detail

elsewhere. Below, these measures are used to analyse micro-level

canalization in the SPN model and discuss the type of functions

encountered. Before that, let us introduce an alternative repre-

sentation of the canalized control logic of automata, which allows

us to compute network dynamics directly from the parsimonious

information provided by schemata.

Network Representation of a Schema
Canalization in an automaton, captured by a set of schemata,

can also be conveniently represented as a McCulloch & Pitts

threshold network – introduced in the 1940s to study computation

in interconnected simple logical units [51]. These networks consist

of binary units that can transition from quiescent to firing upon

reaching an activity threshold (t) of the firing of input units. To

use this type of network to represent two-symbol schemata we

resort to two types of units. One is the state unit (s-unit), which

represents an input variable in a specific Boolean state; the other is

the threshold unit (t-unit) that implements the condition that causes

the automaton to transition. Two s-units are always used to

represent the (Boolean) states of any input variable that

participates as enput in the condition of an automaton x: one

fires when the variable is on and the other when it is off. To avoid

contradiction, the two s-units for a given variable cannot fire

simultaneously. Directed fibres link (source) units to (end) units,

propagating a pulse – when the source unit is firing – that

contributes to the firing of the end unit. The simultaneous firing of

at least t (threshold) incoming s-units into a t-unit, causes the latter

to fire.

In the example automaton in Figure 5, the set of schemata F ’’
contains only one schema. This schema can be directly converted

to a (2-layer) McCulloch & Pitts network. This conversion, which

is possible due to the separation of subconstraints given by

Expression (1), is shown in Figure 6 and explained in its caption.

Note that in the McCulloch & Pitts representation, the transition

of the automaton is determined in two steps. First, a layer of

threshold units is used to check that the literal and group-invariant

constraints are satisfied; then, a second layer – containing just one

threshold unit – fires when every subconstraint in Expression (1)

has been simultaneously satisfied, determining the transition. This

means that in this network representation each schema with literal

enputs and at least a group-invariant enput requires two layers and

three t-units. Since in McCulloch & Pitts networks each threshold

unit has a standard delay of one time step, this network

representation of a schema takes two time steps to compute its

transition. We introduce an alternative threshold network

representation of a two-symbol schema f ’’ that only requires a

single t-unit and takes a single time delay to compute a transition.

We refer to this variant as the Canalizing Map of a schema or CM

for short. A CM is essentially the same as a McCulloch and Pitts

network, with the following provisos concerning the ways in which

s-units and t-units can be connected:

1. Only one fibre originates from each s-unit that can participate

as enput in f ’’ and it must always end in the t-unit used to

encode f ’’.
2. The fibre that goes from a s-unit to the t-unit can branch out into

several fibre endings. This means that if the s-unit is firing, a

pulse propagates through its outgoing fibre and through its

branches. Branching fibres are used to capture group-invariant

enputs, as we explain later.

3. Branches from distinct s-units can fuse together into a single

fibre ending – the fused fibre increases the end t-unit’s firing

activity by one if at least one of the fused fibres has a pulse.

4. A fibre that originates in a t-unit encoding a schema f ’’ must

end in a s-unit that corresponds to the automaton transition

defined by f ’’.

Figure 7 depicts the elements of a single schema’s CM. Table 2

summarizes the rules that apply to the interconnections between

units. Transitions in CMs occur in the same way as in standard

McCulloch & Pitts networks. Once sufficient conditions for a

transition are observed at some time t, the transition occurs at

tz1. The firing (or not) of t-units is thus assumed to have a

standard delay (one time-step), identical for all t-units. Note that in

CMs, s-units can be regarded as a special type of t-unit with

threshold t~1 that send a pulse through their outgoing fibres

instantaneously. Next we describe the algorithm to obtain the CM

representation of a schema. Readers not interested in the

algorithmic details of this computation can safely bypass the next

subsection.

Algorithm to obtain the canalizing map of a

schema. Given a 2-symbol schema f ’’, there are two steps

involved in producing its CM representation. The first is

connecting s-units to the t-unit for f ’’ in such a way that it fires,

if and only if, the constraints of f ’’ – defined by Expression (1) –

are satisfied. The second step is determining the appropriate firing

threshold t for the t-unit. If the schema does not have group-

invariant enputs, the conversion is direct as for the standard

McCulloch & Pitts network – see Figure 6: The s-units

corresponding to literal enputs ij[X‘ are linked to the t-unit using

a single fibre from each s-unit to the t-unit, which has a threshold

t~n‘. If the schema has a group-invariant enput, its subcon-

straints are implemented by branching and fusing fibres connect-

ing the s-units and the t-unit. In cases such as our example

automaton x (Figures 5 and 6) where the subconstraints

n0
g~n1

g~1, the solution is still simple. To account for subcon-

straint n0
g, it is sufficient to take an outgoing fibre from each of the

s-units ij[Xg : ij~0 and fuse them into a single fibre ending.

Therefore, if at least one of these s-units is firing, the fused fibre

ending transmits a single pulse to the t-unit, signalling that the

subconstraint has been satisfied. Increasing the t-unit’s threshold

by one makes the t-unit respond to this signal appropriately. The

same applies for subconstraint n1
g, using a similar wiring for s-units

ij[Xg : ij~1. The final threshold for the t-unit that captures the

example schema of Figure 5 is thus t~n‘zn0
gzn1

g~2z1z1~4,

as shown in Figure 8C.

The case of general group-invariant constraints is more

intricate. Every literal enput ij[X‘ is linked to the t-unit via a

single fibre exactly as above. Afterwards, the subconstraints n0
g and

n1
g of a group-invariant enput g are treated separately and
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consecutively. Note that for every input variable ij in the set Xg of

symmetric input variables, there are two s-units: one representing

ij in state 0 and another in state 1. To account for subconstraint n0
g

on the variables of set Xg, let S(Xg be the set of s-units that

represent the variables of the group-invariant enput that can be in

state 0, where jXgj~ng. Next, we identify all possible subsets

of S, whose cardinality is ng{(n0
g{1). That is, S~ Si : Sif

x5S ^ jSij~ng{(n0
g{1)g. For each subset Si[S, we take an

outgoing fibre from every s-unit in it and fuse them into a single

fibre ending as input to the schema t-unit. After subconstraint n0
g is

integrated this way, the threshold of the t-unit is increased by,

jSj~
ng

ng{(n0
g{1)

 !
~

ng

n0
g{1

 !
ð8Þ

This procedure is repeated for the subconstraint n1
g on Xg. The

final threshold of the t-unit is,

t~n‘z
ng

n0
g{1

 !
z

ng

n1
g{1

 !
ð9Þ

This algorithm is illustrated for the integration of two example

subconstraints in Figure 9; in Figure 8, the case of the only schema

describing the transitions to on of running example automaton x is

shown. Further details concerning this procedure are provided in

Data S3.

The canalizing map of an automaton. The algorithm to

convert a single schema f ’’ to a CM is subsequently used to

produce the CM of an entire Boolean automaton x as follows:

Each schema f ’’[F ’’ is converted to its CM representation. Each

state of an input variable is represented by a single s-unit in the

resulting threshold network. In other words, there is a maximum

of two s-units (one for state 0 and one for state 1) for each input

variable that is either a literal enput or participates in a group-

invariant enput of x. The resulting threshold network is the

canalizing map of x. The connectivity rules of automata CMs

include the following provisos:

1. Every s-unit can be connected to a single t-unit with a single

outgoing fibre, which can be single or have branches.

2. Therefore, the number of outgoing fibres coming out of a s-unit

(before any branching) corresponds to the number of schemata

f ’’[F ’’ in which the respective variable-state participates as an

enput. If such a variable is included in a group-invariant enput,

then the fibre may have branches.

3. Any subset set of t-units with threshold t~1 for the same

automaton transition (x~0 or x~1) are merged into a single t-

Figure 6. McCulloch & Pitts representation of Expression (1).
The conjunction clauses in Expression (1) for the example automaton x
are directly mapped onto a standard McCulloch & Pitts network with
two layers. On one layer the two literal enputs are accounted for by a
threshold unit (at the top) with threshold t~n‘~2. There is also a
group-invariant enput with permutation subconstraints on both
Boolean states. Two threshold units on the same layer are used to
capture these. The threshold unit on the left accounts for the
permutation subconstraint n1

g~1. It thus has as incoming s-units the

inputs xi[Xg : xi~1 and threshold t~n1
g~1. In a similar way, the

threshold unit on the right accounts for the subconstraint n0
g~1. When

all the constraints (literal and group-invariant) are satisfied, the last
threshold unit (second layer) ‘fires’ causing the transition to on.
doi:10.1371/journal.pone.0055946.g006

Figure 7. Elements of a Canalizing Map. Every s-unit is a circle,
labelled according the automaton’s input it represents and coloured
according to its state: black is on and white is off (here we use light-blue
for a generic state). The t-unit (schema) is represented using a larger
circle. One of its halves is coloured, and the other labelled with the t-
unit’s threshold t. Fibres can be single, or branched. In this example
there are branching fibres only, where fibre fusions represent all
possible combinations of two out of the three s-units.
doi:10.1371/journal.pone.0055946.g007
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unit (also with t~1), which receives all incoming fibres of the

original t-units. In such scenario, any fused branches can also

be de-fused into single fibres. Note that this situation

corresponds to schemata that exhibit nested canalization,

where one of several inputs settles the transition, but which do

not form a symmetric group.

The CM of x can be constructed from the subset of schemata

F1
’’ (the conditions to on), or F0

’’ (the conditions to off). When the

conditions are not met for convergence to on, one is guaranteed

convergence to off (and vice-versa). However, since we are

interested in exploring scenarios with incomplete information

about the states of variables in networks of automata rather than a

single automaton (see below), we construct the CM of a Boolean

automaton x including all conditions, that is using F ’’:F1
’’|F0

’’.

This facilitates the analysis of transition dynamics where automata

in a network can transition to either state. Figure 10 depicts the

complete CM of the example automaton x described in Figure 5–

now including also its transitions to off.

By uncovering the enputs of an automaton, we gain the ability

to compute its transition with incomplete information about the state of

every one of its inputs. For instance, the possible transitions of the

automaton in Figure 5 are fully described by the CM (and

schemata) in Figure 10; as shown, transitions can be determined

from a significantly small subset of the input variables in specific

state combinations. For instance, it is sufficient to observe i3~0 to

know that automaton x transitions to off. If x was used to model

the interactions that lead a gene to be expressed or not, it is easy to

see that to down-regulate its expression, it is sufficient to ensure

that the regulator i3 is not expressed. This is the essence of

canalization: the transition of an automaton is controlled by a

small subset of input states. In the macro-level canalization section

below, we use the CM’s ability to compute automata transitions

with incomplete information to construct an alternative portrait of

network dynamics, which we use in lieu of the original BN to study

collective dynamics. Let us first apply our micro-level methodology

to the SPN model.

Micro-level Canalization in the SPN Model
The automata in the SPN fall in two categories: those that have

a single input (k~1), the analysis of which is trivial, namely, SLP,

WG, EN, HH, ci and CI, and those with kw1. The two-symbol

schemata and canalization measures for each automaton in the

SPN model are depicted in Figure 11; Figure 12 maps the

automata to their canalization classes. Schemata easily display all

the sufficient combinations of input states (enputs) to control the

transitions of the automata in this model, which represent the

inhibition or expression of genes and proteins. Indeed, the

resulting list of schemata allows analysts to quickly infer how

control operates in each node of the network. Wildcard symbols

(depicted in Figure 11 as grey boxes) denote redundant inputs.

Position-free symbols (depicted in Figure 11 as circles), denote

‘functionally equivalent’ inputs; that is, sets of inputs that can be

alternatively used to ensure the same transition. For example, for

wg to be expressed, SLP, the previous state of wg (reinforcing

feedback loop) and CIA can be said to be ‘functionally equivalent’,

since any two of these three need to be expressed for wg to be

expressed. The several schemata that are listed for the expression

or inhibition of a specific node (genes and gene products), give

experts alternative ‘recipes’ available to control the node according

to the model – and which can be experimentally tested and

validated. Let us now present some relevant observations

concerning micro-level canalization in the SPN model:

1. The inhibition of wg can be attained in one of two ways: either

two of the first three inputs (SLP, wg, CIA) are off

(unexpressed), or CIR is on (expressed). The expression of wg
– essential in the posterior cell of a parasegment to attain the

wild-type expression pattern (Figure 3)– is attained in just one

way: CIR must be off (unexpressed), and two of the other three

inputs (SLP, wg, CIA) must be on (expressed). Note the

simplicity of this control logic vis a vis the 24~16 possible

distinct ways to control wg specified by its LUT, given that it is

a function of 4 inputs. This control logic is also not obvious

from the Boolean logic expression of node wg, as shown in

Table 1; at the very least, the schemata obtained for wg
provide a more intuitive representation of control than the

logical expression. Moreover, schema redescription, unlike the

logical expression, allows us to directly quantify canalization.

The control logic of this gene shows fairly high degree of both

types of canalization: even though there are k~4 inputs, on

average, only ke~1:75 inputs are needed to control the

transition, and ks~2:25 inputs can permute without effect on

the transition (see Figures 11 and 12); wg is thus modelled by

an automaton of class A.

2. The inhibition of CIR can be attained in one of two simple,

highly canalized, ways: either one of its first two inputs (PTC,

CI) is off (unexpressed), or one of its four remaining inputs (hh
and HH in neighbouring cells) is on (expressed); all other

inputs can be in any other state. The expression of CIR can be

attained in only one specific, non-canalized, way: the first two

inputs must be on (expressed), and the remaining four inputs

must be off (unexpressed) – a similar expression behaviour is

found for hh and ptc. Note the simplicity of this control logic

vis a vis the 26~64 possible distinct ways to control CIR

specified by its LUT, given that it is a function of 6 inputs.

While, in this case, the control logic is also pretty clear from

the original Boolean logic expression of node CIR (in Table 1),

the schemata obtained for CIR provide a more intuitive

representation of control and allows us to directly quantify

canalization. CIR is a protein with a very high degree of both

types of canalization: even though there are k~6 inputs, on

average, only ke~1:08 inputs are needed to control the

transition, and ks~5:25 inputs can permute without effect on

Table 2. Connectivity rules in canalizing maps.

s-units t-units

incoming fibres one or more one or more

outgoing fibres one per schema of which is enput one for the transition it causes

branching out Yes no

fusing in No yes

doi:10.1371/journal.pone.0055946.t002
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the transition (see Figures 11 and 12). This high degree of

both types of canalization, which is not quantifiable directly

from the logical expression or the LUT, is notable in

Figure 12, where CIR emerges very clearly as an automaton

of class A.

3. The control logic of CIA entails high canalization of the input

redundancy kind. For instance, its inhibition can be achieved

by a single one of its six inputs (CI off) and its expression by two

inputs only (PTC off and CI on). On the other hand, there is low

canalization of the input symmetry kind, therefore CIA is

modelled by an automaton in class B.

4. The expression of en – essential in the anterior cell of a

parasegment to achieve the wild-type phenotype – depends on

the inhibition of (input node) SLP in the same cell, and on the

expression of the wingless protein in at least one neighbouring

cell.

Figure 8. Canalizing map of example automaton x character-
ized by a single schema. (A) Since f ’’ (shown on top) has n‘~2, the
corresponding s-units for literal enputs xi[X‘ are directly linked to the t-
unit for f ’’ with single fibres; t~n‘~2. (B) Adding the subconstraint
n0

g~1 of the group-invariant enput Xg~fi1,i4,i5,i6g. In this case,

ng{(n0
g{1)~ng~4, so there is only one subset Si(S and thus a single

branch from each s-unit in the group-invariant, fused into a single

ending. The threshold becomes t~n‘z
ng

n0
g{1

� 	
~2z

4
0

� 	
~3. (C)

Finally, we add the second subconstraint n1
g~1 of the group-invariant

enput Xg , which has the same properties as the subconstraint
integrated in (B). The final threshold of the t-unit is given by (9),

therefore t~n‘z
ng

n0
g{1

� 	
z

ng

n1
g{1

� 	
~2z

4
0

� 	
z

4
0

� 	
~4. Notice

that only the input-combinations that satisfy the constraints of
Expression (1) for f ’’ can lead to the firing of the t-unit; in other words,
the canalizing map is equivalent to schema f ’’.
doi:10.1371/journal.pone.0055946.g008

Figure 9. Procedure for obtaining the canalizing map of a
group-invariant subconstraint. (A) subconstraint defined by n0

g~2,
where ng~4. The first step is to consider the s-units (in state 0) for the
four input variables in the group invariant enput Xg~fi1,i2,i3,i4g. Next

we identify all the subsets Si of these s-units containing ng{(n0
g{1)~3

s-units: fi1,i2,i3g,fi1,i2,i4g,fi1,i3,i4g,fi2,i3,i4g (shown with dotted ar-
rows). From every s-unit in each such subset Si , we take an outgoing
fibre to be joined together into a single fibre ending as input to the t-
unit. Finally, we increase the threshold of the t-unit by the total number

of subsets, that is tA~
ng

n0
g{1

� 	
~

4

4

� 	
~4. (B) An example of the

same procedure but for n0
g~3 and ng~4: tB~

ng

n0
g{1

� 	
~

4

2

� 	
~6.

doi:10.1371/journal.pone.0055946.g009

Canalization and Control in Automata Networks

PLOS ONE | www.plosone.org 13 March 2013 | Volume 8 | Issue 3 | e55946



5. Most automata in the model fall into canalization class B

described above. CIR and wg discussed above display greatest

input symmetry, and fall in class A (see Figure 12).

6. Looking at all the schemata obtained in Figure 11, we notice a

consistent pattern for all spatial signals, hhi+1, HHi+1 and

WGi+1. Whenever they are needed to control a transition

(when they are enputs in the schemata of other nodes), either

they are off in both neighbouring cells, or they are on in at least

one of the neighbouring cells. For instance, for a given cell i,

HH in neighbouring cells is only relevant if it is unexpressed in

both cells (HHi+1~0), or if it is expressed in at least one of

them (HHi{1~1 _HHiz1~1). This means that the six nodes

corresponding to spatial signals affecting a cell in a paraseg-

ment can be consolidated into just three neighbour nodes, a similar

consolidation of spatial signals was used previously by

Willadsen & Wiles [52] to simplify the spatial model into a

single-cell non-spatial model. In what follows, we refer to these

spatial signals simply as nhh, nHH and nWG. If such a node is

off it means that the corresponding original nodes are off in both

adjacent cells; if it is on it means that at least one of the

corresponding original nodes in an adjacent cell is on.

7. Only PTC and wg have feedback loops that are active after

schema redescription, both for their inhibition and expression;

these are self-reinforcing, but also depend on other enputs (see

also Figures 13 and 14).

Because this is a relatively simple model, some of the

observations about control, especially for nodes with fewer inputs,

could be made simply by looking at the original transition

functions in Table 1, since they are available as very simple logical

expressions – this is the case of CIR, but certainly not wg above.

However, the quantification of canalization requires the additional

symbols used in schema redescription to identify redundancy,

which are not available in the original automata logical

expressions or their LUTs. Moreover, the transition functions of

automata in larger Boolean models of genetic regulation and

signalling are rarely available as simple logical expressions, and

nodes can be regulated by a large number of other nodes, thus

making such direct comprehension of control-logic difficult. In

contrast, since redescription uncovers canalization in the form of

input redundancy and symmetry, the more canalization exists, the

more redundancy is removed and the simpler will be the schemata

representation of the logic of an automaton. This makes canalizing

maps (CM) particularly useful, since they can be used to visualize

and compute the minimal control logic of automata. The CMs

that result from converting the schemata of each node in the SPN

to a threshold-network representation are shown in Figure 13 and

Figure 14. For a biochemical network of interest, such as the SPN

or much larger networks, domain experts (e.g. biomedical

scientists and systems and computational biologists) can easily

ascertain the control logic of each component of their model from

the schemata or the corresponding CMs.

In summary, there are several important benefits of schema

redescription of Boolean automata vis a vis the original Boolean

logic expression or the LUT of an automaton: (1) a parsimonious

and intuitive representation of the control logic of automata, since

redundancy is clearly identified in the form of the two additional

symbols, which gives us (2) the ability to quantify all forms of

canalization in the straightforward manner described above;

finally, as we elaborate next, the integration of the schema

redescription (or CMs) of individual automata in a network (micro-

level) allows us to (3) characterize macro-level dynamics parsimoniously,

uncovering minimal control patterns, robustness and the modules

responsible for collective computation in these networks.

Macro-level Canalization and Control in Automata
Networks

After removing redundancy from individual automata LUTs in

networks (micro-level), it becomes possible to integrate their

canalizing logic to understand control and collective dynamics of

automata networks (macro-level). In other words, it becomes

feasible to understand how biochemical networks process infor-

mation collectively – their emergent or collective computation

[39,53–56].

Dynamics canalization map and dynamical

modularity. The CMs obtained for each automaton of a BN,

such as the SPN model (see Figures 13 and 14), can be integrated

into a single threshold network that represents the control logic of

the entire BN. This simple integration requires that (1) each

automaton is represented by two unique s-units, one for transition

to on and another to off, and (2) s-units are linked via t-units with

appropriate fibres, as specified by each individual CM. Therefore

a unique t-unit represents each schema obtained in the redescrip-

tion process. This results in the Dynamics Canalization Map (DCM)

for the entire BN. Since the DCM integrates the CMs of its

constituent automata, it can be used to identify the minimal control

conditions that are sufficient to produce transitions in the dynamics

of the entire network. Notice that when a node in the original BN

undergoes a state-transition, it means that at least one t-unit fires

in the DCM. When a t-unit fires, according to the control logic of

Figure 10. Canalizing Map of automaton x. (A) complete set of
schemata F ’’ for x, including the transitions to on shown in Figure 5 and
the transitions of off (the negation of the first).(B) canalizing map; t-units
for schemata f ’’2 and f ’’3 were merged into a single t-unit with
threshold t~1 (see main text). (C) effective connectivity, input
symmetry and input redundancy of x.
doi:10.1371/journal.pone.0055946.g010
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the DCM, it can cause subsequent firing of other t-units. This

allows the identification of the causal chains of transitions that are the

building blocks of macro-level dynamics and information processing,

as explained in detail below.

Another important feature of the DCM is its compact size.

While the dynamical landscape of an automata network, defined

by its state-transition graph (STG), grows exponentially with the

number of nodes – 2n in Boolean networks – its DCM grows only

linearly with 2n units plus the number of t-units needed (which is

the number of schemata obtained from redescribing every

automaton in the network): 2nz
Pn

i~1 jF ’’ij. Furthermore, the

computation of a DCM is tractable even for very large networks

with thousands of nodes, provided the in-degree of these nodes is

not very large. In our current implementation, we can exhaustively

perform schema redescription of automata with kƒkmax&20;

that is, LUTs containing up to 220 entries. It is very rare that

dynamical models of biochemical regulation have molecular

species that depend on more than twenty other variables (see

e.g. [57]). Therefore, this method can be used to study canalization

and control in all discrete models of biochemical regulation we

have encountered in the literature, which we will analyse

elsewhere.

It is important to emphasize that the integration of the CMs of

individual automata into the DCM does not change the control

logic encoded by each constituent CM, which is equivalent to the

logic encoded in the original LUT (after removal of redundancy).

Therefore, there is no danger of violating the logic encoded in the

original LUT of any automaton in a given BN. However, it is

necessary to ensure that any initial conditions specified in the

DCM do not violate the laws of contradiction and excluded

middle. This means, for instance, that no initial condition of the

DCM can have the two (on and off) s-units for the same automaton

firing simultaneously.

The DCM for a single cell in the SPN model is shown in

Figure 15. The spatial signals from adjacent cells are highlighted

using units with a double border (nhh,nHHandnWG). For the

simulations of the spatial SPN model described in subsequent

sections, we use four coupled single-cell DCMs (each as in

Figure 15) to represent the dynamics of the four-cell parasegment,

where nodes that enable inter-cellular regulatory interactions are

appropriately linked, as defined in the original model. Also, as in

the original model, we assume periodic boundary conditions for

the four-cell parasegment: the posterior cell is adjacent to the

anterior cell. When making inferences using the DCM, we use

signal to refer to the firing of a s-unit and the transmission of this

information through its output fibres. When a s-unit fires in the

DCM, it means that its corresponding automaton node in the

original BN transitioned to the state represented by the s-unit. We

also use pathway to refer to a logical sequence of signals in the

DCM.

We highlight two pathway modules in the DCM of the SPN in

Figure 15:M1 andM2. The first is a pathway initiated by either

the inhibition of WG in neighbour cells, or the expression of SLP

upstream in the same cell. That is, the initial pattern for this

module is M0
1~:nWG _ SLP. The initiating signal for M2 is

defined by the negation of those that trigger the first:

M0
2~:M0

1~nWG ^ :SLP. Both modules follow from (external

or upstream) input signals to a single cell in the SPN; they do not

depend at all on the initial states of nodes (molecular species) of the

SPN inside a given cell. Yet, both of these very small set of initial

signals necessarily cause a cascade of other signals in the network

over time.M1 is the only pathway that leads to the inhibition of en

Figure 11. Micro-level canalization for the Automata in the SPN model. Schemata for inhibition (transitions to off) and expression
(transitions to on) are shown for each node (genes or proteins) in model. In-degree (k), input redundancy (kr), effective connectivity (ke), and input
symmetry (ks) are also shown.
doi:10.1371/journal.pone.0055946.g011

Figure 12. Quantification of canalization in the SPN automata. Relative input redundancy is measured in the horizontal axis (k�r ) and relative
input symmetry is measured in the vertical axis (k�r ). Most automata in the SPN fall in the class II quadrant, showing that most canalization is of the
input redundancy kind, though nodes such as CIR and wg display strong input symmetry too.
doi:10.1371/journal.pone.0055946.g012
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(and EN) as well as the expression of ci (and CI). It also causes the

inhibition of hh and HH, both of which function as inter-cellular

signals for adjacent cells – this inhibition can be alternatively

controlled by the expression of CIR, which is not part of neither

M1 nor M2. Since M0
1 is a disjunction, its terms are equivalent:

either the inhibition of nWG or the upstream expression of SLP

control the same pathway, regardless of any other signals in the

network.M2 is the only pathway that leads to the expression of en
(and EN) as well as the inhibition of ci (and CI); It also causes the

inhibition of CIA, ptc and CIR – these inhibitions can be

alternatively controlled by other pathways. If the initial conditions

M0
2 are sustained for long enough (steady-state inputs), the

downstream inhibition of CIA and sustained inhibition of SLP

lead to the inhibition of wg (and WG); likewise, from sustaining

M0
2, the downstream expression of EN and inhibition of CIR lead

to the expression of hh (and HH). SinceM0
2 is a conjunction, both

terms are required: both the expression of nWG and the upstream

inhibition of SLP are necessary and sufficient to control this

pathway module, regardless of any other signals in the network.

M1 and M2 capture a cascade of state transitions that are

inexorable once their initiating signals (M0
1 andM0

2) are observed:

M1~f:en,:EN, :hh, : HH, ci, CIg and M2~f:ci, :CI,
:CIA, :wg, :WG, :CIR, :ptc, en, EN, hh, HHg. Further-

more, these cascades are independent from the states of other nodes

in the network. As a consequence, the transitions within a module

are insensitive to delays once its initial conditions are set (and

maintained in the case ofM2 as shown). The dynamics within these

portions of the DCM can thus be seen as modular; these pathway

modules can be decoupled from the remaining regulatory dynamics,

in the sense that they are not affected by the states of any other

nodes other than their initial conditions. Modularity in complex

networks has been typically defined as sub-graphs with high intra-

connectivity [21]. But such structural notion of community

structure does not capture the dynamically decoupled behaviour

of pathway modules such as M1 and M2 in the SPN. Indeed, it

has been recently emphasized that understanding modularity in

complex molecular networks requires accounting for dynamics

[58], and new measures of modularity in multivariate dynamical

systems have been proposed by our group [59]. We will describe

methods for automatic detection of dynamical modularity in

DCMs elsewhere.

Collective computation in the macro-level dynamics of autom-

ata networks ultimately relies on the interaction of these pathway

modules. Information gets integrated as modules interact with one

another, in such a way that the timing of module activity can have

an effect on downstream transitions. For instance, the expression

of CI via M1 can subsequently lead to the expression of CIA,

provided that nhh is expressed – and this is controlled by M2 in

the adjacent cells. The expression of CI can also be seen as a

necessary initial condition to the only pathway that results in the

expression of CIR, which also depends on the inhibition of nhh
and n HH and the expression of PTC, which in turn depends on

the interaction of other modules, and so on. As these examples

show, pathway modules allow us to uncover the building blocks of

macro-level control – the collective computation of automata

network models of biochemical regulation. We can use them, for

instance, to infer which components exert most control on a target

collective behaviour of interest, such as the wild-type expression

pattern in the SPN. Indeed, modules M1 and M2 in the SPN

model, which include a large proportion of nodes in the DCM,

highlight how much SLP and the spatial signals from neighbouring

cells control the dynamical behaviour of segment polarity gene

regulation in each individual cell. Particularly, they almost entirely

control the expression and inhibition of EN and WG; as discussed

further below. The behaviour of these proteins across a four-cell

parasegment mostly define the attractors of the model (including

wild-type). The transitions of intra-cellular nodes are thus more

controlled by the states of ‘external’ nodes than by the initial

pattern of expression of genes and proteins in the cell itself. This

emphasizes the well-known spatial constraints imposed on each

cell of the fruit fly’s developmental system [60,61]. We next study

and quantify this control in greater detail.

Dynamical unfolding. A key advantage of the DCM is that

it allows us to study the behaviour of the underlying automata

network without the need to specify the state of all of its nodes.

Modules M1 and M2 are an example of how the control that a

very small subset of nodes exerts on the dynamics of SPN can be

studied. This can be done because, given the schema redescription

that defines the DCM, subsets of nodes can be assumed to be in an

unknown state. Since the schema redescription of every automaton

in the DCM is minimal and complete (see micro-level canalization

section), every possible transition that can occur is accounted for in

the DCM. By implementing the DCM as a threshold network, we

gain the ability to study the dynamics of the original BN by setting

the states of subsets of nodes. This allows us study convergence to

attractors, or other patterns of interest, from knowing just a few

nodes.

More formally, we refer to an initial pattern of interest of a BN

B as a partial configuration, and denote it by x̂. For example,M0
1 is a

partial configuration x̂~M0
1~SLP _ :nWG, where the states of

all other nodes is #, or unknown. We refer to dynamical unfolding as

the sequence of transitions that necessarily occur after an initial

partial configuration x̂, and denote it by s(x̂) P, where P is an

outcome pattern or configuration. From the DCM of the single-cell

SPN model (Figure 15), we have s(M0
1) M1 and

s(M0
2) M2. An outcome pattern can be a fully specified

attractor A, but it can also be a partial configuration of an

attractor where some nodes remain unknown – for instance, to

study what determines the states of a specific subset of nodes of

interest in the network. In the first case, it can be said that x̂ fully

controls the network dynamics towards attractor A. In the second,

control is exerted only on the subset of nodes with determined

logical states.

The ability to compute the dynamical unfolding of a BN from

partial configurations is a key benefit of the methodology

introduced here: it allows us to determine how much partial

configurations of interest control the collective dynamics of the

network. For instance, in the SPN model it is possible to

investigate how much the input nodes to the regulatory network

of each cell control its dynamics. Or, conversely, how much the

initial configuration of the intra-cellular regulatory network is

irrelevant to determining its attractor. The nodes within each cell

in a parasegment of the SPN are sensitive to three inter-cellular

(external) input signals: nWG, nhh and nHH, and one intra-

cellular (upstream) input, SLP. Given that the formation of

parasegment boundaries in D. melanogaster is known to be tightly

Figure 13. Canalizing Maps of individual nodes in the SPN model (part 1). The set of schemata for each automaton is converted into two
CMs: one representing the minimal control logic for its inhibition, and another for its expression. Note that nX denotes the state of node X in both
neighbour cells: :nXu:Xi{1 ^ :Xiz1 and nXuXi{1 _ Xiz1 , where X is one of the spatial-signals hh, HH, or WG (see text).
doi:10.1371/journal.pone.0055946.g013
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spatially constrained [60,61], it is relevant to investigate how

spatio-temporal control occurs in the SPN model. We already

studied the control power of SLP and nWG, which lead to

modules M1 and M2. We now exhaustively study the dynamical

unfolding of all possible states of the intra- and inter-cellular input

signals.

We assume that SLP (upstream) and the (external) spatial signals

are in steady-state to study what happens in a single cell. Since the

state of nHH is the same as nhh after one time step, we consolidate

those input signals into a single one: nhh. We are left with three

input signals to the intra-cellular regulatory network: nodes SLP,

nWG and nhh. Each of these three nodes can be in one of two

states (on, off) and thus there are eight possible combinations of

states for these nodes. Such simplification results in a non-spatial

model and this was done previously by Willadsen & Wiles [52].

Setting each such combination as the initial partial configuration

x̂, and allowing the DCM to compute transitions, yields the results

shown in Figure 16. We can see that only two of the outcome

patterns reached by the eight input partial configurations are

ambiguous about which of the final five possible attractors is

reached. Each individual cell in a parasegment can only be in one

of five attractor patterns I1{I5 (see } background). This is the

case of groups G2 and G4 in Figure 16. For all the other input

partial configurations, the resulting outcome pattern determines

the final attractor. We also found that for almost every input

partial configuration, the states of most of the remaining nodes are

also resolved; in particular the nodes that define the signature of

the parasegment attractor – Engrailed (EN) and Wingless (WG) –

settle into a defined steady-state. Notice also that for two of the

input partial configurations (groups G3 and G5 in Figure 16), the

states of every node in the network settle into a fully defined

steady-state. The picture of dynamical unfolding from the intra-

and inter-cellular inputs of the single-cell SPN network also allows

us to see the roles played by modules M1 and M2 in the

dynamics. The six input configurations in groups G1, G2, and G3

depict the dynamics where M1 is involved, while the two input

configurations in G4 and G5 refer to M2 (node-states of each

module in these groups appear shaded in Figure 16). By

comparing the resulting dynamics, we can see clearly the effect

of the additional information provided by knowing if nhh is

expressed or inhibited; we also see that the dynamics of the

modules is unaffected by other nodes, as expected.

Figure 14. Canalizing Maps of individual nodes in the SPN model (cont). The set of schemata for each automaton is converted into two
CMs: one representing the minimal control logic for its inhibition, and another for its expression. Note that nX denotes the state of node X in both
neighbour cells: :nXu:Xi{1 ^ :Xiz1 and nXuXi{1 _ Xiz1 , where X is one of the spatial-signals hh, HH, or WG (see text).
doi:10.1371/journal.pone.0055946.g014

Figure 15. Dynamics Canalization Map for a single cell of the SPN Model. Also depicted are pathway modules M1 (pink) and M2 (blue),
whose initial conditions depend exclusively on the expression and inhibition of input node SLP and of WG in neighbouring cells (the nWG spatial-
signals). M1~:nWG _ SLP, M2~:M1 (see details in text).
doi:10.1371/journal.pone.0055946.g015
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It is clear from these results that (single-cell) cellular dynamics in

the SPN is almost entirely controlled from the inputs alone. We

can say that extensive micro-level canalization leads the macro-

level network dynamics to be highly canalized by external inputs –

a point we explore in more detail below. For the dynamical

unfolding depicted in Figure 16 we assumed that the three input

signals to the intra-cellular regulatory network are in steady-state,

focusing on a single cell. This is not entirely reasonable since inter-

cellular signals are regulated by spatio-temporal regulatory

dynamics in the full spatial SPN model. We thus now pursue

the identification of minimal partial configurations that guarantee

convergence to outcome patterns of interest in the spatial SPN

model, such as specific (parasegment) attractors.

Minimal configurations. To automate the search of min-

imal configurations that converge to patterns of interest, we rely

again on the notion of schema redescription, but this time for

network-wide configurations rather than for individual automata

LUTs. Notice that the eight input partial configurations used in

the dynamical unfolding scenarios described in Figure 16 are

wildcard schemata of network configurations: the state of the 14

Figure 16. Dynamical unfolding of the (single-cell) SPN with partial input configurations. The eight initial partial configurations tested
correspond to the combinations of the steady-states of intra- and inter-cellular inputs SLP, nWG and nhh (and where nHH and nhh are merged into a
single node, nhh). The specific state-combinations of these three variables is depicted on the middle (white) tab of each dynamical unfolding plot.
Initial patterns that reach the same target pattern are grouped together in five groups G1 to G5 (identified in the top tab of each plot). The six input
configurations in groups G1, G2, and G3 depict the dynamics where pathway moduleM1 is involved (nodes involved in this module are highlighted
in pink.) The two input configurations in G4 and G5 depict the dynamics where pathway moduleM2 is involved (nodes involved in this module are
highlighted in blue.) Three of the eight combinations are in G1 because they reach the same final configuration which, although partial, can only
match the attractor I1. There are five possible attractor patterns of the SPN model for a single cell, shown in bottom right inset: I1 to I5 (see }
background). Attractors reached by each group are identified in the bottom tab of each plot. Groups G2 and G4 both unfold to an ambiguous target
pattern that can end in I2 or I5 for G2, and I3 or I4 for G4. Finally, the initial partial configurations in groups G3 and G5 are sufficient to resolve the
states of every node in the network.
doi:10.1371/journal.pone.0055946.g016

Canalization and Control in Automata Networks

PLOS ONE | www.plosone.org 21 March 2013 | Volume 8 | Issue 3 | e55946



inner nodes is unknown (wildcard), and only three (input) nodes

(SLP, nWG,nhh) are set to a combination of Boolean states. Each

of these eight schemata redescribes 214 possible configurations of

the single-cell SPN. Six of the eight input schemata converge to

one of the five possible attractors for inner nodes in a single cell of

the SPN model (Figure 16). We can thus think of those six

schemata as minimal configurations (MCs) that guarantee conver-

gence to patterns (e.g. attractors) of interest.

More specifically, a MC is a 2-symbol schema x’’ that

redescribes a set of network configurations that converge to target

pattern P; when the MC is a wildcard schema, it is denoted by x’.
Therefore, s(x0’) P. MC schemata, x’’ or x’, are network

configurations where the truth value of each constituent autom-

aton can be 0, 1, or # (unknown); symmetry groups are allowed

for x’’ and identified with position-free symbols 0
m (see Micro-level

canalization section). An MC schema redescribes a subset H of the

set of configurations X : H:fx[X : x x00g. A partial config-

uration is a MC if no Boolean state in it can be raised to the

unknown state (#) and still guarantee that the resulting partial

configuration converges to P. In the case of a two-symbol schema,

no group-invariant enput can be enlarged (include additional

node-states) and still guarantee convergence to P. Finally, the

target pattern P can be a specific network configuration (e.g. an

attractor), or it can be a set of configurations of interest (e.g. when

only some genes or proteins are expressed). After redescription of a

set of configurations X of a BN – a subset or its full dynamical

landscape – we obtain a set of two-symbol MCs X ’’; a set of

wildcard MCs is denoted by X ’. Similarly to micro-level schemata,

we can speak of enputs of MCs. In this context, they refer to

individual and sets of node-states in the network that are essential

to guarantee convergence to a target pattern.

The dynamical unfolding example of the single-cell SPN model

shows that to converge to the attractor I1 (Figure 16, G1), only the

states of the three input nodes need to be specified, in one of three

possible Boolean combinations: 000,100 or 110 for the nodes SLP,

nWG and nhh; all other (inner) nodes may be unknown (#).

Moreover, these three initial patterns can be further redescribed

into two schemata: X ’~ff#,0,0g,f1,#,0gg. This shows that to

guarantee converge to I1, we only need to know the state of two

(input) nodes: either nWG ~nhh~0, or SLP = 1 and nhh~0. All

other nodes in the single-cell model can remain unknown.

Therefore, the MCs for attractor pattern I1 are:

X0~f###############00,##############1#0g ð10Þ

where the order of the inner nodes is the same as in Figure 16,

and the last three nodes are SLP, nWG and nhh in that order.

Notice that in this case there is no group-invariance, so X ’’~X ’.
Any initial configuration not redescribed by X ’, does not converge

to pattern I1. Therefore, these MCs reveal the enputs (minimal set

of node-states) that control network dynamics towards attractor I1:

nhh must remain unexpressed, and we must have either SLP

expressed, or nWG unexpressed. However, as mentioned above,

this example refers to the case when the three input nodes are in

steady-state. For the single-cell SPN, the steady-state assumption is

reasonable. But for the spatial SPN, with parasegments of four

cells, we cannot be certain that the spatial signals (nWG and nhh)

have reached a steady-state at the start of the dynamics. Therefore,

we now introduce a procedure for obtaining MCs, without the

steady-state assumption, which we apply to the spatial SPN

network model.

It was discussed previously that individual automata in BN

models of biochemical regulation and signalling very rarely have

large numbers of input variables. This allows tractable computa-

tion of two-symbol schema redescription of their LUTs (see micro-

level section). In contrast, computing MCs for network configu-

rations easily becomes more computationally challenging. Even for

fairly small networks with n&20, the size of their dynamical

landscape becomes too large to allow full enumeration of the

possible configurations and the transitions between them. As

shown above, it is possible to identify pathway modules, and to

compute dynamical unfolding on the DCM, without knowing the

STG of very large BNs, but it remains not feasible to fully

redescribe their entire dynamical landscape.

One way to deal with high-dimensional spaces is to resort to

stochastic search (see e.g. [62]). We use stochastic search to obtain

MCs that are guaranteed to converge to a pattern of interest P.

We start with a seed configuration known to converge to P. Next, a

random node in a Boolean state is picked, and changed to the

unknown state. The resulting partial configuration is then allowed

to unfold to determine if it still converges to P. If it does, the

modified configuration becomes the new seed. The process is

repeated until no more nodes can be ‘raised’ to the unknown state

and still ensure convergence to P. Otherwise, the search continues

picking other nodes. The output of this algorithm (detailed in Data

S4) is thus a single wildcard MC. Afterwards, the goal is to search

for sets of MCs that converge to P. We do this in two steps: first we

search for a set of MCs derived from a single seed, followed by a

search of the space of possible different seeds that still converge to

P. We use two ‘tolerance’ parameters to determine when to stop

searching. The first, d, specifies the number of times a single seed

must be ‘reused’ in the first step. When the algorithm has reused

the seed d consecutive times without finding any new MCs, the

first step of the MC search stops. The second tolerance parameter,

r, is used to specify when to stop searching for new seeds from

which to derive MCs. When r consecutively generated random

(and different) seeds are found to be already redescribed by the

current set of MCs, the algorithm stops. Both parameters are reset

to zero every time a new MC is identified. These two steps are

explained in greater detail in Data S4.

The two-step stochastic search process results in a set of

wildcard schemata X ’ that redescribe a given set of configurations

X guaranteed to converge to pattern P. We next obtain a set of

two-symbol MCs X ’’ from X ’, by identifying group-invariant

subsets of nodes using the same method described in the micro-

level canalization section. Since X ’ can be quite large (see below),

this computation can become challenging. In this case, we restrict

the search for symmetric groups in X ’ that redescribe a minimum

number b of wildcard MCs x’.
Notice that it is the DCM, implemented as a threshold network,

that allows us to pursue this stochastic search of MCs. With the

original BN, we cannot study dynamics without setting every

automaton to a specific Boolean truth value. With the DCM,

obtained from micro-level canalization, we are able to set nodes to

the unknown state and study the dynamical unfolding of a partial

configuration (see previous subsection) to establish convergence to

a pattern of interest. Therefore, the DCM helps us link micro-level

canalization to macro-level behaviour. Let us exemplify the

approach with the SPN model.

We started our study of MCs in the spatial SPN model, with a

set of seed configurations Xbio that contains the known initial

configuration of the SPN (shown in Figure 3), the wild-type

attractor (Figure 4a), and the five configurations in the dynamic

trajectory between them. When searching for MCs using these

seed configurations we set d~105. This resulted in a set containing

90 wildcard MCs X ’bio (available in data S7). Using the set X ’bio,

we performed the two-step stochastic search with r~106 and

(10)
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d~105. This resulted in a much larger set of 1745 wildcard MCs

(available in data S8) which guarantee convergence to wild-type:

X ’wt6X ’bio. The number of literal enputs in each MC contained

in this set varies from 23 to 33 – out of the total 60 nodes in a

parasegment. In other words, from all configurations in X ’wt we

can ascertain that to guarantee convergence to the wild-type

attractor, we need only to control the state of a minimum of 23

and a maximum of 33 of the 60 nodes in the network.

Equivalently, 27 to 37 nodes are irrelevant in steering the

dynamics of the model to the wild-type attractor – a high degree of

canalization we quantify below.

We chose to study two further subsets of X ’wt separately: X ’noP

and X ’min. The first (available in data S9) is the subset of MCs that

do not have enputs representing expressed (on) proteins, except

SLP3,4 – since SLP in cells 3 and 4 is assumed to be present from

the start, as determined by the pair-rule gene family (see [26] and

introductory section). This is a subset of interest because it

corresponds to the expected control of the SPN at the start of the

segment-polarity dynamics, including its known initial configura-

tion (Figure 3); thus X ’noP5X ’wt. The second, X ’min5X ’wt is the

subset of MCs with the smallest number of enputs (available in data

S10. This corresponds to the set of 32 MCs in X ’wt that have only

23 enputs each. This is a subset of interest because it allows us to

study how the unfolding to wild-type can be guaranteed with the

smallest possible number of enputs. Notice that X ’min redescribes a

large subset of configurations in Xwt because it contains the MCs

with most redundant number of nodes. These sets of wildcard

MCs are available in data S7,S8, S9 and S10; Table 3 contains their

size.

There are severe computational limitations to counting exactly

the number of configurations redescribed by each set of MCs,

since it depends on using the inclusion/exclusion principle [63] to

count the elements of intersecting sets (MCs redescribe overlap-

ping sets of configurations). See Data S6 for further details. We can

report the exact value for jX ’noPj~8:35|1010, which is about

14% of the number of configurations – or pre-patterns – estimated

by Albert & Othmer [26] to converge to the wild-type attractor

(6|1011). Using the inclusion/exclusion principle, it was also

computationally feasible to count the configurations redescribed

by a sample of 20 of the 32 MCs in X ’min : 9:6|1011. Since this

sample of 20 MCs is a subset of X ’min, which is a subset of X ’wt,

we thus demonstrate that jXwtj§jXminj§9:6|1011, which is 1:6
times larger than the previously estimated number of pre-patterns

converging to the wild-type attractor [26]. This means that the

wild-type attraction basin is considerably (at least 1.6 times) larger

than previously estimated, with a lower bound of at least

9:6|1011 network configurations. Although it was not computa-

tionally feasible to provide exact counts for the remaining MC sets,

it is reasonable to conclude that the set X ’wt redescribes a

significant proportion of the wild-type attractor basin, given the

number of configurations redescribed by 20 of its most canalized

MCs in comparison to the previous estimate of its size. Indeed, we

pursued a very wide stochastic search with large tolerance

parameters, arriving at a large number (1745) MCs, each of

which redescribes a very large set of configurations. For instance,

each MC with the smallest number of enputs (23) alone redescribes

1:37|1011 configurations, which is about 23% of the original

estimated size of the wild-type attractor basin, and 14% of the

lower bound for the size of the attractor basin we computed above.

Given the large number of MCs in the X ’wt set, even with likely

large overlaps of configurations, much of the attractor basin ought

to be redescribed by this set.

From X ’wt, we derived two-symbol MC sets using b~8. That is,

due to the computational limitations discussed previously, we

restricted the search to only those two-symbol MCs x’’ that

redescribe at least b~8 wildcard MCs x’. Given that configura-

tions of the spatial SPN are defined by 60 automata states, the

group-invariance enputs we may have missed with this constraint

are rather trivial. For instance, we may have missed MCs with a

single group-invariant enput of 3 variables (any group-invariant

enput with 4 variables would be found), or MCs with 2 distinct

group-invariant enputs of 2 variables each (any MCs with 3 group-

invariant enputs would be found.) With this constraint on the

search for two-symbol MCs, we identified only the pair of two-

symbol MCs depicted in Figure 17: fx’’1,x’’2g – each redescribing

16 wildcard MCs – the MCs redescribed are available in data S13.

These two MCs redescribe 1:95|1011 configurations; that is,

about 32% of the wild-type attraction basin as estimated by [26],

or 20% of the lower bound for the size of the attractor basin we

computed above – a very substantial subset of the wild-type

attractor basin.

No other two-symbol MCs redescribing at least eight wildcard

MCs were found in the set X ’wt. Therefore, X ’’wt is comprised of

the wildcard MCs in X ’wt with the addition of fx’’1,x’’2g and

removal of the wildcard MCs these two schemata redescribe.

Table 3 contains the size of all MC sets. Moreover, fx’’1,x’’2g
have no intersecting schemata with the additional three subsets of

X ’’wt we studied. This means that the two-symbol redescription

(with b~8) is equal to the wildcard redescription of the sets of

configurations Xbio, XnoP and Xmin. The pair of two-symbol MCs

identified denote two very similar minimal patterns that guarantee

convergence to the wild-type attractor. In both MCs, the pairs of

nodes wg2,4, HH2,4 as well as ci4 and CI4 are marked with distinct

position-free symbols. In other words, they have three identical

group-invariant enputs. For x’’1 a fourth group-invariant enput

comprises the nodes hh1,3, while for x’’2 the fourth group-invariant

enput contains the nodes HH1,3. For x’’2 there is an extra literal

enput: ptc4~0 (ptc gene in fourth cell is unexpressed). The

Table 3. Macro-level canalization in the wildcard MC sets converging to wild-type in the SPN.

MC set jX ’’j e (min) e (max) ne nr ns

X ’wt 1745 23 33 24:01+0:08 35.99 +0:17 0:98+0:03

X ’min 32 23 23 23+0 37 +0 0

X ’bio 90 25 28 25:75+0:11 34.25 +0:11 0

X ’noP 24 26 30 26:2+0:04 34.8 +0:04 0

The table lists for every set of MCs reported in the main text: cardinality, minimum number of enputs, maximum number of enputs, estimated canalization. Canalization

measures were obtained, for each MC set, from 10 independent samples of 104 configurations, thus jX̂ j~105 . Values shown refer to the mean plus 95% confidence
intervals for the 10 independent measurements.
doi:10.1371/journal.pone.0055946.t003
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remaining literal enputs are identical to those of x’’1. The group-

invariance in these MCs is not very surprising considering the

equivalent roles of neighbouring hedgehog and Wingless for intra-

cellular dynamics – as discussed previously when the SPN’s DCM

was analysed. Notice that most group-invariance occurs for the

same genes or proteins in alternative cells of the parasegment; for

instance, wg expressed in either cell 2 or cell 4. Nonetheless, both

two-symbol MCs offer two minimal conditions to guarantee

convergence to the wild-type attractor, which includes a very large

proportion of the wild-type attractor basin. Therefore, they serve

as a parsimonious prescription for analysts who wish to control the

macro-level behaviour (i.e. attractor behaviour) of this system.

Finally, the MCs obtained observe substantial macro-level

canalization which we quantify below.

Quantifying Macro-level Canalization
In the micro-level canalization section, we defined measures of

input redundancy, effective connectivity and input symmetry to quantify

micro-level canalization from the schema redescription of individ-

ual automata. Since we can also redescribe configurations that

produce network dynamics, leading to the minimal configurations

(MCs) of the previous section, we can use very similar measures to

quantify macro-level canalization and control. At the macro-level,

high canalization means that network dynamics are more easily

controllable: MCs contain fewer necessary and sufficient node-

states (enputs) to guarantee convergence to an attractor or target

pattern P. Similarly to the micro-level case, we first define upper

and lower bounds of node redundancy computed from the set of MCs

X ’’ for a target pattern:

�nnr(X,P)~

P
x[X

max
h:x[Hh

n
#
h

� �
jX j ð11Þ

nr(X,P)~

P
x[X

min
h:x[Hh

n
#
h

� �
jXj ð12Þ

These expressions tally the mean number of irrelevant nodes in

controlling network dynamics towards P for all configurations x of

a set of configurations of interest X (e.g. a basin of attraction). The

number of irrelevant nodes in a given MC x’’h is the number of its

wildcards n
#
h . Because each configuration x is redescribed by one

or more MCs, there are various ways to compute a characteristic

number of irrelevant nodes associated with the configurations,

which is nonetheless bounded by the maximum and minimum

number of wildcards in the set of MCs that redescribe x.

Therefore, the expressions above identify all MCs whose set of

redescribed configurations Hh includes x. The upper (lower)

bound of node redundancy, Equation 11 (Equation 12),

corresponds to considering the maximum (minimum) number of

irrelevant nodes found for all MCs that redescribe configuration x
of the interest set – an optimist (pessimist) quantification of this

type of macro-level canalization. Here we use solely the upper

bound, which we refer to henceforth simply as node redundancy with

the notation nr(X,P). Similarly to the micro-level case, the

assumption is that the most redundant MCs are always accessible

for control of the network towards pattern P. The range for node

redundancy is 0ƒnrƒn, where n is the number of nodes in the

network. When nr(X ,P)~n we have full node irrelevance, or

maximum canalization, which occurs only in the case of networks

where the state of every node is not dependent on any input (that

is, when kr~k for every node). If nr(X ,P)~0, the state of every

node is always needed to determine convergence to P and we have

no macro-level canalization.

Figure 17. Two-Symbol schemata with largest number of position-free symbols, obtained from redescription of Xwt. The pair
fx’’1,x’’1g were the two-symbol schemata obtained in our stochastic search; both include 4 pairs of symmetric node-pairs, each denoted by a circle
and a numerical index.
doi:10.1371/journal.pone.0055946.g017
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If some nodes of a network are irrelevant to steer dynamics to P,

from a control logic perspective, we can say that P is effectively

controlled by a subset of nodes of the network with fewer than n
nodes. In other words, by integrating the micro-level control logic

of automata in a network into the DCM, we are able to compute

MCs and infer from those the macro-level effective control, which is

not apparent from looking at connectivity structure alone:

ne(X ,P)~n{nr(X ,P) ð13Þ

whose range is 0ƒneƒn. If ne(X ,P)~0 it means full node

irrelevance, or maximum canalization. When ne(X ,P)~n, it

means no canalization i.e. one needs to control all n nodes to

guarantee converge to P.

Macro-level canalization can also manifest alternative control

mechanisms. The two-symbol schema redescription allows us to

measure this form of control by computing the mean number of

nodes that participate in group-invariant enputs, easily tallied by

the number of position-free symbols (n
0

h) in MC schemata x’’h that

characterize convergence to target pattern P. Thus, we quantify

the upper and lower bounds of node symmetry in a set of

configurations of interest X related to target pattern P (e.g. a

basin of attraction).

�nns(X ,P)~

P
x[X

max
h:x[Hh

n0h
� �

jX j ð14Þ

ns(X ,P)~

P
x[X

min
h:x[Hh

n0h
� �

jX j ð15Þ

Here we use solely the upper bound, which we refer to

henceforth simply as node symmetry and denote by ns(X ,P); its

range is ½0,n�. Again, the assumption is that the most canalized

MCs are always accessible for control of the network towards

pattern P. High (low) values mean that permutations of node-

states are likely (unlikely) to leave the transition unchanged.

Macro-level canalization in network dynamics is then quantified

by two types of redundancy: node redundancy (or its counterpart,

effective control) and node symmetry. To be able to compare

macro-level control in automata networks of different sizes, we can

compute relative measures of canalization:

n�r (X,P)~
nr(X,P)

n
;

n�e(X,P)~
ne(X,P)

n
;

n�s (X,P)~
ns(X,P)

n

ð16Þ

whose range is ½0,1�: Network dynamics towards a pattern of

interest P can have different amounts of each form of canalization,

which allows us to consider four broad classes of control in

network dynamics – just like the micro-level canalization case (see

above).

The two MCs identified above for the single-cell SPN model

(Eq. 10), redescribe the full set of configurations that converge to

I1. Since these MC schemata do not have group-invariant enputs,

node symmetry does not exist: ns(X ,I1)~0. Node redundancy

and effective control is nr(X ,I1)~15 and ne(X ,I1)~2, respec-

tively. In other words, even though the network of the single-cell

SPN model comprises n~17 nodes, to control its dynamics

towards attractor I1, it is sufficient to ensure that the states of only

two nodes remain fixed; the initial state of the other 15 nodes is

irrelevant. More concretely, nhh must remain off and either SLP

remains on or nwg remains off. The relative measures become:

n�r (X ,I1)~15=17 (&88% of nodes are redundant to guarantee

convergence to attractor I1) n�e(X ,I1)~2=17 (one only needs to

control &12% of nodes to guarantee convergence to attractor I1),

and n�s (X ,I1)~0 (there is no node symmetry in these MCs). This

means that there is a large amount of macro-level canalization of

the node redundancy type – and thus higher controllability – in

the basins of attraction of the SPN model where pattern I1 is

present.

The macro-level canalization measures above assume that the

interest set of configurations X can be enumerated. Moreover,

schema redescription of network configurations itself assumes that

X can be sufficiently sampled with our stochastic search method

(see previous sub-section). The node symmetry measure addition-

ally assumes that the set of wildcard MCs obtained by stochastic

search is not too large to compute symmetric groups. While these

assumptions are easily met for micro-level analysis, because LUT

entries of individual automata in models of biochemical regulation

do not have very large number of inputs, they are more

challenging at the macro-level. Certainly, canalization in the

single-cell SPN model can be fully studied at both the micro- and

macro-levels – see Figures 11 and 12 for the former as well as

example above for the latter. But quantification of macro-level

canalization of larger networks, such as the spatial SPN model,

needs to be estimated. Therefore, in formulae 11, 12, 14, and 15,

the set of configurations X is sampled: X̂X . Configurations for X̂X
are sampled from each MC in the set X ’’, proportionally to the

number of configurations redescribed by each MC – i.e. roulette

wheel sampling. Configurations from a selected MC are sampled

by ascribing Boolean truth values to every wildcard in the MC

schema; the proportion of each of the truth values is sampled from

a uniform distribution. If a selected MC is a 2-symbol schema, the

truth-values of group-invariant enputs are also sampled from a

uniform distribution of all possible possibilities. Naturally, the

same configuration x can be redescribed by more than one MC h.

In summary, macro-level canalization for larger networks is

quantified with the estimated measures: n̂nr, n̂ne, and n̂ns, as well as

their relative versions.

Tables 3 and 4 summarize the quantification of macro-level

canalization estimated for the four MC sets obtained above: X ’’wt,

X ’’min, X ’’bio, and X ’’noP. Effective control (ne) ranges between 23
and 26:2 nodes (out of 60) for the four sets of MCs; this means (see

n�e ) that only 38 to 44% of nodes need to be controlled to

guarantee convergence to wild-type. This shows that there is

substantial macro-level canalization in the wild-type attractor

basin; from n�r , we can see that 56 to 62% of nodes are, on average,

redundant to guarantee convergence to wild-type. On the other

hand, macro-level canalization in the form of alternative (or

symmetric) control mechanisms is not very relevant on this

attractor basin, as observed by the low values of ns and n�s : in the

wild-type attractor basin, on average, only approximately 1 out 60

nodes, or 1:6% can permute.

Enput Power and Critical Nodes
Every MC is a schema, and hence comprises a unique set of

enputs, not entirely redescribed by any other MC. As defined in

the micro-level canalization section, an enput e can be literal – a

single node in a specific Boolean state – or a group-invariant

enput: a set of nodes with a symmetry constraint. Every enput e in
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a given MC is essential to ensure convergence to a pattern P, e.g.

an attractor A. Consequently, if the state or constraint of e is

disrupted in the MC, without gaining additional knowledge about

the configuration of the network, we cannot guarantee conver-

gence to P. How critical is e in a set of configurations X redescribed

by an MC set X ’’ – such as the set of MCs that redescribe a basin

of attraction? Since there are usually alternative MCs that

redescribe the possible dynamic trajectories to P, the more e
appears in X ’’, the more critical it is in guaranteeing convergence

to P.

For instance, in the two MCs shown in Equation 10, the enput

e:(nhh~0) is common to both. Therefore, disrupting it, without

gaining additional knowledge about the state of other nodes,

would no longer guarantee convergence to the attractor pattern I1
in the single-cell SPN dynamics. Similarly, for the two-symbol MC

set of the spatial SPN model, shown in Figure 17, enputs

e:(hh2,4~0) and group-invariant enput e:(wg2~1 _ wg4~1)
appear in both MCs. Disrupting them, would no longer guarantee

convergence to wild-type attractor in the spatial SPN dynamics.

Let us quantify the potential disruption of target dynamics by

perturbation of enputs in an MC set. The power of an enput e in a

set of configurations X X 00 : s(x) P, Vx[X , is given by:

(e,X00,P)~
jXej
jXj ð17Þ

where Xe(X is the subset of configurations redescribed by X ’’
that contain enput e: Xe:fx[X : xx00 ^ e[x00g. Thus, this

measure yields the proportion of configurations in X redescribed

by the MCs in which e is an enput; its range is ½0,1�. If an enput

appears in every MC, as in the examples above, then E~1 – in

which case e is said to have full power over X ’’. For the analysis of

the SPN model below when 0:5ƒEv1, e is a high power enput,

when 0vev0:5 it is a low power enput, and when E~0 it is a null

power enput. The larger the power of e, the more its perturbation is

likely to disrupt convergence to the target pattern P. When X is

too large, we estimate ^ – similarly to the canalization measures

discussed in the previous subsection.

We studied the wild-type attractor basin of the spatial SPN

model using the four MC sets of interest: X ’’wt, X ’’min, X ’’bio, and

X ’’noP (see Minimal configurations subsection above) focusing on

the power of literal enputs only. It is also possible to compute the

enput power of group-invariant enputs. For example, the two-

symbol MC x’’1 in Figure 17, has one of its four group-invariant

enputs defined by ci~1 _ CI~1. The power of this enput would

tally those MCs in which this condition holds. Nonetheless, here

we only measure the power of literal enputs and present the study

of the power of group-invariant enputs elsewhere. The enput

power computed for these four sets is depicted in Figure 18, where

the output nodes PH and SMO are omitted because they are

never input variables to any node in the SPN model, and therefore

have null power. For the discussion of these results, it is useful to

compare them to the known initial condition, xini depicted in

Figure 3, and the wild-type attractor, Awt depicted in Figure 4 (a).

Enput power in X ’’wt (see Figure 18A). The enputs with full

power (E~1) are: SLP1,2~0, SLP3,4~1, hh2,4~0 and ptc1~0.

This is not entirely surprising since all of these genes and proteins

are specified as such in both xini and Awt. However, these values

show that these enputs must remain in these states in the entire

(sampled) wild-type basin of attraction. In other words, these

enputs are critical controllers of the dynamics to the wild-type

attractor. Indeed, the wild-type is not robust to changes in these

enputs, which are likely to steer the dynamics to other attractors,

as discussed further in the next section. Therefore, the spatial SPN

model appears to be unable to recover the dynamic trajectory to

the wild-type attractor when either the hedgehog gene is expressed

in cells two and four; or the patched gene is expressed in the

anterior cell, as well when the initial expression pattern of SLP

determined upstream by the pair-rule gene family is disrupted in

any way. There are also enputs with high power to control wild-type

behaviour: wg1,3~WG1,3~0, en1~1, PTC1~0, en2,4~0,

ptc3~1, CI3~0 and CIR3~1. Again, these are the states of

these genes and proteins in the known initial configuration of the

SPN xini, and most of them, except for ptc3~1, CI3~0 and

CIR3~1 correspond to their final states in Awt.

In Figure 18A every node in the SPN – except the omitted

nodes PH and SMO – appear as an enput, in at least one Boolean

state, in many cases with very low values of . Thus, while macro-

level dynamics is significantly canalized (see above), especially by

SLP and the spatial signals for each cell, control of wild-type can

derive from alternative strategies, whereby every node can act as

an enput in some context. Nonetheless, most nodes ultimately do

not observe much power to control wild-type behaviour, thus

interventions to disturb wild-type behaviour are most effective via

the few more powerful controllers (see also next section).

We can also compare the enput power computed for X ’’wt

(Figure 18A), with the two-symbol MCs x’’1 and x’’2 in Figure 17.

These two MCs redescribe a significant portion of the wild-type

attractor basin – 20% of our lower bound count of this basin.

Because they only appear in X ’’wt and not in any of the other MC

sets we studied, the portion of the wild-type attractor basin they

redescribe is unique to Xwt, and can be analysed via x’’1 and x’’2.

Most of the literal enputs specified in x’’1 and x’’2 have high power

in X ’’wt, except for WG2~wg4~CIR1,2,4~1, which are enputs in

these two-symbol MCs that have low power. Conversely, there are

literal enputs with high-power in X ’’wt that are not enputs in these

two-symbol MCs: EN2,4~0 and PTC1~0. A key distinguishing

feature of x’’1 and x’’2 is the expression of CIR across the entire

parasegment as well as of the wingless protein in the second cell,

both of which are different from the trajectory between the known

initial condition of the SPN and the wild-type attractor. Therefore,

x’’1 and x’’2 redescribe a (large) portion of the attractor basin

outside of the more commonly studied dynamical trajectories.

Enput power in X ’’min (see Figure 18B). We found an

unexpected expression of CIR2~1 (now with full power) as well as

wg2~WG2~1 (high power). Other enputs whose expression is in

opposition to both xini and Awt appear with low power: HH2,4~1
and CIR1~1. This again suggests that there is a substantial subset

of the wild-type attractor basin, controlled by these and other

Table 4. Macro-level canalization in the wildcard MC sets
converging to wild-type in the SPN.

MC set n�e n�r n�s

X ’wt 0.4 +0:001 0.6 +0:001 0.016 +0:002

X ’min 0.38 0.62 0

X ’bio 0.43 +0:001 0.57 +0:001 0

X ’noP 0.436 +0:0007 0.564 +0:0007 0

The table lists the relative canalization measures for every set of MCs reported
in the main text. Canalization measures were obtained, for each MC set, from 10

independent samples of 104 configurations, thus j^X j~105 . Values shown refer
to the mean plus 95% confidence intervals for the 10 independent
measurements.
doi:10.1371/journal.pone.0055946.t004
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enputs, distinct from the trajectory that results from the known

(biologically plausible) initial configuration. We can also see that

there is a significant number of nodes that do not play the role of

enput in any MC – nodes with null power, depicted as small grey

circles – as well as many more enputs with full power. X ’’min

redescribes wild-type dynamics with the smallest number (23) of

enputs; this set contains only 32 MCs out of the 1731 in X ’’wt.

However, these are the most macro-canalizing MCs that

guarantee convergence to wild-type. Indeed, because of their

parsimony, they redescribe a very large subset of the wild-type

attractor basin with at least 1.6 times more configurations than

what was previously estimated for this basin (see above).

Therefore, X ’’min provides a solid baseline for the understanding

of control in the wild-type attractor basin. This means that the

genes and proteins with full power in this set are critical controllers

of wild-type behaviour.

Enput power in X ’’bio (see Figure 18C). Because this MC set

only redescribes configurations in the dynamic trajectory from xini

to Awt, the transient dynamics observed in X ’’wt and X ’’min, e.g.

wg2~1 and CIR2~1, disappear. There are, however, other

enputs with full power: wg1,3~WG1,3~0, en2,4~EN2,4~0,

ptc1~PTC1~0. These critical enputs are particularly important

Figure 18. Enput power in the wild-type basin of attraction of the spatial SPN model. Enput power is shown for each of the four sets of
MCs considered in our analysis: (A) X ’’wt, (B) X ’’min, (C) X ’’bio and (D) X ’’noP . A parasegment is represented by four rounded rectangles, one for each
cell, where the anterior cell is at the top, and posterior at the bottom. Since enput power is computed for every node in each of its two possible
states, every cell rectangle has two rows of circles. The bottom row (marked on the sides with a white circle on the outside) corresponds to enput
power of the nodes when off, while the top row is the enput power when the same nodes are on (marked on the sides with a dark circle). Each circle
inside a cell’s rectangle corresponds to the power of a given enput in the corresponding subset of MCs identified by the letters A to D. Full power is
highlighted in red, other values in blue and scaled, while null power is depicted using small grey circles. Full power occurs only for enputs that are
present in every MC (and configurations) of the respective set, whereas null power identifies nodes that are never enputs in any MC – always
irrelevant for the respective dynamical behaviour.
doi:10.1371/journal.pone.0055946.g018

Canalization and Control in Automata Networks

PLOS ONE | www.plosone.org 27 March 2013 | Volume 8 | Issue 3 | e55946



for restricting analysis to a better-known portion of the wild-type

attractor basin, for which the model was especially built.

Enput power in X ’’noP (see Figure 18D). This set of MCs is

useful to understand the beginning of the segment polarity

regulatory dynamics, with no proteins expressed. The set of

critical genes that must be expressed (on) are ptc3 and wg4, which

appear with full power; moreover, en1~hh1~ptc2~ci2~1
appear with high power. As shown in the figure, most other

enputs with full or high power correspond to genes and proteins

that must be inhibited (off), except, of course, SLP3,4 that are

assumed to be always on in the SPN model.

We compared these results with previous work on identifying

critical nodes in the SPN model. Chaves et al. [38] deduced, from

the model’s logic, minimal ‘pre-patterns’ for the initial configura-

tion of the SPN that guarantee convergence to wild-type attractor.

More specifically, two necessary conditions and one sufficient

condition were deduced, which we now contrast with the enput

power analysis.

The first necessary condition for convergence to the wild-

type attractor is: ptc3~1, assuming that all proteins are

unexpressed (off ) initially, and the sloppy pair gene rule is

maintained constant (i.e. SLP1,2~0 ^ SLP3,4~1.) Of the MC sets

we analysed, only X ’’noP obeys the (biologically plausible)

assumptions for this necessary condition. As we can see in

Figure 18D, the enput ptc3~1 has full power on this MC set,

which confirms this previous theoretical result. However, since

every enput with full power is a necessary condition for the set of

configurations described by its MC set, we can derive other

necessary conditions for this set of configurations (with the same

assumptions), such as ptc1~0, wg3~0, or wg4~1 (see below). We

can also see that not all assumptions for the first necessary

condition are necessary; while the sloppy pair rule appears as four

enputs with full power, not all proteins are required to be

unexpressed: the expression of HH is irrelevant in every cell of the

parasegment, as is the expression of PTC2,3, WG2,4, CIA4, and

CIR1,2,3. Moreover, the enput power analysis allows us to identify

‘degrees of necessity’; some enputs may not be necessary, but

almost always necessary. This is the case of the expression of en1,

which has high power in X ’’noP, but is not a necessary condition as

a few MCs can guarantee convergence to wild-type with en1~0
(which also appears as enput with low power). Naturally, if we

relax the assumptions for condition ptc3~1, it may no longer be a

necessary condition. This can be see when we look at the enput

power analysis of the entire (sampled) wild-type basin X ’’wt

(Figure 18A) or the smaller X ’’bio (Figure 18C). In these cases,

which still preserve the sloppy pair rule assumption, ptc3~1 is no

longer an enput with full power. This means that, according to this

model, if some proteins are expressed initially, ptc3~1 is no longer

a necessary condition. Interestingly, we found that in the most

macro-canalizing subset of the attractor basin, X ’’min (Figure 18B)

– which assumes the sloppy pair rule constraint but is not

constrained to initially unexpressed proteins – ptc3~1 does

appear as an enput with full power again. This means that in the

most parsimonious means to control convergence to wild-type

attractor, ptc3~1 is a necessary condition too. It is noteworthy

that in this case, not only can some proteins be expressed, but the

expression of CIR2 is also a necessary condition (enput with full

power).

The second necessary condition for convergence to the

wild-type attractor is: wg4~1 _ en1~1 _ ci4~1, assuming that all

proteins are unexpressed (off) initially, and the sloppy pair gene

rule is maintained constant (i.e. SLP1,2~0 ^ SLP3,4~1) [38].

Again, only X ’’noP obeys the (biologically likely) assumptions for

this necessary condition. As we can see in Figure 18D, the enput

wg4~1 has full power, therefore it is a necessary condition.

However, the enput en1~1 has high power, and the enput ci4~1
has no power. This means that they are not necessary, though

en1~1 is most often needed. These results suggest that this

necessary condition could be shortened to wg4~1, because in our

sampling of the wild-type attractor basin, in the subset meeting the

assumptions of the condition, we did not find a single configura-

tion where wg4~0. Even though our stochastic search was very

large, it is possible that there may be configurations, with no

proteins expressed, where wg4~0 ^ (en1~1 _ ci4~1), thus

maintaining the original necessary condition. However, our enput

power analysis gives a more realistic and nuanced picture of

control in the SPN model under the same assumptions. While the

necessary condition may be wg4~1 _ en1~1 _ ci4~1, the

individual enputs have strikingly different power in controlling

for wild-type behaviour: ci4~1 was never needed (no power),

en1~1 has high power, and wg4~1 has full power. Naturally, if

we relax the assumptions for this condition, it may no longer be a

necessary condition. For instance, if we allow proteins to be

expressed initially (still preserving the sloppy pair constraint), we

can find MCs that redescribe configurations where

wg4~en1~ci4~0. We found 171 MCs in X ’’wt (available in data

S14 where this condition is not necessary, one of them depicted in

Figure 19.

The sufficient condition for convergence to the wild-type

attractor is: wg4~1 ^ ptc3~1, assuming that the sloppy pair

gene rule is maintained constant (i.e. SLP1,2~0 ^ SLP3,4~1). A

variation of this sufficient condition assumes instead (maintaining

the sloppy pair gene rule): wg4~1 ^ PTC3~1 In their analysis,

Chaves et al. [38] assume that all proteins are unexpressed and

that many other genes are initially inhibited (off ). Even though in

Chaves et al. [38] the initial condition itself only requires

ptc1~ci1,3~0, the argument hinges on propositions and facts

that require knowing the state of additional genes such as

en2~wg3~hh2,4~0. While Chaves et al. [38] concluded rightly

from this minimal pre-pattern, that convergence to the wild-type

pattern has a remarkable error correcting ability to expression

delays in all other genes, the condition does not really describe

robustness to premature expression of genes and proteins. It is

interesting to investigate sufficient conditions that do require the

states of most variables to be specified, giving us the ability to study

robustness to both delays and premature expression of chemical

species. The MC schemata we obtained with our macro-level

analysis allows us to investigate such sufficient conditions directly.

We searched the entire MC set X ’’wt to retrieve the MCs with

the fewest number of enputs specified as on. The 10 MCs (available

in S11) we retrieved contain only 26 literal enputs, where in six

MCs the two nodes in the sufficient condition above (wg4,ptc3),

plus the nodes from the sloppy pair rule (SLP3,4) are on, 24 are off

and the remaining 32 are wildcards, and thus irrelevant. In the

remaining MCs, instead of ptc3~1, we found PTC3~1 to be an

enput. In those MCs ptc3~#. Converting all wildcards to off in

one of these MCs, confirms the sufficient condition, as can be seen

from Figure 20A, where SLP3,4~wg4~ptc3~1, and everything

else is off. This can be seen as an ‘extreme’ condition to wild-type

attractor, with a minimum set of genes expressed. We also

searched for the opposite extreme scenario, retrieving all MCs

with the largest number of on nodes, that still converges to the

wild-type pattern (available in data S12. By replacing all wildcards

in such MCs to on, we obtained the configuration in which only 16

nodes must be inhibited (off ), while the remaining 44 are

expressed (on), depicted in Figure 20B. Interestingly, in this

extreme configuration, hh must remain off across the whole

parasegment.
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Robustness to Enput Disruption
The power measure introduced in the previous subsection

allows us to predict critical nodes in controlling network dynamics

to a pattern of interest P. A natural next step is to investigate what

happens when the critical controllers are actually disrupted. We

can disrupt an enput e in an MC set with a variety of dynamic

regimes. Here, we adopt the approach proposed by Helikar et al.

[64], where a node of interest flips its state at time t with a

probability f, which can be seen to represent noise in regulatory

and signalling events, as well as the ‘concentration’ of a gene (its

corresponding mRNA) or protein – thus making it possible to use

Boolean networks to study continuous changes in concentration of

biochemical systems (see [64]).

We start from an initial set of configurations of interest: X 0.

This can be a single configuration, such as the known initial

configuration of the SPN X 0:fxinig (as in Figure 3A), where the

enput e is in a specific (Boolean) value. Next, we set the value of

noise parameter f, which is the probability that e momentarily flips

from its state in X 0 at time t. This noise is applied at every time

step of the simulated dynamics; when a state-flip occurs at time t,
the node returns to its original state at tz1 when noise with

probability f occurs again. Noise is applied to e from t~0 to t~m.

At time step t~mz1 no more noise is applied to e (f~0) and the

network is allowed to converge to an attractor. This process is

repeated for M trials. Finally, we record the proportions of the M
trials that converged to different attractors.

Since in this paper we only computed enput power for literal

enputs (see previous subsection), we also only study literal enput

disruption. It is straightforward to disrupt group-invariant enputs;

for instance, the group-invariant enput defined by ci~1_ CI ~1
from the two-symbol MC x’’1 in Figure 17, can be perturbed by

making ci~0^ CI ~0. Nonetheless, for simplicity, we present the

study of the disruption of group-invariant enputs elsewhere.

The enput power analysis in the previous subsection, revealed

that in the wild-type attractor basin (Xwt) of the spatial SPN model

there are the following critical nodes (or key controllers): across the

parasegment, SLP proteins must be inhibited in cells 1 and 2

(SLP1,2~0) and expressed in cells 3 and 4 (SLP3,4~1), as

determined by the pair-rule gene family; hedgehog genes (spatial

signals) in cells 2 and 4 must be inhibited (hh2,4~0); the patched

gene in the anterior cell must also be inhibited (ptc1~0). With the

stochastic intervention procedure just described, we seek to answer two

questions about these key controllers: (1) how sensitive are they to

varying degrees of stochastic noise? and (2) which and how many

other attractors become reachable when they are disrupted? In

addition to the seven full power enputs, for comparison purposes,

we also test the low power enput CI4~0. In the original SPN

model the states of SLP1,2,3,4 are fixed (the sloppy gene

constraints). Because these naturally become enputs with full

power (see Figure 18), it is relevant to include them in this study of

enput disruption. However, by relaxing the fixed-state constraint

on SLP1,2,3,4, by inducing stochastic noise, the dynamical

landscape of the spatial SPN model is enlarged from 256 to 260

configurations. This means that more attractors than the ten

identified for the SPN Boolean model (depicted in Figure 4) are

possible, and indeed found as explained below.

We used X 0:fxinig as the initial state of the networks analysed

via stochastic interventions, because of its biological relevance.

The simulations where performed with the following parameters:

f[½0:05,0:95�, swept with D(f)~0:05, plus extremum values

f~0:02 and f~0:98; m~500 steps; M~104. The simulation

results are shown in Figure 21.

The first striking result is that disruption of SLP1~0 makes it

possible to drive the dynamics away from wild-type into one of five

other attractors (one of which a variant of wild-type). For fw0:15
no further convergence to wild-type is observed, and at f~0:05
the proportion of trials that converged to wild-type was already

very small. We also found phase transitions associated with the

values of f. For fƒ0:15 most trials converged to wild-type, wild-

type (ptc mutant), broad-stripes or no-segmentation, and a very

small proportion to two variants of the ectopic mutant. When

f~0:15 the proportion of trials converging to broad-stripes

reaches its peak, and decreases, so that no trial converged to this

mutant expression pattern for f§0:55. Finally, for f§0:55
convergence to the ectopic variants reaches its peak and decreases

steadily but does not disappear, while convergence to the no-

segmentation mutant increases becoming almost 100% when

f~0:98. We thus conclude that SLP1~0 is a wild-type attractor

enput which is very sensitive to noise.

In the case of SLP3~1, we observed convergence to an

attractor that is not any of the original ten attractors –

characterized by having two engrailed bands in cells 1 and 3

(see Data S5). The proportion of trials converging to wild-type and

to the new attractor decrease and increase respectively, reaching

similar proportions when f~0:5. When f~0:98, almost every

trial converged to the new attractor. We conclude that SLP3~1 is

a wild-type attractor enput whose robustness is proportional to

noise.

Disruption of SLP4~1 resulted in a behaviour similar to SLP1,

but with fewer possible attractors reached. As f is increased, fewer

trials converge to wild-type and growing proportions of trials

converge to the wild-type ptc mutant pattern (reaching a peak at

f~0:5) and the no-segmentation mutant. For more extreme values

of f, the majority of trials converged to the no-segmentation

mutant. However, an important difference with respect to SLP1

was observed: for fƒ0:5 the majority of trials converged to wild-

type, and convergence to this attractor is observed for the whole

range of f. Thus the wild-type phenotype in the SPN model is

much more robust to perturbations to the expression of SLP in the

posterior cell (SLP4~1), than to perturbations to its inhibition in

the anterior cell (SLP1~0).

With the parameters chosen, the disruption of SLP2~0 leads to

a remarkable similar behaviour: any disruption (any amount of

noise) leads to the same wild-type variant attractor pattern with

two wingless stripes (c). Therefore, SLP2~0 is not robust at all –

though the resulting attractor is always the same and a variant of

wild-type. In this case, convergence to a single attractor for all

values of f is the result of setting m~500 in our experiments.

When we lower the value of m enough in our simulations, for low

values of f, there are trials that are not perturbed and thus

maintain convergence to the wild-type attractor. But any

Figure 19. A MC not requiring wg4~1 _ en1~1 _ ci4~1 in wild-
type attractor basin. When proteins are allowed to be expressed
initially, the second necessary condition, reported in [38], ceases to be a
necessary condition, as discussed in the main text; in the MC shown,
wg4, en1 and ci4 can be in any state and the network still converges to
the wild-type attractor.
doi:10.1371/journal.pone.0055946.g019
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perturbation of SLP2~0 that occurs leads the dynamics to the

wild-type variant.

Disruption of hh2,4~0 increasingly drives dynamics to the

broad-stripes mutant. However, disruption of hh2 reveals greater

robustness since a large number of trials still converges to wild-type

for fƒ0:15, and residual convergence to wild-type is observed up

to f~0:75. In contrast, any disruption of hh4 above f~0:05 leads

to the broad-stripes mutant, and even very small amounts of

disruption lead to a large proportion of mutants. Similarly,

disruption of e:ptc1~0 drives the dynamics to one – and the

same – of the wild-type variants. Yet, when f~0:02 there is a

minute proportion of trajectories that still converge to the wild-

type attractor. Therefore, as expected, the wild-type attractor in

the SPN model is not very robust to disruptions of the enputs with

full power. Finally, and in contrast, no disruption of low-power

enput CI4~0 is capable of altering convergence to the wild-type

attractor.

Discussion

We introduced wildcard and two-symbol redescription as a

means to characterize the control logic of the automata used to

Figure 20. ‘Extreme’ configurations converging to wild-type in the SPN model. (A) A configuration with the minimal number of nodes
expressed that converges to wild-type, and its corresponding MC: 32 nodes are irrelevant, 24 must be unexpressed (off), and only 4 must be
expressed (on). (B) The opposite extreme condition where 16 genes and proteins are unexpressed and all other 44 are expressed.
doi:10.1371/journal.pone.0055946.g020
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model networks of biochemical regulation and signalling. We do

this by generalizing the concept of canalization, which becomes

synonymous with redundancy in the logic of automata. The two-

symbol schemata we propose capture two forms of logical

redundancy, and therefore of canalization: input redundancy

and symmetry. This allowed us to provide a straightforward way

to quantify canalization of individual automata (micro-level), and to

integrate the entire canalizing logic of an automata network into

the Dynamics Canalization Map (DCM). A great merit of the

DCM is that it allows us to make inferences about collective

(macro-level) dynamics of networks from the micro-level canaliz-

ing logic of individual automata – with incomplete information.

This is important because even medium-sized automata models of

biochemical regulation lead to dynamical landscapes that are too

large to compute. In contrast, the DCM scales linearly with

number of automata – and schema redescription, based on

computation of prime implicants – is easy to compute for

individual automata with the number of inputs typically used in

the literature.

With this methodology, we are thus providing a method to link

micro- to macro-level dynamics – a crux of complexity. Indeed, in

this paper we showed how to uncover dynamical modularity: separable

building blocks of macro-level dynamics. This an entirely distinct

concept from community structure in networks, and allows us to

study complex networks with node dynamics – rather than just their

connectivity structure. The identification of such modules in the

dynamics of networks is entirely novel and provides insight as to

how the collective dynamics of biochemical networks uses these

building blocks to produce its phenotypic behaviour – towards the

goal of explaining how biochemical networks ‘compute’.

By basing our methodology on the redescription of individual

automata (micro-level), we also avoid the scaling problems faced

by previous schemata approaches which focused solely on

redescription of the dynamical landscape (macro-level) of networks

[52]. By implementing the DCM as a threshold network, we show

that we can compute the dynamical behaviour of the original

automata network from information about the state of just a few

network nodes (partial information). In its original formulation, the

dynamic unfolding of an automata network cannot be computed

unless an initial state of all its nodes is specified. In turn, this allows

us to search for minimal conditions (MCs) that guarantee

convergence to an attractor of interest. Not only are MCs

important to understand how to control complex network dynamics,

but they also allow us to quantify macro-level canalization therein.

From this, we get a measurable understanding of the robustness of

attractors of interest – the greater the canalization, the greater the

robustness to random perturbations – and, conversely, the

identification of critical node-states (enputs) in the network dynamics

to those attractors. We provided a measure of the capacity of these

critical nodes to control convergence to an attractor of interest

(enput power), and studied their robustness to disruptions. By

quantifying the ability of individual nodes to control attractor

behaviour, we can obtain a testable understanding of macro-level

canalization in the analysed biochemical network. Indeed, we can

uncover how robust phenotypic traits are (e.g. robustness of the

wild-type attractor), and which critical nodes must be acted upon

in order to disrupt phenotypic behaviour.

We exemplified our methodology with the well-known segment

polarity network model (in both the single-cell and the spatial

versions). Because this model has been extensively studied, we use it

to show that our analysis does not contradict any previous findings.

However, our analysis also allowed us to gain new knowledge about

its behaviour. From a better understanding of the size of its wild-

type attractor basin (larger than previously thought) to uncovering

new minimal conditions and critical nodes that control wild-type

behaviour. We also fully quantified micro- and macro-level

canalization in the model, and provided a complete map of its

canalization logic including dynamical modularity. Naturally, our

results pertain to this model; we do not claim that our results

characterize the real Drosophila segment polarity gene network.

However, our results, should they be found to deviate from

organism studies, can certainly be used to improve the current

model, and thus improve our understanding of Drosophila

development. Thus a key use of our methodology in systems

biology should be to help improve modelling accuracy. With the

methodology now tested on this model, in subsequent work we will

apply it to several automata network models of biochemical

regulation and signalling available in the systems biology literature.

The pathway modules we derived by inspection of the DCM for

the segment polarity network revealed a number of properties of

complex networks dynamics that deserve further study. For

instance, the dynamical sequence that occurs once each such

module is activated is independent of the temporal update scheme

utilized. Therefore, if the dynamics of a network is captured

exclusively by such modules, its intra-module behaviour will be

similar for both synchronous and asynchronous updating –

denoting a particular form of robustness to timing. We will

explore this property in future work, but as we showed here, the

dynamics of the single-cell version of the SPN model is very

(though not fully) controlled by only two pathway modules. This

explains why its dynamical behaviour is quite robust to timing

events as previously reported [38].

Research in cellular processes has provided a huge amount of

genomic, proteomic, and metabolomics data used to characterize

networks of biochemical reactions. All this information opens the

possibility of understanding complex regulation of intra- and inter-

cellular processes in time and space. However, this possibility is not

yet realized because we do not understand the dynamical

constraints that arise at the phenome (macro-) level from micro-

level interactions. One essential step towards reaching these

ambitious goals is to identify and understand the loci of control in

the dynamics of complex networks that make up living cells.

Towards this goal, we developed the new methodology presented

in this paper. Our methodology is applicable to any complex

network that can be modelled using binary state automata – and

easily extensible to multiple-state automata. We currently focus

only on biochemical regulation with the goal of understanding the

possible mechanisms of collective information processing that may

be at work in orchestrating cellular activity.
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