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a b s t r a c t

Heterogeneity in susceptibility and infectivity is inherent to infectious disease transmission in nature.

Here we are concerned with the formulation of mathematical models that capture the essence of

heterogeneity while keeping a simple structure suitable of analytical treatment. We explore the

consequences of host heterogeneity in the susceptibility to infection for epidemiological models for

which immunity conferred by infection is partially protective, known as susceptible-infected-

recovered-infected (SIRI) models. We analyze the impact of heterogeneity on disease prevalence and

contrast the susceptibility profiles of the subpopulations at risk for primary infection and reinfection.

We present a systematic study in the case of two frailty groups.

We predict that the average rate of reinfection may be higher than the average rate of primary

infection, which may seem paradoxical given that primary infection induces life-long partial protection.

Infection generates a selection mechanism whereby fit individuals remain in S and frail individuals are

transferred to R. If this effect is strong enough we have a scenario where, on average, the rate of

reinfection is higher than the rate of primary infection even though each individual has a risk reduction

following primary infection. This mechanism may explain high rates of tuberculosis reinfection recently

reported.

Finally, the enhanced benefits of vaccination strategies that target the high-risk groups are

quantified.

& 2009 Published by Elsevier Ltd.
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Heterogeneity in susceptibility and infectivity is an important
feature of many infectious diseases and has been considered to
improve the accuracy of epidemiological models. In the analysis of
these models, focus has been on the impact of heterogeneity in
the final size of epidemics (Ball, 1985; Miller, 2007) and on its
consequences to disease control (Anderson and Britton, 1998;
Britton, 1998) and data interpretation (Gart, 1968; Anderson and
May, 1991). In the context of SIR epidemic models, it has been
shown that the final size of the epidemic is reduced when the risk
of infection is heterogeneously distributed in the population, both
for the deterministic and the stochastic formulations (Gart, 1968;
Ball, 1985; Anderson and Britton, 1998). More recently, results
were extended to the investigation of epidemic spread on a
random network (Miller, 2007).
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In this work we explore the consequences of host hetero-
geneity in the susceptibility to infection for endemic models for
which immunity conferred by infection is not fully protective,
known as susceptible-infected-recovered-infected (SIRI) models.
The model is expanded to accommodate multiple frailty groups
classified accordingly to risk of infection. We are concerned not
only with the impact on disease prevalence but also on how
transmission changes the risk profile of the population groups
that are subject to reinfection. The SIRI model exhibits two
important thresholds in transmission: the endemic threshold that
marks the transmission intensity necessary to maintain disease
endemic in a population; and the reinfection threshold that
indicates whether self-sustained transmission occurs in a popula-
tion which has developed a degree of partial immunity (Gomes et
al., 2004). The reinfection threshold separates two fundamentally
distinct model behaviors. Low endemic levels with SIR-like
transmission are maintained below threshold, while high endemic
levels with SIS-like transmission characterise the regime above
threshold. Therefore, first we consider the case of SIR and SIS
models, exploring their simplicity and mathematical tractability
to extract general trends. We describe how disease prevalence,
risk profiles for specific population compartments, and contribu-
tion of the high-risk group to overall incidence, change with the
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Table 1
Model parameters.

Symbol Definition Value

b Transmission coefficient Variable

s Factor reducing the risk of infection as a result of acquired

immunity to a previous infection

0, 1 or

0.25

m Death and birth rate 1=70 yr�1

t Rate of recovery 52 yr�1

gi Relative size of each frailty group Variable

ai Relative risk of infection of each frailty group Variable

P. Rodrigues et al. / Journal of Theoretical Biology ] (]]]]) ]]]–]]]2
parameters describing heterogeneity. Second, the same frame-
work is used to explore the SIRI model. Of particular interest is the
interplay between reinfection and the risk profile for the
uninfected compartments, S and R.

The results offer a plausible explanation for observations of
higher than expected reinfection rates. In particular, rates of
reinfection that surpass rates of first infection have been reported
for tuberculosis in a high transmission setting in South Africa
(Verver et al., 2005). Naively, one could attribute this effect to
some form of immunologically dependent enhancement whereby
immunological memory would render individuals more suscep-
tible to subsequent infections. An alternative hypothesis sug-
gested by the analysis presented here is that relatively high rates
of reinfection can result from the presence of a high-risk group
that, being at higher frequency in the recovered compartment due
to selection imposed by the first infection, can sustain rates of
reinfection that are, on average, higher than the rates of first
infection even in the presence of partially protective immunity.

Heterogeneity has many implications for public health policy.
In particular, we characterise how the impact of vaccination
strategies varies with transmission intensity, and quantify the
benefit of targeting high-risk groups.
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2. The model

To incorporate heterogeneity in the infection risk in an SIRI
transmission model we use a formulation close to the one
presented by Ball (1985) for SIR epidemic models. We assume
that the population is divided in n different subgroups according
to the susceptibility to infection, ai. These groups will be referred
as frailty groups (Coutinho et al., 1999). Within each frailty group,
individuals are classified according to their disease history into
susceptible, infectious or recovered. A schematic version of the
model is shown in Fig. 1.

It is assumed that the n frailty groups have constant size over
time and that they represent different proportions of the total
population, gi, where

Pn
i¼1gi ¼ 1. Individuals are born into each

group at the rate mgi. We use Si, Ii and Ri as the proportion of each
class from the frailty group i in the total population. Hence we
have

Pn
i¼1ðSi þ Ii þ RiÞ ¼ 1. In the following we denote by I the

proportion of infectious in the population, that is I ¼
Pn

i¼1Ii.
For concreteness, we fix the parameters as described in Table 1.

The table describes an average life expectancy of 70 years (that is
m ¼ 1=70) and an average infectious period of one week (that is
t ¼ 52). The factor reducing the risk of infection as a result of
acquired immunity is s ¼ 0:25. For the limiting cases of the SIR
and SIS models, parameter s is 0 or 1, respectively. Parameters b,
gi and ai are varied to explore different scenarios for transmission
intensity and host heterogeneity. Each frailty group has an average
risk of infection that differs from the population average by a
factor ai, which we refer to as the relative risk of infection (Gart,
1968; Ball, 1985). We assume that this factor controls the rate of
UNC
Fig. 1. SIRI model with heterogeneous susceptibility to infection. The population is

divided into Susceptible ðSiÞ, Infectious ðIiÞ and Recovered ðRiÞ classes, where the

index i refers to the frailty group to which the individuals belong. Individuals are

born at rate m and enter the susceptible compartments in proportions gi .

Susceptible individuals are infected at a rate ail ¼ aibI, where ai denotes the risk

factor, b is the transmission coefficient and I is the proportion of infectious

individuals. Infectious individuals recover at a rate t and recovered individuals

have a reduced rate of reinfection according to the factor s.

Please cite this article as: Rodrigues, P., et al., Heterogeneity in susce
(2009), doi:10.1016/j.jtbi.2009.03.013
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infection and reinfection in the ith frailty group. In general, the
parameters are chosen to resemble an acute respiratory infection
in a developed country. However, we stress that the results are
valid for a wider set of parameters. Differences reside more on the
quantitative than on the qualitative behavior. The model can be
written as a system of 3n differential equations

S0i ¼ mgi � laiSi � mSi;

I0i ¼ laiSi þ slaiRi � ðtþ mÞIi;

R0i ¼ tIi � slaiRi � mRi; i ¼ 1; . . . ;n;

8><
>: (2.1)

where l ¼ bI. To ensure comparison between different
assumptions on risk distribution, including the comparison with
the homogeneous version of the model, we impose the
normalization ā ¼

P
aigi ¼ 1.

Throughout this paper we analyze the case n ¼ 2. We denote
by g the proportion of individuals belonging to the low-risk group
(that is, g1 ¼ g and g2 ¼ 1� g). For a given population structure (g)
we vary the infection risk distribution by changing a1, obtaining
a2 through the normalization a1gþ a2ð1� gÞ ¼ 1. We use the
variance as a summary measure of variations on a1,

vara ¼ ðā� a1Þ
2gþ ðā� a2Þ

2
ð1� gÞ ¼ ð1� a1Þ

2g
1� g

. (2.2)

Note that for a given population structure the variance is a
decreasing function of a1. The homogeneous model is obtained for
a1 ¼ ā ¼ 1 which, consistently, corresponds to zero variance.
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2.1. Basic reproduction number

The basic reproduction number is an important concept in the
study of epidemiological models. We recall that in the case of the
corresponding model for homogeneous populations ða1 ¼ 1Þ the
basic reproduction number is given by

R0 ¼
b

tþ m
. (2.3)

Considering the heterogeneous model, the basic reproduction
number is not altered. In fact,

RHET
0 ¼

b
tþ m

X2

i¼1

aigi ¼
bā

tþ m
¼

b
tþ m

¼ R0.

For a more detailed discussion on the calculation of the basic
reproduction number in heterogeneous populations see Hyman
and Li (2000) or Diekmann et al. (1990). A threshold condition for
endemicity is given by R0 ¼ 1 (the disease dies out if R0o1 and
becomes endemic if R041).

Note that the basic reproduction number for the entire
population is a weighted average of the basic reproduction
number within each independent frailty group, R0i, given by
ptibility to infection can explain high reinfection.... J. Theor. Biol.

dx.doi.org/10.1016/j.jtbi.2009.03.013
Original Text:
factor 

Original Text:
death 

Original Text:
rate 

Original Text:
relative 

Original Text:
relative 

Original Text:
variable

Original Text:
analyse 



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

ARTICLE IN PRESSYJTBI : 5502

P. Rodrigues et al. / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 3
RHET
0 ¼

X
i

aib
tþ m

gi ¼
X

i

R0igi.

Therefore, if the basic reproduction number for each group is
greater than one, then the disease is also endemic in the entire
population. On the other hand, it is not necessary to have all
reproductive numbers greater than one to have endemicity.
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3. The limit cases, SIR ðs ¼ 0Þ and SIS ðs ¼ 1Þ

Before studying the SIRI model, we analyze the impact of host
heterogeneity in the case of SIR and SIS models, corresponding to
s ¼ 0 and 1, respectively. The identification between the SIS
model and our model with s ¼ 1 is made in a natural way, by
collapsing the classes S and R of this last model into a class Sþ R,
which we identify with the susceptible class of the SIS model.
However, in order to make possible the comparison between the
limit case with s ¼ 1 and the intermediate SIRI model, in what
follows we keep distinct the S and R classes even for s ¼ 1.
Actually, we will consider the class Sþ R in Remark 3.1, where we
examine the effect of heterogeneity on the prevalence in the SIS
framework. All results stated in this section are proved in
Appendix A.

3.1. Endemic equilibrium

For s ¼ 0 or 1, system (2.1) has one disease-free equilibrium of
the form Es0 ¼ ðg;1� g;0;0;0;0Þ. Above R0 ¼ 1, the system has also
an endemic equilibrium, Es1 . Stability results for these equilibria
UNCORRECTED P
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Fig. 2. Prevalence of infection for the SIR and SIS models under different implementatio

and SIS models, respectively: (a)–(c) s ¼ 0; (d)–(f) s ¼ 1. The three columns of panels co

g ¼ 0:8; (c), (f) g ¼ 0:95. In each plot, different curves indicate the equilibrium prevalen

the average: a1 ¼ 1, 0.75, 0.5, 0.2, 0.05, from the higher to the lower curves.
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are stated in the two theorems below. We use the superscript s to
denote the correspondence with the SIR ðs ¼ 0Þ or the SIS ðs ¼ 1Þ
models.

Theorem 3.1.1. For s ¼ 0 or 1, the disease-free equilibrium, Es0 , of

system (2.1) is globally asymptotically stable if R0o1 and it is

unstable for R041.

Theorem 3.1.2. Let s ¼ 0 or 1 and assume that R041. Then system

(2.1) has exactly one endemic equilibrium, Es1 , that is globally

asymptotically stable.

We analyze the impact of heterogeneity on disease prevalence
at equilibrium. Fig. 2 illustrates how disease prevalence changes
for different assumptions on population structure and distribution
of infection risk for the SIR and SIS models. We observe that for a
fixed R0, the equilibrium disease prevalence is lower when
assuming heterogeneous populations. From each plot, it is
evident that for fixed g, the prevalence curve goes down as
variance increases. Comparing the three plots it is also apparent
that for fixed a1, the prevalence curve goes down as the
proportion of the population at low risk ðgÞ increases. Moreover,
the disease prevalence appears to increase monotonically with the
transmission potential, R0. The following theorem summarizes
these results.

Theorem 3.1.3. Let s ¼ 0 or 1 and let Is, s ¼ 0;1, designate the

disease prevalence at equilibrium, for the corresponding system (2.1)
with R041. Then, for g and a1 2 ð0;1Þ

@Is

@g p0;
@Is

@a1
X0 (3.1)
ROO
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and

@Is

@R0
40; s ¼ 0;1. (3.2)

Previous studies based on the SIR framework have shown that
heterogeneity in susceptibility to infection gives rise to smaller
epidemics (Gart, 1968; Ball, 1985; Anderson and Britton, 1998).
Here we find that disease prevalence at equilibrium is also lower
in the presence of heterogeneity, and this is true for both SIR and
SIS models. This effect is more pronounced the higher the variance
in risk distribution.
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3.2. Infection risk profiles

The profiles of the infection risk, within the susceptible and the
recovered classes at endemic equilibrium depend on assumptions
on population heterogeneity and transmission intensity. For
s ¼ 0;1, we define the average risk factor among susceptible
and recovered individuals as

āsS ¼
a1S�1 þ a2S�2

S�1 þ S�2
; āsR ¼

a1R�1 þ a2R�2
R�1 þ R�2

, (3.3)

where S�i and R�i are the susceptible and recovered individuals in
each frailty group, represented as proportions of the total
population at endemic equilibrium. Fig. 3 shows contour plots
for the average risk factor among individuals never infected ðSÞ
and those infected and recovered at least once ðRÞ. Note, however,
that these factors are further multiplied by l and sl to produce
the average per capita rates of infection in S and R, respectively.
This figure reflects how selection imposed by infection acts on the
risk profiles.

In the SIR model, the average risk decreases as R0 increases
both for never-infected individuals and previously infected
individuals (Fig. 3(a) and Fig. 3(b), respectively). This selection
UNCORRECTED
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mechanism underlies counter-intuitive trends that will emerge
with the exploration of s 2 ð0;1Þ in Section 4, such as rates of
reinfection decreasing with increasing R0 and rates of reinfection
appearing higher than rates of first infection even in the presence
of partially protective immunity.

In the SIS model, selection maintains a large proportion of the
high-risk group in the infected class and the mechanism is not
entirely visible in the uninfected sub-population. Note that the
average risk among never-infected individuals is roughly constant
with R0 (Fig. 3(c)) while among previously infected individuals
(Fig. 3(d)) the average risk decreases with increasing R0 as in the
susceptible class of the SIR model (Fig. 3(a)).

The properties observed for ā0
S are summarized in the

following theorem, proved in Appendix A.

Theorem 3.2.1. Let R041. Then, for g and a1 2 ð0;1Þ

@ā0
S

@g
p0;

@ā0
S

@a1
X0 (3.4)

and

@ā0
S

@R0
o0. (3.5)

The decrease on the average risk of infection of the susceptible
class explains how prevalence decreases with population hetero-
geneity. In fact, the average force of infection, l̄

0
, depends on the

transmission intensity and on the average infection risk of the
population subject to infection,

l̄
0
¼ l0ā0

S ¼ bI0ā0
S ¼ mðR0ā0

S � 1Þ, (3.6)

where we expressed I0 as a function of ā0
S according to formula

(B.2) given in Appendix B. Directly from Theorem 3.2.1 it follows
that heterogeneity decreases the force of infection, since

@l̄
0

@g p0;
@l̄

0

@a1
X0. (3.7)

Remark 3.1. As mentioned above, when s ¼ 1 we can identify our
model with a SIS model through the identification of the class
Sþ R with the susceptible class of the SIS. It is then natural to
investigate the effect of heterogeneity on prevalence by consider-
ing the dependence on the parameters of the average risk of
infection of the Sþ R class, ā1

SþR, defined as

ā1
SþR:¼

a1ðS
�
1 þ R�1Þ þ a2ðS

�
2 þ R�2Þ

ðS�1 þ R�1Þ þ ðS
�

2 þ R�2Þ

and of the corresponding force of infection, l̄
1
, defined as

l̄
1
¼ l1ā1

SþR ¼ bI1ā1
SþR. This is easily done, since from Remark B.1

and Eq. (A.4) in Appendix B we have, respectively, that ā1
SþR ¼ ā0

S

and that l̄
1
¼ ðtþ mÞ=ml̄0

. As a consequence, l̄
1

satisfies the
inequalities (3.7), and we conclude that the decrease on the
average risk of infection of the susceptible plus recovered class
explains how prevalence decreases with population heterogeneity
in the SIS model.

Finally, as a side remark, we would like to note that with respect

to the quantities defined in (3.3), it is

ā1
SþR ¼ ðā

1
S S� þ ā1

RR�Þ=ðS� þ R�Þ.

Despite having the same infectivity, the frailty groups con-
tribute differently to the force of infection. Disease is more easily
spread on the high-risk group due to its increased susceptibility,
so the relative size of class I2 is also greater. To further explore
how the contribution of the high-risk group to the total
proportion of infections changes with transmission intensity and
heterogeneity, we define the quotient Qs

¼ Is2=Is at equilibrium.
For s ¼ 0 or s ¼ 1, the contribution of the high-risk group, Qs,
ptibility to infection can explain high reinfection.... J. Theor. Biol.
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decreases as transmissibility increases and it is greater when this
frailty group is larger (g close to 0) or when its relative risk of
infection is further from the population average (a1 close to 0).
The following theorem summarizes these results.

Theorem 3.2.2. Let R041. Then, for g and a1 2 ð0;1Þ

@Qs

@g p0;
@Qs

@a1
p0 (3.8)

and

@Qs

@R0
o0 s ¼ 0;1. (3.9)

Overall, the contribution of the high-risk group can vary from a2

times its relative size, near the epidemic threshold, to its relative
size, for sufficiently high transmission. This can have important
consequences for the effectiveness of interventions, specially in
low endemic regions where the groups with increased risk have
more impact. We will focus more on this aspect when studying
the SIRI model.
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4. The SIRI model

4.1. Endemic equilibrium

Here we consider the effect of heterogeneity in the inter-
mediate scenario where infection induces partial immunity. It is
assumed that individuals are protected while infected but regain
some susceptibility upon recovery. Susceptibility to reinfection is
reduced by a factor s 2 ½0;1�, compared to susceptibility to first
infection. Endemic equilibria and infection risk profiles have been
analyzed for the limiting cases s ¼ 0;1 (corresponding to SIR, SIS
models) in Section 3. In both cases, disease persistence is
determined by the threshold condition, R041, irrespective of
population structure, sustaining levels of infection that are
generally much higher in the SIS scenario due to reinfection. In
the intermediate case, another threshold has been identified, R0 ¼

1=s (Gomes et al., 2004, 2005), to describe a transition from SIR-
to SIS-like behavior. In Appendix C we show that the same
expression holds for the reinfection threshold in the presence of
heterogeneity in susceptibility to infection.

Quantitative discrepancies between epidemiological data and
model results have been reported previously and generally
attributed to case sub-notification or population heterogeneity
not captured by simple models (Fine and Clarkson, 1982;
Anderson and May, 1985; van Boven et al., 2001). Systematic
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investigations of these factors are expected to provide valuable
insights with wide application in infectious disease epidemiology.
In Section 3 we have shown that heterogeneity in susceptibility to
infection reduces prevalence of infection in SIR and SIS models
and here we extend this conclusion to the general SIRI framework.
Fig. 4 shows the endemic equilibrium for different infection risk
profiles of the population. When heterogeneity is considered the
disease prevalence is lower than in the homogeneous case, and
this effect is more pronounced when the variance, vara, is higher
(high g and low a1). These trends are observed for 0psp1,
including the particular cases s ¼ 0;1, analyzed previously.
ROOF

4.2. Infection risk profiles

The reduction in disease prevalence is associated with the
changes in the infection risk profile imposed by transmission on
both susceptible and recovered classes. In this section we analyze
how the average infection risk of susceptible and recovered
individuals change with R0 and heterogeneity (here represented
by the proportion the population with low risk, g, and risk of these
individuals relative to the average, a1). We remark that when s 2
ð0;1Þ the average risk factors in the susceptible and recovered
classes, āS and āR, respectively, are defined as in (3.3).

Fig. 5 illustrates the average risk factor for susceptible and
recovered classes for g ¼ 0:8 and s ¼ 0:25, by means of contour
plots in the parameter space of transmissibility, R0, and
heterogeneity, a1. Generally, the average risk among susceptible
individuals decreases as R0 increases (Fig. 5(a)) while the opposite
is observed among recovered individuals (Fig. 5(b)). The
reinfection threshold, marked by vertical dotted lines, is
associated with a saturation of the trend observed for the
susceptible (āS appears constant for R0 above threshold) and an
average risk equal to one in the recovered class ðāR ¼ 1Þ. Compare
with Fig. 3. Overall, we have two equilibrium regimes. Below the
reinfection threshold, the uninfected population is composed of
many susceptible individuals with an average risk factor below
one, and few recovered individuals with high risk due to selection
imposed by infection. Above the reinfection threshold, most
individuals have already experienced at least one infection and are
still susceptible to reinfection but have an average risk factor
below one. In the latter case, selection maintains a large
proportion of the population in the infected class.

The patterns described for susceptible and recovered risk
profiles have strong implications for the interpretation of disease
dynamics, notably the contribution of reinfection to the overall
disease incidence. We define the incidence of first infection and
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the incidence of reinfection, in the respective populations at risk,
as

Y1 ¼
slða1S�1 þ a2S�2Þ

S�
¼ lāS, (4.1)

Y2 ¼
slða1R�1 þ a2R�2Þ

R�
¼ slāR. (4.2)

The total incidence in the entire uninfected population is then
calculated as

Ytotal ¼ ðY1S� þ Y2R�Þ=ðS� þ R�Þ.

Fig. 6 shows that despite reinfection being hindered by
heterogeneity, the rate of reinfection among recovered
individuals, Y2, can be higher than overall rate of infection in
the entire uninfected population, Ytotal. We see that, for the
homogeneous case ða1 ¼ 1Þ, the quotient, Y2=Ytotal, increases
monotonically with R0, and for R041=s it is above one. For the
heterogeneous case, reinfection among the recovered class can be
higher than disease incidence also below the reinfection
threshold. Even for low endemic populations, where the
contribution of reinfection is low, it is possible that recovered
individuals, as a group, show a higher risk of reinfection than
expected when assuming partial immunity. This can have major
Please cite this article as: Rodrigues, P., et al., Heterogeneity in susce
(2009), doi:10.1016/j.jtbi.2009.03.013
implications for the interpretation of epidemiological data. In
particular, overlooking host heterogeneity may lead to misleading
expectations for the effectiveness of control measures.
4.3. Contribution of the high-risk group

As we have observed, for intermediate transmission levels, that
reinfection occurs mainly in the high-risk group. So, it is also
expected that its contribution to the overall transmission should
be higher than in the heterogeneous SIR and SIS models.

Fig. 7 shows the contribution of the high-risk group to the total
disease prevalence for the particular case g ¼ 0:8 and a1 ¼ 0:2.
This corresponds to a risk group of 20% of the total population
with an increased risk of infection a2 ¼ 4:2 times that of the total
population, and 21 times that of the low-risk group. Moreover, for
this choice of parameters, disease prevalence corresponds to
about 30% of the homogeneous model prediction as represented
by the dashed line in Fig. 4(b) for s ¼ 0:25. Here a sub-population
of 20% accounts from 70% to 85% of the infection, depending on
the intensity of transmission. The contribution of the high-risk
group is stronger near the endemic and reinfection thresholds.
Near the thresholds the classes that are susceptible to infection
ptibility to infection can explain high reinfection.... J. Theor. Biol.
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and reinfection, S and R, respectively, reach their maximum
capacity, accounting for almost all population. Therefore, the
average risk on these classes and the selection pressure on the
high-risk group are maximum.

When considering heterogeneous infectivity, theoretical work
and different field studies have suggested that roughly 20% of the
infectious individuals can be responsible for 80% of transmission
(Galvani and May, 2005; Woolhouse et al., 1997). This 20=80 rule
has important consequences for disease control (Woolhouse et al.,
1997). Here we obtain similar effects by assuming heterogeneity
in susceptibility to infection as previously estimated for the case
of malaria transmission, where 20% of people receive 80% of all
infections (Smith et al., 2005) due to heterogeneity in biting or in
susceptibility to infection.
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5. Targeted vaccination

The greater impact of the high-risk group on transmission
should be taken into account when planning interventions for
disease control. In this section, we compare uniform and targeted
vaccination strategies. Comparison is made on the basis of the
vaccination coverage required, under different strategies, to obtain
the same impact. We implement vaccination at birth assuming
that the protection conferred by the vaccine is equivalent to that
of natural immunity. Vaccination reduces the risk of infection but
the relative susceptibility of the two frailty groups is maintained.
This is formalised as

S0i ¼ ð1� viÞmgi � laiSi � mSi;

I0i ¼ laiSi þ slaiRi � ðtþ mÞIi;

R0i ¼ vimgi þ tIi � slaiRi � mRi; i ¼ 1;2:

8><
>: (5.1)

The epidemic threshold for system (5.1) is described by

R0 ¼
1

ðð1� v1Þ þ sv1Þga1 þ ðð1� v2Þ þ sv2Þð1� gÞa2
. (5.2)

First, we consider a strategy based on a limited quantity of
vaccines corresponding to a given coverage, v. We can then vary
the percentage of each risk group covered by the program by
fixing v ¼ v1gþ v2ð1� gÞ and varying v2. Naturally, increasing the
representation of the high-risk group in the vaccinated sub-
population will increase the impact of the program (Britton, 1998).
Here we reverse the argument and inspect what coverage we need
to attain with a targeted strategy in order to achieve the same
effectiveness as the corresponding uniform strategy. This will
provide an estimation for how many doses we save by targeting
the vaccination program to those individuals at higher risk, as a so
called top-to-bottom strategy (Britton, 1998).

Fig. 8 illustrates the saving associated with targeting. For Fig.
8(a) we use as a reference the reduction in disease prevalence
achieved with a uniform vaccination strategy with coverage
v ¼ 0:5. The figure shows the coverage for a targeted strategy to
achieve the same reduction in disease prevalence. Below the
reinfection threshold ðR0 ¼ 4Þ it is always possible to achieve the
same reduction using a targeted strategy with lower coverage,
while above the reinfection threshold there is no difference. Note
that this is achieved by vaccinating only a proportion of the high-
risk group (if R0 is low enough—dotted line in the figure) or by
vaccinating completely the high-risk group and a proportion of
the low-risk group (dashed lines in the figure).
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Fig. 8(b) represents elimination coverages under different
strategies. The critical vaccination coverage to eliminate the
infection for a given R0 is vc ¼ ð1� 1=R0Þ=ð1� sÞ for the uniform
strategy (full line) and vc ¼ ð1� 1=R0Þð1� gÞ=½ð1� sÞð1� ga1Þ� or
vc ¼ ½ð1� 1=R0Þ=ð1� sÞ � ð1� a1Þ�=a1 for the top-to-bottom strat-
egy with vaccination of only the high-risk group (dotted line) or
both groups (dashed line), respectively. Under the reinfection
threshold, the elimination coverage is always lower for the
targeted strategy. Note that it is impossible to interrupt transmis-
sion and eliminate the infection above the reinfection threshold as
previously described (Gomes et al., 2004, 2005). Above this
threshold, only a superior vaccine, capable of inducing an immune
response more effective than natural infection, would be effica-
cious.
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6. Discussion

We have previously identified a reinfection threshold in the
SIRI model and characterised how this induces a sharp division of
the transmissibility axis into two regimes: reinfection is rare
below threshold (SIR behavior) and very frequent above (SIS
behavior). Here we describe how heterogeneity in innate
susceptibility to infection smoothens this transition by making
both regimes less extreme. Heterogeneity is always present in
nature and it is important to understand how it can affect system
behavior both qualitatively and quantitatively.

We perform a systematic analysis of the SIRI model with
distributed susceptibility. The most striking result is the predic-
tion that the average rate of reinfection may be higher than the
average rate of primary infection, which may seem paradoxical
given that primary infection induces life-long partial protection.
The rationale behind this result is that infection generates a
selection mechanism that skews the susceptibility profiles of the S

and R compartments to lower and higher susceptibility, respec-
tively. In other words, selection acts to keep fit individuals in S and
frail individuals in R. If this effect is strong enough we have a
scenario where, on average, the rate of reinfection (infection out of
R) is higher than the rate of primary infection (infection out of S)
even though each individual has a risk reduction following
primary infection. This mechanism may explain high rates of
tuberculosis reinfection recently reported (Verver et al., 2005).

A rule of thumb has been proposed in infections disease
dynamics, whereby 20% of the population is responsible for 80% of
all infections due to heterogeneity in susceptibility or infectivity
(Woolhouse et al., 1997). However, direct confirmation of this
hypothesis requires very large epidemiological studies. For
diseases that induce partial immunity, mathematical models such
as those proposed here offer the practical alternative of using the
ratio between reinfection and primary infection rates as an
indirect measure of population heterogeneity.

In the SIRI models with heterogeneous susceptibility, we
predict that disease prevalence is lower than the corresponding
homogeneous model, as described before for epidemic SIR models
(Gart, 1968; Ball, 1985; Anderson and Britton, 1998; Miller, 2007).
In other words, to obtain a given level of disease prevalence, the
heterogeneous model requires a higher value for the transmission
intensity, R0. This implies that elimination strategies require more
effort under wider heterogeneity (Anderson and May, 1991).

The success of vaccination depends then on the ability to target
those individuals at higher groups. Generally, there is an
additional benefit associated with targeting vaccination strategies,
as previously described for the SIR epidemic model (Britton, 1998;
Koopman et al., 2005). In the case of the SIRI model, however, the
added value of targeting high-risk groups is limited to those
regions where transmission is below the reinfection threshold.
Please cite this article as: Rodrigues, P., et al., Heterogeneity in susce
(2009), doi:10.1016/j.jtbi.2009.03.013
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Appendix A. Proofs of Section 3.1

For s ¼ 0 (SIR model), from system (2.1) we obtain

S01 ¼ mg� bIa1S1 � mS1;

S02 ¼ mð1� gÞ � bIa2S2 � mS2;

I0 ¼ bIða1S1 þ a2S2Þ � ðtþ mÞI:

8><
>: (A.1)

When s ¼ 1 (SIS model), we can collapse the recovered classes
into the susceptible ones in system (2.1). Then, if we denote for
simplicity by Si the classes Si þ Ri, i ¼ 1;2, and use the fact that
gi ¼ Si þ Ii, we obtain the following system:

S01 ¼ ðtþ mÞg� bIa1S1 � ðtþ mÞS1;

S02 ¼ ðtþ mÞð1� gÞ � bIa2S2 � ðtþ mÞS2;

I0 ¼ bIða1S1 þ a2S2Þ � ðtþ mÞI:

8><
>: (A.2)

Note that system (A.2) is equivalent to an SIR model where the
birth and death rate are equal to ~m ¼ tþ m and the recovery rate is
~t ¼ 0. &

Proof of Theorem 3.1.1. Let us first consider s ¼ 0. The Jacobian
of system (A.1) at the disease-free equilibrium is

JðE0Þ ¼

�m 0 �ba1g
0 �m �ba2ð1� gÞ
0 0 b� ðtþ mÞ

2
64

3
75.

The eigenvalues of this matrix are �m and b� ðtþ mÞ. So we
conclude that E0 is locally asymptotically stable for R0o1 and
unstable for R041. Moreover, system (A.1) is equivalent to system
(3.1) in Hyman and Li (2005) for n ¼ 2. In Theorem 3.1 of that
paper, the authors prove the global stability for the disease-free
equilibrium for R0o1.

For the case s ¼ 1, calculations can be repeated using ~m ¼ tþ m
as the new birth and death rates and ~t ¼ 0 as the new rate of

recovery. &

Proof of Theorem 3.1.2. The second member of system (A.1)
vanishes at the equilibria. From the two first equations we get a
relation between Si and I: S1 ¼ gm=ðmþ bIa1Þ and
S2 ¼ ð1� gÞm=ðmþ bIa2Þ. Substituting in the third one we get
ðtþ mÞðPðIÞ=Q ðIÞÞI ¼ 0, where PðIÞ ¼ a2I2

þ a1I þ a0 with
a2 ¼ �a1a2R2

0ðtþ mÞ
2, a1 ¼ R0ðtþ mÞmða1a2R0 � ða1 þ a2ÞÞ and

a0 ¼ m2ðR0 � 1Þ and Q ðIÞ ¼ ðmþ bIa1Þðmþ bIa2Þ. Note that for IX0
we have Q ðIÞ40. We conclude that the I coordinate of the
nontrivial equilibria of system (A.1) will correspond to a positive
solution of PðIÞ ¼ 0. Since a2o0 and a040 for R041 we conclude
that the polynomial P has exactly one positive solution of the
form:

I0
ðR0Þ ¼

�a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a2a0

q
2a2

(A.3)

and this proves the first part of the theorem.

In what concerns stability, system (A.1) is equivalent to system

(3.1) in Hyman and Li (2005) for n ¼ 2. In Theorem 3.2 of that

paper, the authors prove the stability for the endemic equilibrium

for R041 via Lyapunov stability theory.
ptibility to infection can explain high reinfection.... J. Theor. Biol.
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As in the previous proof, for the case s ¼ 1, calculations can be

repeated using ~m ¼ tþ m as the new birth and death rates and

~t ¼ 0 as the new rate of recovery. &

Remark A.1. From the proof of Theorem 3.1.2 it is possible to
establish a relation between the disease prevalence of both
models. In fact, for every g 2 ð0;1Þ and a1 2 ð0;1� we have

I1
¼
tþ m
m

I0, (A.4)

where I0 and I1 represent the disease prevalence at equilibrium
for the SIR and SIS models, respectively. This relation is system-
atically used to extend the proofs from the case s ¼ 0 to the case
s ¼ 1.

We can also conclude that for all g 2 ð0;1Þ and a1 2 ð0;1�

lim
R0!þ1

I0
¼

m
tþ m

and lim
R0!þ1

I1
¼ 1. (A.5)

Remark A.2. From the Proof of Theorem 3.1.2, taking into account
Remark A.1, we recover the expression of the endemic equilibrium
for the homogeneous model, both for the s ¼ 0 and 1 cases, by
using a1 ¼ a2 ¼ 1 (or a1 ¼ 1):

I0
HomðR0Þ ¼

m
tþ m 1�

1

R0

� �
and I1

HomðR0Þ ¼ 1�
1

R0
. (A.6)

Proof of Theorem 3.1.3. First, let s ¼ 0 and denote by I0 and I0� ,
respectively, the unique positive and negative roots of the
polynomial P defined in the proof of Theorem 3.1.2. Differentiating
PðI0
Þ ¼ 0 with respect to a parameter �, we get

@I0

@�
¼

�
@a2

@�
I02
�
@a1

@�
I0
�
@a0

@�
2a2I0

þ a1

. (A.7)

Note that we have I0
þ I0�

¼ �a1=a2 and that a2o0. Hence we
conclude that the denominator of (A.7) verifies
2a2I0

þ a1 ¼ a2ð2I0
þ a1=a2Þ ¼ a2ð2I0

� I0
� I0�
Þ ¼ a2ðI

0
� I0�
Þo0.

As a consequence of this fact, the sign of (A.7) will be the opposite
of the one of the numerator.

Let � ¼ g. In this case, @a0=@g ¼ 0. So, @I0=@gp0 iff

ð@a2=@gÞI0
þ @a1=@go0. Now we replace I0 by its expression in

(A.3). Since a2o0 and @a2=@go0 we get the following equivalent

condition �a1 þ 2a2ð@a1=@gÞ=ð@a2=@gÞo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a0a2

q
. If the left-

hand side is negative, then the condition is true and the result is

proved. Otherwise, we can square both sides. In this case we get

ð�a1 þ 2a2ð@a1=@gÞ=@a2=@gÞ2 � a2
1 þ 4a0a2 ¼ mbi�;

Appendix B. Proofs of Section 3.2

First we derive an expression which relates the disease
prevalence with the relative risk of the susceptible class in the
case of the SIR model and the average risk of infection of the Sþ R

class in the case of the SIS system. Then we can use the results
from the previous section to prove Theorem 3.2.1 and to get
Remark 3.1.

In the SIR case, from (A.1) letting S ¼ S1 þ S2, we obtain

S0 ¼ m� bIā0
S S� mS;

I0 ¼ bIā0
S S� ðtþ mÞI:

(
(B.1)

Hence, we get an implicit expression for the disease prevalence at
equilibrium in the case s ¼ 0

I0
¼

m
tþ m 1�

1

ā0
S R0

 !
. (B.2)

Similarly, from system (A.2), we obtain the relation between the
disease prevalence I1 and the average risk of infection
Please cite this article as: Rodrigues, P., et al., Heterogeneity in susce
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I1
¼ 1�

1

ā1
SþRR0

: & (B.3)

Remark B.1. In particular, from Remark A.1 we conclude by this
last equality that ā0

S ¼ ā1
SþR.

Proof of Theorem 3.2.1. Let s ¼ 0. From (B.2) we obtain the
following expression for ā0

S :

ā0
S ¼

m
R0ðm� ðtþ mÞI0

Þ
. (B.4)

Thus, for � ¼ g or a1 we get

@ā0
S

@�
¼

mðtþ mÞ
R0½m� ðtþ mÞI0

�2

@I0

@�
, (B.5)

which has the same sign as @I0=@�.
For the derivative of ā0

S with respect to R0 we get

@ā0
S

@R0
¼

m
½R0ðm� ðtþ mÞI0

Þ�2
m� ðtþ mÞI0

� R0ðtþ mÞ
@I0

@R0

" #
. (B.6)

Hence, to prove that the derivative is negative is equivalent to

prove that I0
þ @I0=@R0om=ðtþ mÞ. Now we substitute ðI0

Þ
2 by

�ða1I0
þ a0Þ=a2 and @I0=@R0 by the expression from (A.7).

Furthermore, we replace I0 by its expression in (A.3). So, taking

into account that a2o0 and A ¼ R0ð@a2=@R0Þa1 � a2a1 �

ð@a1=@R0Þa2R0 � 2a2
2m=ðtþ mÞ ¼ �mðtþ mÞ

3a2
1ð1� a1gÞ2R4

0=ð1�

gÞ2o0 we get to the equivalent condition

�a1 þ 2a2B=Ao
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a0a2

q
. (B.7)

If the left-hand side is negative then the condition is true.

Otherwise we can square both sides of (B.7). Hence ð�a1 þ

2a2B=AÞ2 � a2
1þ

Proof of Theorem 3.2.2. As for the previous proofs, we start by
studying the case s ¼ 0 and then the case s ¼ 1 follows directly
from Remark A.1. In fact, in this case we have Q0

¼ Q1.

For simplicity we write Q0
¼ I0

2=I0 as

1� I0
1=I0
¼ 1� R0a1mg=ðR0ðtþ mÞI0a1 þ mÞ. The derivative of Q0

with respect to g is

@Q0

@g
¼ �

R0a1m mþ R0a1ðtþ mÞ I0
� g@I0

@g

 !" #

ðR0ðtþ mÞI0a1 þ mÞ2
. (B.8)

But I0
� g@I0=@g ¼ I0

ð1þ gðð@a2=@gÞI0
þ @a1=@gÞ=ð2a2I0

þ a1ÞÞX0

from what was seen in the proof of Theorem 3.1.3. Thus we

conclude that @Q0=@gp0.

The derivative of Q0 with respect to a1 is

@Q0

@a1
¼ �

R0gm m� R0a2
1ðtþ mÞ

@I0

@a1

" #

ðR0ðtþ mÞI0a1 þ mÞ2
. (B.9)

This expression has the opposite sign of

C ¼ m� R0a2
1ðtþ mÞ@I0=@a1. Again, we replace I02

by �ða1I0
þ

a0Þ=a2 and then I0 by its expression in (A.3). Finally, we conclude

that CX0 iff �a1Aþ 2a2BpA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 4a2a0

q
, where A ¼

2ma2
2 � R0a2

1ðtþ mÞð@a2=@a1Þa1 þ R0a2
1ðtþ mÞð@a1=@a1Þa2 and

B ¼ a1a2m� R0a2
1ðtþ mÞð@a2=@a1Þa0. Note that by substituting ai

and its derivatives in A we can easily conclude that A is positive.

Therefore, we can divide both sides by A, obtaining that CX0 iff

�a1 þ 2a2B=Ap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 4a2a0

q
. (B.10)

If the left-hand side is negative, then the condition is verified.
ptibility to infection can explain high reinfection.... J. Theor. Biol.
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Otherwise we can square both sides of (B.10). Hence, we get

�4ð1� a1gÞ2ga2
1m2ðtþ mÞ2R4

0=ð1� gÞp0. This implies that CX0 or,

equivalently, that @Q0=@a1p0, which ends this part of the proof.

The derivative of Q0 with respect to R0 is

@Q0

@R0
¼

a1gm m� R2
0a1ðtþ mÞ

@I0

@R0

" #

ðR0ðtþ mÞI0a1 þ mÞ2
. (B.11)

This expression has the same sign of C ¼ b� R2
0@I0=@R0, where

b ¼ m=ða1ðtþ mÞÞ. We conclude that C40 iff

�a1Aþ 2a2B4A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 4a2a0

q
, where

A ¼ ð@a2=@R0Þa1 � ð@a1=@R0Þa2 � 2a2
2b0, B ¼ a0ð@a2=@R0Þ �

ð@a0=@R0Þa2 � b0a1a2 and b0 ¼ ba2=R2
0. Note that by substituting ai

and its derivatives in A we can easily conclude that A is negative.

So, we can divide both sides by A, obtaining that C40 iff

�a1 þ 2a2B=Ao
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 4a2a0

q
. (B.12)

If the left-hand side is negative the condition is verified.

Otherwise we can square both sides of (B.12). Hence, we get

�4ð1� a1gÞ2ga2
1m2ðtþ mÞ2R4

0=ð1� gÞo0. This ends the proof. &

Appendix C. The reinfection threshold for the heterogeneous
SIRI model

To compute the reinfection threshold associated with the
heterogeneous SIRI model (2.1) with n ¼ 2, we first have to define
the reinfection sub-model. This model corresponds to the limit
situation where all individuals that enter in the system are
partiality immunized and only subjected to reinfection. Hence, the
reinfection sub-model has only four classes and can be repre-
sented with the following system of differential equations:

R01 ¼ mgþ tI1 � sla1R1 � mR1;

I01 ¼ sla1R1 � ðtþ mÞI1;

R02 ¼ mð1� gÞ þ tI2 � sla2R2 � mR2;

I02 ¼ sla2R2 � ðtþ mÞI2:

8>>>><
>>>>:

(C.1)

The reinfection sub-model has a unique disease-free equili-
brium E0 ¼ ðg;0;1� g;0Þ. Analyzing the Jacobian at E0 we
conclude that a bifurcation on the transmission parameter b
occurs at b ¼ ðtþ mÞ=s when the disease-free equilibrium
changes its stability. In terms of the basic reproduction number
the bifurcation is attained at R0 ¼ 1=s.
UNCOR

Please cite this article as: Rodrigues, P., et al., Heterogeneity in susce
(2009), doi:10.1016/j.jtbi.2009.03.013
 P
ROOF

References

Anderson, H., Britton, T., 1998. Heterogeneity in epidemic models and its effect on
the spread of infection. J. Appl. Probab. 35, 651–661.

Anderson, R.M., May, R.M., 1985. Age-related changes in the rate of disease
transmission: implications for the design of vaccination programmes. J. Hyg.
94 (3), 365–436.

Anderson, R.M., May, R.M., 1991. Infectious Diseases of Humans. Oxford Science
Publication, Oxford.

Ball, F., 1985. Deterministic and stochastic epidemics with several kinds of
susceptibles. Adv. Appl. Probab. 17 (1), 1–22.

Britton, T., 1998. On critical vaccination coverage in multiple epidemics. J. Appl.
Probab. 35, 1003–1006.

Coutinho, F.A.B., Massad, E., Lopez, L.F., Burattini, M.N., Struchiner, C.J., Azevedo-
Neto, R.S., 1999. Modelling heterogeneities in individual frailties in epidemic
models. Math. Comput. Mod. 30, 97–115.

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J., 1990. On the definition and
computation of the basic reproduction ratio R0 in models for infectious
diseases in heterogeneous populations. J. Math. Biol. 28, 365–382.

Fine, P.E., Clarkson, J.A., 1982. Measles in England and Wales—II: the impact of the
measles vaccination programme on the distribution of immunity in the
population. Int. J. Epidemiol. 11 (1), 15–25.

Galvani, A., May, R.M., 2005. Dimensions of superspreading. Nature 438, 293–295.
Gart, J.J., 1968. The mathematical analysis of an epidemic with two kinds of

susceptibles. Biometrics 24, 557–566.
Gomes, M.G.M., White, L.J., Medley, G.F., 2004. Infection, reinfection, and

vaccination under suboptimal immune protection: epidemiological perspec-
tives. J. Theor. Biol. 235 (2), 151–152.

Gomes, M.G.M., White, L.J., Medley, G.F., 2005. The reinfection threshold. J. Theor.
Biol. 236, 111–113.

Hyman, M.J., Li, J., 2000. An intuitive formulation for the reproductive number for
the spread of diseases in heterogeneous populations. Math. Biosci. 167, 65–86.

Hyman, M.J., Li, J., 2005. Differential susceptibility epidemic models. J. Math. Biol.
50, 626–644.

Koopman, J.S., Simon, C.P., Riolo, C.P., 2005. When to control endemic infections by
focusing on high-risk groups. Epidemiology 16 (5), 621–627.

Miller, J.C., 2007. Epidemic size and probability in populations with heterogeneous
infectivity and susceptibility. Phys. Rev. E 76.

Smith, D.L., Dushoff, J., Snow, R.W., Hay, S.I., 2005. The entomological inoculation
rate and Plasmodium falciparum infection in Africa children. Nature 438 (24),
492–495.

van Boven, M., de Melker, H.E., Schellekens, J.F.P., Kretzschmar, M., 2001. A model
based evaluation of the 1996–1997 pertussis epidemic in the Netherlands.
Epidemiol. Infect. 127, 73–85.

Verver, S., Warren, R., Beyers, N., Richardson, M., van der Spuy, G., Borgdorff, M.W.,
Enarson, D.A., Behr, M.A., van Helden, P.D., 2005. Rate of reinfection
tuberculosis after successful treatment is higher than rate of new tuberculosis.
Am. J. Respir. Crit. Care Med. 171, 1430–1435.

Woolhouse, M.E.J., Dye, C., Etard, J.F., Smith, T., Charlwood, J.D., Garnett, G.P., Hagan,
P., Hii, J.L.K., Ndhlovu, P.D., Quinnell, R.J., Watts, C.H., Chandiwana, S.K.,
Anderson, R.M., 1997. Heterogeneities in the transmission of infectious agents:
implications for the design control programs. Proc. Natl. Acad. Sci. USA 94,
338–342.
RE
ptibility to infection can explain high reinfection.... J. Theor. Biol.

dx.doi.org/10.1016/j.jtbi.2009.03.013
Original Text:
siri 

Original Text:
jacobian 

Original Text:
diseasefree 

Original Text:
Prob.

Original Text:
J Hyg (Lond).

Original Text:
diseases 

Original Text:
humans

Original Text:
Prob.

Original Text:
Prob.

Original Text:
Comp. 

Original Text:
Wales&ndash;

Original Text:
The 

Original Text:
Int J 

Original Text:
Biosc.

Original Text:
E.

Original Text:
1996-7 


	Heterogeneity in susceptibility to infection can explain high reinfection rates
	Introduction
	The model
	Basic reproduction number

	The limit cases, SIR ( =0) and SIS ( =1)
	Endemic equilibrium
	Infection risk profiles

	The SIRI model
	Endemic equilibrium
	Infection risk profiles
	Contribution of the high-risk group

	Targeted vaccination
	Discussion
	Acknowledgments
	Proofs of Section 3.1
	Proofs of Section 3.2
	The reinfection threshold for the heterogeneous SIRI model
	References




