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ABSTRACT

Problem: In the study of conflicts, both economists and evolutionary biologists use the
concepts ‘tragedy of the commons’ and ‘public goods dilemma’. What is the relationship
between the economist and evolutionist views of these concepts?

Model features: The economics literature defines the tragedy of the commons and the public
goods dilemma in terms of rivalry and excludability of the good. In contrast, evolutionists
define these conflicts based on fitness functions with two components: individual and group
components of fitness.

Mathematical method: Evolutionary game theory and the calculation of evolutionarily stable
strategy trait values by standard optimization techniques and by replacing slopes of group
phenotype on individual genotype by coefficients of relatedness.

Conclusion: There is a direct relationship between rivalry and the individual component of
fitness and between excludability and the group component of fitness. Moreover, although the
prisoner’s dilemma constitutes a suitable metaphor to analyse both the public goods dilemma
and the tragedy of the commons, it gives the false idea that the two conflicts are symmetric since
they refer to situations in which individuals consume a common resource – tragedy of the
commons – or contribute to a collective action or common good – public goods dilemma.
However, the two situations are clearly not symmetric: from the economical point of view they
differ by rivalry, and from the evolutionary biology point of view the two conflicts differ by the
significance of the within-group competition in the fitness function.

Keywords: collective action, excludability, prisoner’s dilemma, public goods dilemma, rivalry,
tragedy of the commons.

INTRODUCTION

Competition and cooperation between humans or other living beings is a major issue in
several disciplines, including evolutionary biology, economics, psychology and political
science. Two types of conflicts often arise in economics and evolutionary biology. In one of
these conflicts, there is a resource open to all – the commons – where no-one has property
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rights or control over the resource. Each individual intensifies exploitation because
he receives a direct profit from this. Yet, each individual bears only a share of the costs
resulting from over-exploitation of the common good. However, if an individual refrains
from over-exploiting the ‘commons’, he is still doomed to pay his share of the costs due to
the over-exploitation activities of the other members of the group. Therefore, there is no
direct advantage to be gained from refraining from over-exploitation and the best strategy
would be to continue over-exploitation of the commons. So the resource is fated to become
extinct. This is called the ‘tragedy of the commons’ (Hardin, 1968; Ostrom 1990; Ostrom et al., 1994) or,
more correctly, the tragedy of the unmanaged commons (Hardin, 1994). In a second type of
conflict – the public goods dilemma – each self-interested individual in a group is supposed
to act to achieve their common or group interest. If a single individual does not contribute
to the common interest, that interest will most probably be accomplished anyway. There-
fore, each individual is compelled not to cooperate: he does not pay the individual cost of
cooperating but receives his share of the benefit (Olson, 1965; Hardin, 1997).

In economical sciences, these conflicts are often analysed by focusing on the properties
of the goods for which the individuals compete, namely on the diminishability and
excludability of the good (see next section) (Mankiw, 2000). Evolutionary biologists, on the
other hand, have studied conflicts according to the interactions within and between groups
(Frank, 1992; Day and Taylor, 1998; Brown, 1999; Haig and Wilkins, 2000). Using this method, for example,
evolutionists have modelled the evolution of virulence in two different ways, resulting in two
opposing dependences of virulence on relatedness (Frank, 1992; Brown, 1999; but see Gardner et al., 2004).
In the tragedy of the commons model, the conclusion is that the higher the relatedness
of parasites, the lower is the virulence. In contrast, in the public goods model, the higher
the relatedness, the higher is the contribution of each parasite to host manipulation.
We will show how this disparity can be explained in terms of excludability and
diminishability.

A common method of analysing conflicts in the field of economics is game theory, and
in the field of evolutionary biology is evolutionary game theory. In game theory, the
advantages and disadvantages (payoffs) in cooperating or competing with other individuals
usually involves money and the choice of a strategy is supposed to be rational (Osborne and

Rubinstein, 1994; Davis, 1997). In evolutionary game theory, the payoffs represent fitness changes
caused by the interaction between individuals and the strategies are hereditary (Maynard Smith

and Price, 1973; Maynard Smith, 1982). In this paper, we wish to generalize existing models for the
tragedy of the commons and the public goods dilemma after identifying critical concepts in
both fields.

The structure of the rest of this paper is as follows. First, we review the concepts of the
tragedy of the commons and public goods dilemma in economical sciences by analysing the
goods according to their excludability and rivalry. Second, we review the same two concepts
in evolutionary biology by analysing the individual and the group components of fitness.
Third, we generalize the evolutionary models to show that, when excludability of a resource
is not possible, the best evolutionarily stable strategy is: (1) to engage in a strategy of high
competitiveness when the good is diminishable; or (2) to lower competitiveness when the
good is not diminishable – that is, when there is no rivalry. Fourth, when excludability from
a public good is impossible, the best evolutionarily stable strategy is: (1) to contribute to that
common good when the good is not diminishable; or (2) not contribute to the public good
when the good is diminishable. At the end of the paper we show, with two simple examples,
how these concepts can be applied to evolutionary biology.
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TRAGEDY OF THE COMMONS AND PUBLIC GOODS
DILEMMA IN ECONOMICS

In economical sciences, goods are classified according to two characteristics (Mankiw, 2000):

1. Is the good excludable? That is, is the exclusion of beneficiaries possible, or is it too
costly?

2. Is the good diminishable? If the good is diminishable, it means that one person’s use
diminishes its use by others and so there is rivalry between users.

When studying conflicts, the most interesting case arises when the good is non-excludable
(irrespective of whether it is diminishable or not). The reason is that, whenever a good is
non-excludable, any individual in a group can profit from it, thus creating the ‘free-rider
problem’: all individuals can use the good, even when not contributing to it. Both the
tragedy of the commons (Hardin, 1968; Ostrom, 1990) and the public goods dilemma (Olson, 1965;

Hardin, 1997) describe conflicts in which goods are not excludable, but in the tragedy of the
commons goods are diminishable – implying that individuals are rivals, while in the public
goods dilemma individuals are not rivals (Table 1).

Examples of excludable goods are toothbrushes and cable television. Goods such as
toothbrushes are diminishable since, once used by someone, no-one else can use them. The
cable television signal is not diminishable. Examples of non-excludable goods are the fish in
the sea and national defence: in principle, everyone can fish in the sea and every citizen can
profit from national defence (even if not paying taxes). Fish are non-excludable and dimin-
ishable, while national defence is non-diminishable (see Table 1).

TRAGEDY OF THE COMMONS AND PUBLIC GOODS
DILEMMA IN EVOLUTIONARY BIOLOGY

In evolutionary biology, conflicts have been studied by explicitly analysing interactions
within and between groups of individuals – that is, the individual success within a group
and group success in competition with other groups (Frank, 1992, 1995, 1996; Brown, 1999, 2001; Haig and

Wilkins, 2000; Brown and Johnstone, 2001; Gersani et al., 2001; Foster, 2004; Wenseleers and Ratnieks, 2004).

Table 1. Types of goods classified according to their excludability and rivalry
(adapted from Mankiw, 2000)

Rival?

Yes No

Yes – Toothbrush – Cable television
– Congested toll roads – Uncongested toll roads

No – Fish in the sea – National defenceE
xc

lu
da

bl
e?

– Congested non-toll roads – Uncongested non-toll roads
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Tragedy of the commons in evolutionary biology

Consider, for example, a bacterial cell infected by several copies of a virus. These viruses
face two different selection pressures. First, viruses compete for resources within the
bacterial cell to replicate themselves; the success of this strategy for a given virus is high
when its competitiveness is higher than the mean competitiveness of all the viruses
infecting that specific bacterial cell. The second selection pressure is competition among
viruses emanating from different bacteria: assuming that viruses with high competitive-
ness within bacteria kill their hosts faster, the number of viruses emanating from an
infected cell is lower for higher values of competitiveness. Therefore, within a cell, the
best strategy for a virus is to compete for resources as best it can, but that may result in
a fast cell death, hence in a smaller total progeny in comparison with other bacterial
cells where the mean competitiveness of infecting viruses was lower. This dilemma is an
example of the tragedy of the commons in biology: a particular virus competing more
than the others in the same cell increases its direct progeny and the cost is shared by all
the co-infecting viruses.

Frank (1998) modelled the tragedy of the commons in terms of competition within and
between groups as explained above (for a general discussion, see Frank, 1998). He assumed that
resources are limiting within groups and that the most competitive individuals gain a dis-
proportionate share of the local resources. If we call zij the competitiveness of the jth
individual in a given group i, its individual success within the group can be described simply
as, zij/zi, where zi is the mean value of competitiveness of all individuals in group i [see also
the ratios that appear in equations 2–4 of Haig and Wilkins (2000) or equation 2 of Day and
Taylor (1998)].

However, if zi is very high, the group’s overall efficiency in using its local resources
is lowered. As a consequence, it lowers the average success of the group members (in
competition with other groups). Therefore, Frank assumed the between-group component
of the fitness to be (1 − zi). These two factors (competition within and between groups)
determine the fitness of each individual j in each ith group, ωij:

ωij =
zij

zi

(1 − zi) (1)

This minimal model captures the essential tension between individual and group success,
but, of course, more complex mathematical expressions could be used. Later, the same
author introduced a cost term associated with each individual due to its investment in the
competitive trait. Therefore, equation (1) was modified to include a term expressing the
individual cost, q, of allocation to competitive traits:

ωij =
zij

zi

(1 − qzij)(1 − zi) (2)

This mathematical expression synthesizes a typical common-pool resource problem, that of
the tragedy of the commons, where individual gains lead to group losses.

If we are interested in the total competitiveness of each group, and not only in its mean
value, then we may prefer to consider the model:

ωij =
zij

zi

(1 − qzij)(1 − anzi) (3)
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where n is the total number of individuals in each group and nzi is the total competitiveness
of group i. The term anzi represents the net disadvantage to each ij individual due to
competition with the other individuals in the same group, where a > 0 is a parameter that
describes how this disadvantage affects each individual.

Public goods dilemma in evolutionary biology

Following the arguments of Brown (1999), let us consider the evolution of host manipulation
by parasites. A group of parasites manipulating their host can be viewed as performing a
collective action. The between-group fitness component is ‘an increasing function of total
manipulation, reflecting the benefit of manipulation to the parasite group’ (Brown, 1999).
If we call sij the contribution of the jth individual in a given group i, and si the average
contribution of the individuals of the ith group, then the between-group fitness component
can be described simply as (1 + βnsi), where n is the number of individuals in group i and β
is a positive parameter that describes how the group effort nsi is retuned to each individual.
Here, the fitness of each individual when there is no collective action is set to unity. As in
the previous model, there is also an individual component of the fitness expressing the
individual cost in performing the altruistic act (1 − ksij). Therefore, the fitness of each
individual j in group i is given by:

ωij = (1 − ksij)(1 + βnsi) (4)

Equation (4) assumes that the fitness of a non-contributing individual in a group of
non-contributing individuals is one. However, in some circumstances an individual cannot
survive if no individual contributes to the public good. In that case, expressions such as
ωij = (1 − ksij)si or similar should be used [see, for example, West and Buckling (2003), where
the authors defined individual fitness as ωij = (1 − sij)si

b, where b is a parameter].

GENERALIZED MODELS

Now, let us generalize Frank’s and Brown’s model and analyse the resulting equations
using the notions of rivalry and excludability of goods.

A common-pool resources model

As explained above, users of a common-pool resource often proceed to over-exploit that
resource when excludability is difficult or impossible and when there is maximal rivalry.
Here we proceed with the construction of a model for the consumption of a common-pool
resource and then analyse the rivalry and excludability terms to reveal the situation of a
tragedy of the commons.

The expression zij/zi in equation (3) can be interpreted as a ‘rivalry’ term. The reasoning
is as follows. This term means that the success of individual ij is high if the value of its
competitiveness, zij, is higher than the mean competitiveness of group i, zi. Therefore, if
another individual, k, in the same group has its competitiveness increased – hence increas-
ing the mean value of competitiveness in group i, zi – it has the effect of decreasing the
individual component of the fitness of individual ij. In other words, this means that com-
petitiveness is a diminishable trait.
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One can modulate rivalry by considering the following expression:

(1 − f )(1) + ( f )�zij

zi
�

or simply:

1 − f + f
zij

zi

In this model, 0 ≤ f ≤ 1. If f = 0, individuals are not rivals (within each group); if f = 1,
rivalry is maximal. So, a generalized expression for the fitness of each individual in this
context is:

ωij = �1 − f + f
zij

zi
� · (1 − qzij)(1 − zi)

The expression 1 − f + fzij/zi is just one of the infinitely possible expressions involving
one sole parameter (in this case, f ). Other expressions are also possible (see the
Appendix).

In the same way as we modulated rivalry, we can also modulate excludability. We
argue that the term (1 − zi) is the maximum state of non-excludability of damage by the
group. The group’s competitiveness, zi, affects the entire group – that is, all the individuals
within a group share the resulting damage. A possible expression modulating excludability
is:

[1 − gzij − (1 − g)zi ]

where 0 ≤ g ≤ 1. Here, a proportion g of the damage is caused by the individual ij himself,
and a proportion (1 − g) is caused by the average damage of all the members of group i.
If g = 1, we have total excludability and this expression simplifies to [1 − zij ] − here, the
decrease in fitness of the individual ij is caused solely by the ij individual. If g = 0, the
expression becomes [1 − zi] and excludability is minimized.

Putting all these expressions together, the complete expression for studying the
common-pool resources problem is:

ωij = �1 − f + f
zij

zi
� · (1 − qzij)[1 − gzij − (1 − g)zi] (5)

A model of the contribution to a common good or collective action

Contributors to a common good or a collective action may tend to refrain from contribu-
ting, but maintain the profit. Here, each refraining individual does not suffer the respective
cost; however, if all the individuals do the same, the common good becomes scarce, and
the community faces a dilemma, the public goods dilemma (Olson, 1965; Hardin, 1997). This may
occur when excludability is difficult (as in the tragedy of the commons) but when there is no
rivalry (unlike the tragedy of the commons). Now we proceed with the construction of a
model for the contribution to a common good (or collective action) and then analyse the
rivalry and excludability terms to reveal the situation of a public goods dilemma.
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According to the arguments previously used to generalize a fitness function for the
common-pool resource, let us consider the following function when individuals contribute
to a common good or to a collective action:

ωij = �1 − φ + φ
si

sij
�(1 − ksij)[1 + β(γsij + (1 − γ)nsi)] (6)

(there are many other possibilities; see the Appendix). The parameter φ appears in this
equation (like f in equation 5) to modulate rivalry. In many biologically relevant situations,
φ = 0, which means that there is no rivalry in altruistic acts. There are contexts, however, in
which there is an advantage in contributing less than the others within the group. For
example, during a fight, so long as there are enough cohorts contributing to group defence,
an individual possesses an advantage in fighting less than the others; then, at the end of this
fight, this individual may be in a better condition to reproduce than cohorts.

In equation (6), γ plays a similar role to g in equation (5): modulation of excludability.
If there is no excludability, then γ → 0 and we obtain the term [1 + βnsi]; if excludability
is maximized, the term becomes [1 + βsij ].

In the model of host manipulation described in equation (4), Brown (1999) assumed that
altruistic parasites do not have any competitive disadvantage over non-altruistic group
members other than the individual cost for manipulation (the altruistic act). In other words,
if a few parasites do not contribute to the collective effort of host manipulation, that is
not disadvantageous for contributors because the host is manipulated anyway. Therefore,
the implicit assumption is that this common good (manipulation of the host) is
non-diminishable (host manipulation benefits all parasites, including those that do not
contribute to manipulation), which implies that φ is close to zero. If, in addition, there is no
excludability, then γ is close to zero and we get a pure public goods dilemma – so we can
obtain equation (4) from (6) in this limit.

The generalized equations (5) and (6) show that we do not need to assume that goods
are either excludable or non-excludable; the same applies to rivalry. That is, in addition to
extreme cases, we should also consider intermediate ones. For example, there is continuity
between congested and uncongested roads; similarly, tolls can be within zero (non-toll
roads) and its effective cost (toll roads).

One can find the equilibrium values of equation (5) by maximizing fitness, ωij, with
respect to variants in zij (Maynard Smith, 1982; Taylor and Frank, 1996). The ‘unbeatable’ (Verner, 1965;

Hamilton, 1967) or evolutionarily stable strategy (Maynard Smith, 1982), z*, can be found by
derivation of the model appearing in (5):

dωij

dzij

�
�

zij = zi = z*

=
∂ωij

∂zij

+
∂ωij

∂zi

dzi

dzij

and making these derivatives equal to zero at zij = zi = z*. This is done by taking into
account the interactions between kin units (Taylor and Frank, 1996): assuming weak selection and
additive gene action (additive dependence of phenotype on genotype), the slope of group
genotype on individual genotype (dzi /dzij) can be replaced by the kin selection coefficient, r.

To find the equilibrium value for s (equation 6), s*, we can use the same method. For
both equations (5) and (6) there are two equilibrium solutions but only one of them is
biologically relevant. Competitiveness, z*, decreases with relatedness, while s* increases
with relatedness (see Table 2).
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In Table 2 we show the expressions of z* and s* corresponding to the extreme situations
presented in Table 1. That is, Table 2 shows the expressions for competitiveness and levels
of cooperation when rivalry is either close to one or close to zero or when excludability is
possible (g and γ equal to zero) or not possible (g and γ equal to one). As expected, z* is null
when there is no rivalry ( f and φ close to zero) and s* is null when rivalry is maximized
( f and φ close to zero).

Figure 1 shows the values of z* and of fitness for different values of rivalry and exclud-
ability. Figure 2 shows the values of s* and of fitness for the same values of rivalry and
excludability used in Fig. 1.

Examples of the tragedy of the commons and the public goods
dilemma in the evolution of virulence

Both the evolutionary biology version of the tragedy of the commons (Frank, 1992) and that
of the public goods dilemma (Brown, 1999) emerged in studies of the evolution of virulence of
parasites towards their hosts. In the tragedy of the commons model, the conclusion is that
the higher the relatedness of parasites, the lower is the virulence (indeed, we can see that
z* → 0 when r is high). In contrast, in Brown’s model, the higher the relatedness, the
higher is the contribution of each parasite to host manipulation. By reasoning in terms
of rivalry and excludability of goods, we can see why Frank’s and Brown’s conclusions
are different: Frank considered the case in which parasites co-infect a host; the host
constitutes a diminishable and non-excludable resource ( f → 1 and g → 0, respectively, in
equation 5).

In the logic of collective action, Brown (1999) considered the effort made by some parasites
to manipulate their hosts. Brown gave the example of quorum sensing in which bacteria can

Table 2. Competitiveness (z*) and contributions to the group (s*) in extreme situations of rivalry and
excludability

Rival?

Yes
( f, � → 1)

No
( f, � → 0)

Yes
(g, � → 1) z* =

(2 − r)(1 + q) − √(2 − r)2(1 + q)2 − 4(1 − r)(3 − r)q

2q(3 − r)
z* = 0

s* = 0 s* =
β − k

2βk

No
(g, � → 0)  z* =

1 + q(2 − r) − √(1 + q(2 − r))2 − 8q(1 − r)

4q
z* = 0

E
xc

lu
da

bl
e?

s* = 0 s* =
βnr − k

βnk(1 + r)
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Fig. 1. Evolutionarily stable strategy of competitiveness (left) and fitness of each individual (right) for
different rivalry, f, and excludability, g, parameters. The horizontal axes represent relatedness, r, and
q = 0.4. Top: g = 0 and f = 0.05 (a), 0.2 (b), 0.5 (c), 0.8 (d) and 1.0 (e). Bottom: f = 1 and g = 0 (a), 0.2
(b), 0.5 (c), 0.8 (d) and 0.95 (e).

Fig. 2. Evolutionarily stable strategy of collective action (left) and fitness of each individual (right)
for different rivalry, f, and excludability, g, parameters. The horizontal axes represent relatedness, r.
Top: γ = 0, B = 0.1, k = 0.4, φ = 0 (a), 0.2 (b), 0.5 (c), 0.8 (d) and 0.95 (e). Bottom: φ = 0 and γ = 0 (a),
0.2 (b), 0.5 (c), 0.8 (d) and 0.95 (e).
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sense their density or number and, if bacterial cells are sufficiently numerous or dense, they
can start producing virulence factors together to infect the host (Brown and Johnstone, 2001). If the
host is a vertebrate, and to escape from the immune system, we may suppose that host
invasion will succeed only if many bacterial cells invade host tissues simultaneously. The
production of a virulence factor has an individual cost that is reflected in the fitness
function. There is, however, no rivalry (φ → 0 in equation 6) because all bacteria gain the
same advantage of virulence factor production, irrespective of having helped with this
collective effort or not. If enough parasites contribute to this effort, the other parasites can
invade the host without bearing the cost of host manipulation. So, the good (in this case, the
ability to invade host tissues) is non-excludable, and γ → 0 in equation (6).

The tragedy of the commons and the public goods dilemma can occur in the same
biological system. For example, West and Buckling (2003) have analysed the virulence of
bacteria that require iron to grow (Guerinot, 1994; Ratledge and Dover, 2000). Bacteria have evolved
mechanisms to scavenge iron from their hosts. A common mechanism is the production and
uptake of siderophores, iron-binding agents released into the environment in response to
iron deficiency. All bacteria within a locality benefit from the presence of siderophores, not
only siderophore-producers. Therefore, bacteria not producing siderophores do not pay the
cost of their production, yet benefit from the presence of the siderophores produced and
secreted by other local bacteria (West and Buckling, 2003; Griffin et al., 2004). This is a public goods
dilemma. Siderophores are non-excludable because they are released into the environment
and are available both to producers and non-producers. The relative production
of siderophores by a focal bacterial lineage relative to the production by the rest of the
bacterial population is not relevant to their bacterial fitness – hence in equation (6), φ = 0
and there is no rivalry in siderophore production. The second step for bacteria survival
is the uptake of iron bound to siderophores. Given that siderophores bound to iron are a
diminishable resource, bacteria are rivals. On the other hand, this resource is non-
excludable. In conclusion, this second step constitutes a tragedy of the commons.

CONCLUDING REMARKS

In this paper, we have shown that the economics concepts of rivalry and excludability
correspond, respectively, to the evolutionary biology concepts of individual and group
components of individual fitness. We have constructed two generalized evolutionary
models for describing the consumption of a common-pool resource, and for describing the
contribution to some common good or to some collective action. In both models,
we introduced a parameter modulating rivalry and another parameter modulating
excludability, and we have shown how these parameters can be changed to obtain dilemmas
such as the tragedy of the commons and the public goods dilemma.

Besides the concepts of excludability and rivalry, and the individual component versus
group component of individual fitness, other authors commonly use the prisoner’s dilemma
to analyse the tragedy of the commons or the public goods dilemma (see, for example, Ostrom et al.,

1994). Typically, one models these conflicts with this dilemma, in which two individuals have
the option of cooperating or not cooperating (defecting). The circumstances are such that it
is of greater benefit to defect, regardless of whether the other cooperates or not, although
together they would be better off if they did cooperate (Hardin, 1971; Dawes et al., 1986; Brown, 2001).
Indeed, the prisoner’s dilemma constitutes a suitable metaphor to analyse both the public
goods dilemma and the tragedy of the commons: in the public goods dilemma, cooperation
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means to contribute to the public good and defection means not to contribute; in the
tragedy of the commons, cooperation means to refrain from using too much of a resource
and defection means not to refrain. Therefore, and using the language of game theory
(Osborne and Rubinstein, 1994; Davis, 1997), the strategy ‘defect’ is pareto inferior – meaning that there
is an outcome (both cooperating) where both players would be better off. However, by
comparing both conflict situations with the same game, it is unclear whether the tragedy
of the commons and the public goods dilemma conflicts refer to different types of
non-excludable goods. Moreover, this dilemma gives the false idea that the tragedy of the
commons and the public goods dilemma are symmetric because they refer to situations in
which individuals consume a common resource – tragedy of the commons – or contribute to
a collective action or common good – public goods dilemma. However, the two situations
are clearly not symmetric: equations (3) and (4) or (5) and (6) are not symmetric. The same
applies to the equations that appear in Table 2.

Cross-pollination of ideas between economics and evolutionary biology has been
extremely useful to both fields and we hope that this paper provides some insight into the
meaning of rivalry and excludability in evolutionary biology. To our knowledge, this is the
first time that rivalry and excludability of goods have been discussed in the context of
evolutionary problems.
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APPENDIX

Both the rivalry and excludability expressions might have other forms. For example, the
rivalry term could be:

f + zij

f + zi

In this case, however, f is a real number between zero and infinity, not between zero and one
as before.

Moreover, instead of considering ratios such as ( f + zij)/( f + zi), we can write the rivalry
term as (h − zi)/(h − zij), etc. In the former expression, f ∈ [0, + ∞[, whereas in the latter
h ∈ ]0, + ∞[.

Again, the excludability term could be given by:

�1 − zi�g + zij

g + zi
��

and g ∈ [0, + ∞[, whereas in equation (5) g ∈ [0,1].
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