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New molecules, including protein kinases, lipids and4
molecules that have neurotransmitter activities in animals,5
continue to be described as important players in tip-6
growing cells. Transcriptomics is beginning to show that7
the largest single class of genes expressed in pollen tubes8
encode signal transducers, reflecting the necessity to9
decode all of the different pathways that are associated10
with tip growth. Many of these pathways may use common11
intracellular second messengers, with ions and reactive12
oxygen species emerging as two major common13
denominators in many of the processes involved in tip14
growth. These second messengers might influence the15
actin cytoskeleton through known interactions with actin-16
binding proteins. In turn, changes in the dynamic17
properties of the cytoskeleton would define the basic18
polarity events needed to shape and modify tip-growing19
cells.20
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Abbreviations28
ABA abscisic acid29
ADF actin-depolymerising factor30
AIP1 ACTIN-INTERACTING PROTEIN131
GABA �-amino butyric acid32
Lat52 [Please define.]33
LePRK Lycopersicon esculentum POLLEN RECEPTOR34
KINASE35
MAPK mitogen-activated protein kinase36
NO nitric oxide37
pop2 [Please define.]38
rhd2 root-hair defective239
ROS reactive oxygen species40
SAGE serial analysis of gene expression41
WASP Wiskott-Aldrich syndrome protein42

43

Introduction44
Tip-growing cells undergo an extreme type of polarised45
growth. Their growth is based on the occurrence of46
elongation exclusively at the apex, which is fuelled by47
newly synthesised membrane delivered by vectorial48

exocytosis. Tip-growing cells are probably the fastest49
linearly growing cells in nature. Furthermore, they have50
been perfected by evolution as machines that sense51
subtle extracellular signals and environmental changes,52
and that develop by changing their growth axis53
accordingly. In plants, there are two highly54
differentiated types of tip-growing cells: root hairs and55
pollen tubes. Root hairs have to sense the soil56
environment and grow so as to maximise water and ion57
uptake; they also respond to biotic stimuli, which may58
result in the establishment of sophisticated symbioses.59
Pollen tubes, on the other hand, have to communicate60
their ‘self’ properties (i.e. information about species and61
individuality) to the external stigma cells. These cells62
continuously interact with the female tissues to scout63
and find the right path into the open ovary cavity, until64
they reach the micropyle’s tiny opening and deliver65
sperm.66

The biological functions of both of these cell types67
imply an innate capacity to communicate with and to68
decode signals from their environment. It no surprise69
that signalling is likely to play a central role in defining70
these cell types. Many groups have focussed on71
signalling within tip-growing cells and have produced a72
significant body of information [1–5]. In this review, we73
highlight some recent developments in our74
understanding of signalling in apically growing plant75
cells.76

Re-staging a classic with new actors77
Tip-growing cells were identified some time ago as a78
good system in which to investigate known signalling79
molecules and mechanisms, and in which to discover80
new ones [5]. Besides the huge amount of information81
compiled on the self-incompatibility system, which is82
beyond the scope of this review, a paradigmatic view of83
the sophisticated signalling system within the pollen-84
tube has been uncovered through the description of the85
LePRK pollen receptor kinase signalling complex. In86
mature pollen, LePRK2 and LePRK1 are bound    to87
each other in a complex, and the secreted protein Lat5288
is associated with the LePRK2 [6]. In the presence of89
style extract, however, LePRK2 is de-phosphorylated90
and both LePRK1 and Lat52 are released. These91
observations suggest a model in which pistil ligands92
induce the dissociation of the complex and the release93
of the partners, including cytoplasmic partners that94
transduce the signal to the pollen tube [7••]. Recently,95
new interactors of LePRK1 and LePRK2 have been96
described, namely LeSHY and LeSTIG [Please define[Please define[Please define[Please define97
the abbreviations the abbreviations the abbreviations the abbreviations LeSHY and LeSHY and LeSHY and LeSHY and LeSTIG.]LeSTIG.]LeSTIG.]LeSTIG.] [8].98
Exogenous LeSTIG abolished the interaction between99
Lat52 and LePRK2, and promoted pollen-tube growth100
in vitro. These findings are consistent with model that101
LePRK1 and LePRK2 might interact with different102
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103
Figure 1104
(a) Time-lapse sequence of a Lilium longiflorum (lily) pollen-tube growing facing an extra-cellular NO point-source (SNAP [Please define SNAP.]105
on agarose [shown on the left of the image]). The growth of the pollen tube slows as it moves into the NO gradient, but the direction of growth106
was unchanged for about 12 min. A new growth axis then starts to be defined, forming a sharp right-angle from the original axis (97.7° ± 3.6,107
n = 28). The pollen tube then regains its normal growth rate (after 16–20 min) (Bar = 30�m). (b) Lily pollen tube showing three consecutive108
re-orientation responses, which were induced by moving the same source to the locations marked with arrows. The growth axis moved109
reproducibly by right angles after each challenge by the NO source facing the pollen-tube tip. (c) Artificial NO-source measurements obtained by110
using a vibrating self-referenced polarographic probe to NO. The graph shows a typical exponential NO-gradient decay from the point source at111
different step distances. (d) Time-lapse sequence of a pollen tube being challenged with a diluted NO artificial source in the presence of sildenafil112
citrate (ViagraTM) (numbers at the right-hand upper corner represent minutes after detection of the response). When these diluted sources are113
used, most pollen tubes do not show any response, often running into the pipette. For this experiment, pollen tubes were first incubated on114
standard medium and challenged with the diluted NO source. Despite the lower amount of NO used, reverse re-orientation angles were observed115
in the presence of sildenafil citrate (109.8° ± 9.8, n = 9) showing a sensitisation effect, from unresponsive to peak response (adapted from116
[10��]).117

118

ligands at different stages of the growth of the pollen119
tube through the style, but unexpected molecules have120
also entered the scene.121

Two molecules that have neurotransmitter properties in122
animals were recently found to be involved in pollen-123
tube growth. �-amino butyric acid (GABA) was shown124
genetically to be involved in the growth and guidance125
mechanisms of Arabidopsis pollen tubes [9••]; the pollen126
tubes of pop2 mutants are strongly impaired in their127
capacity to grow both in vivo and in vitro in the presence128
of GABA. POP2 was convincingly demonstrated to129
encode a transaminase that is involved in the130
degradation of GABA. We have recently demonstrated a131
new role for nitric oxide (NO) in the regulation of132
pollen-tube growth in Lilium longiflorum, especially in133
the re-orientation response (Figure 1). NO may be134
involved in finding a suitable path for the pollen tube,135

136

possibly through a cGMP transduction pathway [10••].137
NO is a ubiquitous signalling molecule in animals [11],138
and growing evidence points to its widespread139
production and effects in plants [12,13]. Evidence has140
been found recently for enzymatic synthesis of NO in141
plants, involving both the constitutive enzyme142
Arabidopsis thaliana NO SYNTHASE1 (AtNOS1) [14]143
and/or inducible NO-synthase enzymes [15]. Nitrate144
reductase and xanthine oxireductase are also generally145
accepted to produce NO in plants [16]. Because of the146
largely diffusible and reactive properties of NO, its147
seems that the first reported role for NO in a tip-148
growing cell [10••] is likely to be just one of several149
significant roles for NO in these cells.150

Lipid signalling also stages a major entrance in tip-151
growing cells [17]. Of special notice, phosphatidic acid152
and phospholipases (e.g. phospholipase D [PLD]) have153
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154
Figure 2155
Gene expression data in pollen relative to vegetative tissues (i.e. leaves, seedlings and siliques) are depicted using the MAPMAN tool [24] to156
display the genomic dataset derived from work by JD Becker (unpublished). Genes are symbolised by colour-encoded boxes (red, down-157
regulation; blue, upregulation; grey, absent call in pollen). Many genes in the classes ‘protein modification’ (protein kinases), ‘receptor kinases’, ‘G-158
proteins’ (GTPases and GTP-binding proteins) and ‘calcium regulation’ (calmodulins and calcium-dependent protein kinases) are enriched in159
pollen or even selectively expressed (see Table 1). These genes are probably involved in integrating signals from the female tissue with pollen-tube160
germination and growth processes, thus leading to a successful fertilisation. By contrast, genes that are involved in ‘hormone metabolism’ are in161
general downregulated in pollen, with a few exceptions mainly in auxin-induced proteins. Thus, the responses of pollen tubes to hormones might162
be either negligible or restricted to very specific responses.163

164
been shown to play fundamental roles in root-hair [18•]165
and pollen-tube development [19•,20•]. An elegant set166
of experiments that involved osmotic manipulations of167
tobacco pollen signals established several168
phosphotadylinositols as downstream effectors of the169
phosphatidic acid signal. This link builds up a scenario170
in which phospholipid signalling is likely to play a171
central role in many of the transduction pathways172
within tip-growing cells [20•].173

The involvement of such a diversity of molecules in174
signalling in tip-growing cells is not surprising, and  may175
well be necessary to provide specificity in many of the176
responses that these cells have to perform. The use of177
common fundamental molecules, although178
evolutionarily sensible, make sit less probable that a179
single molecule could convey all the information180
necessary for any given response. The diversity of181
signalling molecules within tip-growing cells also182
implies, however, that these cells employ sophisticated183
signalling mechanisms.184

What the genes have to say185
It is generally accepted that microsporogenesis involves186
the accumulation of significant levels of long-lived187
mRNA molecules within mature pollen; these mRNAs188
drive germination and early tube growth [5]. Thus,189
studies of the pollen transcriptome could presumably190

191

be used to define the genetic fingerprint needed for tip192
growth.193

The importance of signalling processes in pollen194
relative to that in other tissues can be inferred from195
three recent studies of the pollen transcriptome of196
Arabidopsis. Two groups used Affymetrix 8K Arabidopsis197
GeneChips (covering about 8000 genes) to compare the198
transcriptome of highly purified, cell-sorted pollen199
grains with those of four vegetative tissues [21•] or of200
non-sorted pollen grains with those of four201
developmental stages of the sporophyte [22•]. In202
another approach, serial analysis of gene expression203
(SAGE) was used to profile the transcriptome of pollen204
under normal and chilling conditions [23•]. Customised205
normalisation protocols were used to correct for the206
much lower number of genes called present in pollen207
(less than half than that in vegetative tissues). The208
GeneChip analysis revealed that as many as 25% of the209
genes that were identified as selectively expressed in210
pollen could be classified as being involved in signalling211
[21•], whereas the SAGE analysis attributed 23% as212
members of this class [23•]. A more recent analysis using213
the Affymetrix 24K Arabidopsis GeneChip revealed that214
16% of the 6587 genes that were expressed in pollen215
were involved in signalling (as compared with 12% in216



Signalling by tips Feijó et al.

4

Table 1.
[Please provide a title for this table.][Please provide a title for this table.][Please provide a title for this table.][Please provide a title for this table.]

Selectively Pollen Leaf Seedling Silique
Functional
class

Fold
change

expressed
in pollen? Probe set AGI ID Gene annotation

Expression
value Call

Expression
value Call

Expression
value Call

Expression
value Call

Receptor
kinase 249 Yes 246106_at AT5G28680 CRPK1L 9135 P 22 A 27 A 30 A

Receptor
kinase 143 Yes 257119_at AT3G20190 LRR III 11290 P 42 A 43 A 62 A

Calcium
regulation 195 Yes 263450_at AT2G31500 CPK24 11605 P 37 A 34 A 59 A

Calcium
regulation 126 Yes 250308_at AT5G12180 CPK17 7078 P 31 A 33 A 40 A

Protein
modification 176 Yes 264284_at AT1G61860 RLCKVII 12224 P 43 A 40 A 61 A

Protein
modification 175 Yes 258600_at AT3G02810 RLCKVII 7676 P 28 A 27 A 28 A

G-protein 79 Yes 262742_at AT1G28550 AtRABA1i 3154 P 33 A 33 A 30 A

G-protein 60 No 257951_at AT3G21700
SGP1 monomeric
G-protein related 8541 P 105 P 131 P 106 P

MAPK 8 No 266348_at AT2G01450 MPK17 9958 P 982 P 1039 P 1051 P

MAPK 6 No 249239_at AT5G41990 ZIK6 3363 P 325 P 604 P 620 P
Phospho-
inositide 74 Yes 259425_at AT1G01460

4,5 PIP kinase-
related 6800 P 63 A 64 A 61 A

Phospho-
inositide 19 Yes 251711_at AT3G56960 AtPIP5K1 1446 P 52 A 45 A 64 P

14-3-3
protein 29 Yes 261015_at AT1G26480

14-3-3 protein
GF14 iota (grf12) 1177 P 25 A 28 A 23 A

Hormone
metabolism
(auxin) 229 Yes 263144_at AT1G54070

Similar to auxin-
repressed protein 13841 P 40 A 38 A 59 A

Hormone
metabolism
(auxin) 192 Yes 257121_at AT3G20220

Putative auxin-
induced protein 13022 P 39 A 38 A 63 A

Hormone
metabolism
(ethylene) 9 No 254434_at AT4G20880 ERT2 3440 P 319 P 272 P 392 P

Hormone
metabolism
(ethylene) 3 No 257981_at AT3G20770 EIN3 3236 P 869 P 743 P 703 P

Hormone
metabolism
(cytokinin) 31 No 245477_at AT4G16110

Response
regulator ARR2 353 P 129 P 193 P 143 P

Hormone
metabolism
(cytokinin) 2 No 257492_at AT1G49190

Response
regulator ARR19 1453 P 68 A 45 A 62 P

Hormone
metabolism
(ABA) 11 Yes 254668_at AT4G18350

Putative
neoxanthin
cleavage enzyme
(NC1)(NCED1) 251 P 50 A 58 A 48 A

Hormone
metabolism
(ABA) 4 Yes 248227_at AT5G53820

ABA-inducible
protein-like 931 P 25 A 25 A 18 A

Examples of genes that are most upregulated in pollen relative to vegetative tissues (i.e. leaves, seedlings and siliques) are listed for most of
the functional classes shown in Figure 1. The second column contains the lower confidence bound of the fold change in gene expression (an
average of the comparisons of pollen to the three vegetative tissues). The fourth and the fifth columns give the Affymetrix probe set and the
TAIR locus (AGI ID) assigned to this probe set. In the following columns the expression value [How is this expression value derived?] of
the gene (weighted average of duplicates) and its detection call (present [P] or absent [A]) are given for the respective cell type or tissue
[Could you please clarify how the presence or absence of an detection call is determined. Why aren’t all of the genes present since
they all have an expression value in all tissues?]. The genes AT5G28680 and AT1G54070 belong to the 25 most-upregulated genes in
pollen. ARR2, AUXIN RESPONSE REGULATOR2; AtPIP5K1, XXX; AtRABA1i , XXX; CPK24, XXX; CRPK1L, xxx; EIN3, ETHYLENE
INSENSITIVE3; ERT3, XXX; GF14 iota, XXXX; grf12, XXXX; LRR III, LEUCINE-RICH RECEPTOR III; NC1, NEOXANTHIN CLEAVAGE1;
NCED1, XXX; RLCKVII, XXX; SGP1, XXX; ZIK6, XXX. [Please define all abbreviations that are not mentioned elsewhere in the review.]

217

vegetative tissues). When looking at genes whose218
transcripts are enriched in pollen, however, this number219
goes up to 26%, making signalling genes the most220
prominent class by far (JD Becker et al., unpublished;221

222

Table 1, Figure 2). These numbers have not yet been223
backed up by data from root hairs. Comparison of the224
pollen and root-hair transcriptomes could, however,225
allow a better comparison of the signalling pathways in226
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these tip-growing cells and help to identify the227
fundamental signalling processes that underlie tip228
growth in plant cells.229

Nevertheless, the obvious complexity deployed in the230
signalling pathways of tip-growing cells (Figure 2)231
makes it a difficult to comprehend how these pathways232
are integrated and coordinated to produce a specific233
phenotype. Although probably a reductionist thought, it234
could well be that a great deal of this integration,235
especially in space and time, is based on smaller236
diffusible entities that affect multiple levels of the237
canonical signalling pathways by direct biochemical or238
biophysical actions. Hence, we now explore emerging239
evidence of the involvement of two such groups: free240
ions and radicals.241

Enter the ions!242
Certain ions have long been known to encode243
information, acting as second messengers in important244
signalling pathways [Please cite [24] in correct order.][Please cite [24] in correct order.][Please cite [24] in correct order.][Please cite [24] in correct order.]245
[25,26]. Calcium ions have received particular attention246
[27,28], mostly because of the so-called ‘Ca2+ signature’247
but probably also because of the existence of248
Ca2+ switches [29]. Recent genetic evidence showed249
that Ca2+-ATPases are fundamental for pollen-tube250
growth [30•]. Potassium ions also seem to play a role in251
this process [31] and chloride appears to be linked to252
the phosphatidylinositol signalling pathway, which is253
also involved in tip growth [32]. Moreover, life as we254
know it occurs in aqueous media. Since water255
spontaneously ionises, cells live in a ‘proton world’ and256
any change in pH will have an impact on a variety of257
molecules in different ways. Therefore, the most258
sophisticated information on Ca2+ and other ions is of259
limited value as long as the pH condition of the cell is260
not also determined [33].261

A great deal of controversy still exists regarding a262
possible role for pH as a signal messenger. This263
controversy is mainly due to the extremely high264
conductivity of protons and the presumed consequent265
dissipation of any transiently formed gradient. It is also266
true, however, that this same property makes protons267
ideal candidates for encoding/decoding signals that268
operate with very short time frames, which are difficult269
to resolve with the techniques used at present.270
Conceivably, self-sustained proton waves could271
underlie fast calcium waves, which are known to272
propagate in a variety of cell types [34]. Pollen tubes273
have been successfully used as a model system for274
studies of ion dynamics in tip growth [26]. Among other275
ion fluxes, pollen tubes have been shown to contain a276
tip-focused pH gradient, with an acidic tip being277
associated with growth and a constitutive subapical278
alkaline region [35].279

Both pollen tubes and root hairs have been shown to280
display ‘short-circuits’ of extracellular proton fluxes281
around their tips, a result hypothesised to reflect a282
polarised distribution of proton pumps ([36]; Figure 3).283
This model has recently been confirmed using284
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Figure 3286
A model for proton gradients in pollen tubes and root hairs. The287
existence of ‘short-circuits’ of extracellular proton fluxes around the288
tips of pollen tubes and root hairs, a result hypothesised to reflect289
a polarised distribution of proton pumps, could conceptually290
constitute a powerful sensor of the external milieu if intracellular291
mechanisms exist to decode small flux variations and to transform292
them into signalling information (adapted from [36]).293

294

molecular techniques for pollen tubes (AC Certal et al.,295
unpublished), reinforcing the idea that proton dynamics296
may be an endogenous mechanism for determining and297
maintaining the polarity axis in these fast growing cells.298
The existence of this closed loop of proton fluxes could299
conceptually constitute a powerful sensor of the300
external milieu if intracellular mechanisms exist to301
decode small flux variations and to transform them into302
signalling information. Acidification of the cell wall, a303
mechanism that may be conveyed through ethylene,304
also seems to initiate root hairs [37]. Interestingly, new305
evidence is starting to reveal that pH may also play an306
important role in the cascade of events that lead to307
oxidative burst in guard cells. In these cells, an308
alkalinization seems to underlie both the abscisic acid-309
or methyl-jasmonate-induced formation of reactive310
oxygen species (ROS) and stomatal closure [38].311
Alkalinization is also involved upstream of the312
cytoskeleton in the signalling cascade that leads to the313
gravitropic response in roots [39]. In short, there is314
accumulating evidence for the existence of a proton315
signature. This signature would act as a signalling316
mechanism that underlies the development of tip-317
growing and possibly other kinds of plant cells, and318
there is no shortage of distinct physico-chemical319
properties that are associated with protons to test these320
assumptions [40].321
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Figure 4324
Signalling pathways to the actin cytoskeleton. The major signalling pathways known to have a connection to the actin cytoskeleton involve the325
action of ROS, ROP GTPases and PIP2 [Please define PIP2.], but the majority of the effectors of these pathways and the interconnections326
between them remain unknown. The actin-binding proteins represented in this scheme are the best characterized in plants, but others (e.g.327
capping protein [CP] and AIP1) are starting to be characterized. The activity of these proteins must be tightly regulated for polarised growth to328
occur in an effective way. In plants, profilin and ADF are a fulcral point in the regulation of actin dynamics. They act synergistically to increase actin329
filament dynamics. ADF promotes the generation of new barbed-ends, and profilin delivers the monomers to the uncapped barbed-ends for330
polymerisation. It is important to highlight the fact that, in pollen tubes, only formins have been described as actin-filament nucleators; whereas, in331
root hairs, the Arp2/3 complex seems to be responsible for the same function. The only members of the poly-L-profilin-binding (PLP) proteins to be332
conserved in plants are formins. Hence, a partner other than the WASP family of proteins must regulate the Arp2/3 complex. CDPKs, calcium-333
dependent protein kinases.334

335
And life met oxygen336
2.5 billion years ago life met oxygen. A new aerobic337
environment directed the evolution of biochemical338
pathways towards the use of ROS. One of the ROS339
generation systems described in plants is dependent on340
NADPH-oxidase activity. Its activation requires the341
participation of the small cytosolic GTPase Rac2 (see342
Yang, this issue). The cytoplasmic amino-terminal343
region of this GTPase contains two putative EF-hand344
motifs, suggesting a that it is regulated by Ca2+345
ions [41,42]. Ten putative genes encode GTPases in346
Arabidopsis and some of these genes function in abscisic347
acid (ABA) signalling [43•]. A new exciting area in ROS348
signalling was opened up by the discovery of the root-349
hair defective2 (rhd2) Arabidopsis mutant, which has a350
defect in one catalytic subunit of the NADPH-oxidase.351
In root hairs, as in pollen tubes, the maintenance of Ca2+352
transport across the membrane and the presence of a353
tip-focused [Ca2+] gradient are fundamental [For what?[For what?[For what?[For what?354
Please clarify.]Please clarify.]Please clarify.]Please clarify.]. The rhd2-phenotype is characterised by355
short root hairs and stunted roots, and no [Ca2+] gradient356
could be observed in the root hairs of these mutants357
[44]. Because rhd2 mutants show defects in the steady358
tip-focused [Ca2+] gradient, it was hypothesised that359
ROS are required to stimulate Ca2+ influx during root-360
hair elongation. This was shown through an elegant361
experiment in which root-hair spheroplasts were362

released by laser microsurgery from the apices of young363
root hairs and rdh2 bulges. Using patch-clamp and364
indirect ROS imaging, Foreman et al. [45••] were able to365
observe the activation of hyperpolarization-activated366
Ca2+ channels by ROS. Thus, ROS appear to act367
upstream of [Ca2+] in the signalling cascade, triggering a368
[Ca2+] rise and a putative subsequent modulation of369
actin dynamics that underlies polarised growth.370

ROS have also been implicated in the curling response371
that occurs during the Rhizobium–legume symbiosis372
[46]. In Medicago truncatula, the nodulation (Nod)-factor373
response interfered with the elicitation of H2O2 efflux;374
instead of the oxidative burst found in plant defence375
responses, ROS production decreases in the presence of376
a symbiotic signal [46,47]. Finally, ROS have been377
described as having a mechanistic role in Fucus rhizoid378
development [48]. Hyper-osmotic treatment of Fucus379
rhizoids induces a [Ca2+] wave and peripheral ROS380
production. Inhibition of the NADPH-oxidase blocked381
this [Ca2+] wave. Further it was shown that increased382
cytosolic [Ca2+] was sufficient to induce ROS production383
in mitochondria. This growing body of evidence to384
describe the signalling links that occur after ROS385
activation of Ca2+ channels have recently been386
promoted to a general theory of polar growth, hormone387
transduction, stress signalling and hypothetically388
mechanotransduction [49]. Direct gene activation is, for389
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the moment, excluded from these generalisations390
because no transcription factor or promoter element391
that is redox sensitive is yet known in plants [41].392
Nevertheless, transcriptional activation in eukaryotic393
cells does seem to be influenced by redox status.394
Indeed, redox status is known to regulate the395
expression of several plant genes, and there are several396
candidates for promoter elements that are397
DNA-binding factors that may act as redox-response398
elements [41,50]. Indirect effects of ROS on the activity399
of a transcription factor activity have also been reported400
through the activation of mitogen-activated protein401
kinase (MAPK) [51].402

Dynamic skeletons: where all things come403
together?404
ROP GTPases (Yang, this issue), ionic gradients [52],405
lipids [17,53,54], and cyclic nucleotide levels [55], [10••]406
all participate in signalling pathways that are known to407
affect the cytoskeleton. Actin-binding proteins are408
believed to integrate this information and to transduce409
it to alterations in the cytoskeleton [56]. For example,410
actin-depolymerising factor (ADF) and profilin act411
synergistically to affect actin dynamics: ADF generates412
more filament ends for polymerisation through its413
severing activity and by enhancing the dissociation of414
G-actin from slow-growing ends; profilins bind to415
G-actin and thus are incorporated in the free barbed416
end. Both ADF and profilin respond to ionic conditions.417
The actin-severing activity of ADF is pH dependent,418
whereas profilin’s activity is Ca2+ dependent.419
Mechanisms for the regulation of ADF also include420
inhibition by both phosphorylation by a calmodulin-like421
domain protein kinase and membrane lipid binding.422
ADF is involved in the regulation of pollen-tube growth423
and uses the same signalling pathway as Rac/Rop424
GTPase [57].425

Poly-L-profilin-binding (PLP) proteins (i.e. Wiskott–426
Aldrich syndrome protein [WASP], VASP [Please[Please[Please[Please427
define this abbreviation.]define this abbreviation.]define this abbreviation.]define this abbreviation.] and formins) play a very428
important role in the signalling pathway cascades that429
affect the cytoskeleton in animal and yeast cells. These430
proteins are known to respond to Rho GTPases and to431
SH3- and WW-domain proteins, and to induce actin432
filament remodelling and nucleation. Formin433
overexpression in pollen tubes was recently shown to434
stimulate the production of supernumerary actin cables435
from the plasma membrane [58•]. Furthermore,436
overexpression of the    formin AFH1 from Arabidopsis437
resulted in the formation of pollen tubes that had438
increased diameter, tip expansion and growth arrest,439
suggesting that formins are involved in the regulation of440
polarised growth. By contrast, low levels of AFH1 result441
in the production of pollen tubes with normal442
morphology and stimulate growth. Arp2/3 is involved in443
the polymerisation of branched networks of actin444
filaments in animal cells and yeast. In root hairs, Arp2/3445
has a crucial role because these cells become sinuous in446
Arp2 (wurm) and Arp3 (distorted1) Arabidopsis mutants447

[59]. The same result was obtained by the mutation of448
the small subunit of the Arp2/3 complex (producing449
crooked mutants) [60]. Arp2/3 may also be involved in450
endocytosis as recently shown in yeast [61]. The best-451
characterized activators of the Arp2/3 complex are452
members of the WASP and contractin protein families.453
Because WASP and contractin proteins have still not454
been identified in plants, it remains to be established if455
this is also the case or if new effectors are to be found in456
plants.457

One of the most-studied signalling pathways in root458
hairs is elicited by Nod factors, which are lipochito-459
oligosaccharides produced by the bacterium460
Rhizobium spp. Upon rhizobial infection, the responses461
of root hairs include swelling, membrane depolarisation,462
oscillations in calcium concentrations [62], cell-wall463
loosening, alterations in root-hair growth and the464
expression of host nodulation genes. The cytoskeleton465
is one of the targets of this system [63,64]. Recently,466
ACTIN-INTERACTING PROTEIN1 (AIP1) was467
suggested to be essential for the organisation of the468
actin cytoskeleton in plant cells [65]. As well as being a469
co-operator with the ADF protein, AIP1 has a capping470
activity, which enhances its activity. Cell expansion is471
compromised in plants in which AIP1 is silenced by472
RNA interference (RNAi) These plants showed thick473
actin bundles in all of the cell-types analysed, including474
root hairs (pollen was not studied). Hence, it seems that475
all of the proteins that coordinate the dynamics of the476
actin cytoskeleton must be tightly regulated in order for477
polarised and directional growth to take place.478
Conceivably, these proteins could be the major479
computational integrator of all of the diverse signalling480
machineries that contribute to tip growth (Figure 4).481

Conclusions482
New molecules continue to be described as important483
players in tip-growing cells. These include protein484
kinases, lipids, and molecules that have485
neurotransmitter activities in animals. Transcriptomics486
has shown that genes that are involved in signal487
transduction form the largest single class of genes that488
are more-represented in pollen tubes than in non-tip-489
growing cells, reflecting their capacity to decode all of490
the different contributing pathways. Many of these491
pathways may use common intracellular second492
messengers, and ions and ROS are emerging as two493
major common denominators in many of the processes494
involved in tip growth. Ultimately, the second495
messengers should influence the actin cytoskeleton496
through known interactions with actin-binding proteins.497
In turn, changes in the dynamics properties of the498
cytoskeleton define the basic polarity events needed to499
shape and modify tip-growing cells.500
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