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Abstract. In this paper we analyze the dynamics of two families of epidemiological models
which correspond to transitions from the SIR (susceptible-infectious-resistant) to the SIS
(susceptible-infectious-susceptible) frameworks. In these models we assume that the force
of infection is a nonlinear function of density of infectious individuals, I . Conditions for the
existence of backwards bifurcations, oscillations and Bogdanov-Takens points are given.

1. Introduction

The simplest mathematical models for infectious disease dynamics are based on
averages. Hosts are classified as susceptible (S), infectious (I ), or recovered (R)

with immunity [13,4]. The SIR andSIS frameworks are used to model two extreme
situations: in SIR, immunity is assumed to be fully protective and prevents any
reinfection; in SIS, immunity is assumed not to protect against reinfection and pre-
vious infection does not alter the risk of subsequent reinfection. Most real infections
lie somewhere between these two extremes, and different model families can be
constructed to represent specific biological mechanisms of sub-optimal immunity
([9,25]).

For a transmissible pathogen the risk of infection increases with the density
of infectious individuals in the population, i.e. the risk of a susceptible individual
becoming infected increases with the proportion of the population that are infected.
A linear relationship is the most common assumption so that doubling the number
of infectious individuals doubles the rate of infection to each susceptible. How-
ever, it has long been established in the mathematical biology literature that model
behaviour is sensitive to deviations from this assumption (see [14] and references
therein).

In diseases that do not elicit significant protective immunity (such as chronic
infections or in the SIS model), nonlinear incidence functions tend to generate bi-
stable behaviour as a positive feedback maintains high or low endemicities depend-
ing on the initial infection density ([17,5,24]). The same mechanism is also capable
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of sustaining a periodic epidemic behaviour ([1,22]) if there is significant time delay
in the replenishment of the susceptibility pool (such as in the SIR model where sus-
ceptibles are supplied by births). Intermediate scenarios (such as the SIRS model)
can accommodate either behaviour depending on the formulation and parameter
values ([14,12,11]). In this paper we analyse the epidemiological consequences of
nonlinear incidence rates in models that bridge the SIR and SIS extremes. Two
distinct mechanisms (temporary immunity and partial immunity) are implemented
and systematically analysed. In both cases Bogdanov-Takens points and associated
homoclinic bifurcations are detected, implying a tendency for intermittent epidemic
behaviour. Despite increasing awareness of these nonlinear effects, models aimed at
describing the dynamics of specific diseases predominantly continue to implement
the force of infection as increasing linearly with the prevalence of infectious indi-
viduals. This is likely to be attributed to difficulties in deriving nonlinear functional
forms for the force of infection from surveillance data [15] or from mechanistic
assumptions.

Transmission of infection requires that susceptible individuals encounter the
infectious agent, and this is typically through contact with infectious individuals.
There is good documentation on dose-response relationships from experimental
studies in terms of infection, disease, and immunity. The majority of such empir-
ical studies conclude that there is a minimal dose required to induce a response,
and above this threshold the probability of response increases nonlinearly with the
dose of exposure [8,18]. To incorporate this observation into a model of transmis-
sion we need a scheme that processes the shedding and spread of infectious agent
to determine the average dose challenging a susceptible. This is a rather complex
mechanism, and it depends on measures of infectious agent shed by infectious indi-
viduals and on contact patterns of the host population (modulated by the mode of
transmission).

A first obstacle is the scarcity of information on the amount of infectious agent
shed by infectious individuals. Is there a minimal dose that can be shed, and what
controls this quantity? A second obstacle is to absorb the effects of realistic contact
patterns into simple models. What is the role of duration, intensity and multitude of
exposures? How should transmission be modelled, and in what unit? We refer two
extreme approaches: (1) the most standard approach considers the infectious host
as the unit of transmission, and transmission as a mass action process, βIS, given
that β = pc where c is the contact rate between individuals and p is the probability
that a contact between a susceptible and infectious results in a new infection; (2)
an alternative approach is to work with units of infectious agent [21] and model
transmission as β(v)S, where v is a measure of infectious agent and β(v) is a
sigmoidal function to represent dose-response relationships observed in infection
experiments. A problem with the first approach is to ignore dose-response relation-
ships. A problem with the second approach is to consider that a dose of infectious
agent is diluted into the environment the moment it is shed by an individual, and this
may induce artificial effects when the prevalence of infection is low. More elaborate
individual-based models are perhaps the most accurate frameworks to encapsulate
infectious agent units into a model whose transmission unit is the infectious host
[23]. But there is a high cost in terms of simplicity and mathematical tractability.
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Collapsing the richness of these models into a functional form for a transmission
rate that can be incorporated in the SIR model (and its extensions) is certainly worth
pursuing. Encouragement continues to arise from empirical relationships between
intensity of exposure, infection and disease outcomes, and efficiency of spread [2,
20]. In the mean time, the behaviour of the generic SIR model (where the functional
form for the transmission rate can be fairly general) is worth characterizing.

2. Sub-optimal immunity and nonlinear incidence

Following [9] we consider two families of models that correspond to a transition
between SIR and SIS frameworks. These are parametrized by σ , such that σ = 0
corresponds to the SIR model and σ = 1 corresponds to the SIS model. In one
of the families immunity wanes over time (temporary immunity - T I ), while in
the other immunity is not fully protective but reduces the risk of subsequent infec-
tions by a certain factor (partial immunity - PI ). The models are described by the
following systems of equations and represented diagrammatically in Figure 1.

(T I)






∂S

∂T
= µ − λ(I)S + στ(I + R) − µS

∂I

∂T
= λ(I)S − (τ + µ)I

∂R

∂T
= (1 − σ)τI − (στ + µ)R

Fig. 1. Diagrammatic representation of the temporary immunity (T I) and partial immunity
(P I) models, parametrized by 0 ≤ σ ≤ 1. The two models coincide at the extremes σ = 0
(SIR model) and σ = 1 (SIS model). Note that (T I) is not the SIRS model, and the
latter would not fulfill our requirement of convergence to SIS as the duration of immunity
becomes shorter
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and

(P I)






∂S

∂T
= µ − λ(I)S − µS

∂I

∂T
= λ(I)(S + σR) − (τ + µ)I

∂R

∂T
= τI − σλ(I)R − µR

where 0 ≤ σ ≤ 1. In the systems above, µ is the death rate (and, equally, the birth
rate), τ is the rate of recovery from infection and λ(I) is the force of infection. The
last equation can be omitted in both models as S + I + R = 1.

The models can be non-dimensionalized by representing time in units of the

average duration of infection, D, that is by considering t = T

D
where D = 1

τ + µ
.

In this way we obtain

(T I)






Ṡ = α − (� + α)S

İ = �S − I

with α = α(σ) = e + (1 − e)σ and

(P I)






Ṡ = e − �S − eS

İ = �(S + σ(1 − S − I )) − I

where the dot means the derivative with respect to time, t , and �(I) = λ(I)D. The
parameter e represents the rate of birth and death (here considered equal) in units of
average duration of infection. Throughout this paper, illustrative numerical results
are obtained assuming e = 0.0012, which can represent an infection of one month
duration in a host population with 70 years life span. Shorter infections or longer
host life span would lead to smaller e, while the opposite would lead to larger e. In
the following we will always consider the rescaled models.

In both systems the set
{
(S, I ) ∈ R

+
0 × R

+
0 : S + I ≤ 1

}
(R+

0 = [0, +∞[) is
positively invariant and hence in the following we study the systems (T I) and (P I)

restricted to that set. The force of infection (or per capita rate of infection) � is a
function of the proportion of infectious individuals, I , parametrized by the basic
reproduction number, R0. The linear case, � = R0I , has been thoroughly analysed
in [9] and used to explore the impact of vaccination programmes in both scenarios.
Here we consider a nonlinear force of infection of the general form

� := r(I )I := (R0 + h(I))I, (1)

where r is a transmission coefficient affected by the density of infected hosts. The
function h : R

+
0 → R is C1 and increasing such that h(0) = 0. Note that assuming

h increasing corresponds to considering that the risk of infection increases with the
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intensity of exposure and that when h ≡ 0 we have the standard force of infection,
� = R0I .

In this section we state and demonstrate results that are common to both (T I )
and (PI ) systems, and the next two sections are concerned with further analysis
of each system separately. Although the results are proved in a general context,
illustrations will be provided using a specific functional form for h as follows

h(I) := R1
kI

1 + kI
, (2)

where R1 is a parameter that sets the amplitude of variation of the transmission
coefficient r (between R0 and R0 + R1), and k controls the steepness of r at the
origin (note that r ′(0) = h′(0) = R1k). As we will see this parameter is crucial to
the sustainability of oscillations. The function kI/(1 + kI) is shown in Figure 2
for different values of k.

For simplicity, and as no confusion arises, we omit the dependence of �, r and
h on I and R0, and write simply � = rI = (R0 +h)I . In order to describe the sets
of nontrivial equilibria, we introduce the auxiliary functions

ηT (I ) = α(σ)

α(σ ) − I
and ηP (I )

= 2e
√

[I (1 + eσ ) − e]2 + 4σe(I − I 2) + e − I (1 + eσ )
.

We have the following

Theorem 1. For each 0 ≤ σ ≤ 1 the disease-free steady state (S = 1 and I = 0)
is an equilibrium (trivial equilibrium) for both systems (T I) and (P I). This equi-
librium is locally asymptotically stable for R0 < 1 and unstable for R0 > 1.

Fig. 2. Nonlinearity in the transmission coefficient, kI/(1 + kI), for k = 0.1, 1, 5
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At R0 = 1 a branch of nontrivial equilibria emanates from the trivial one. The
nontrivial equilibria are the pairs (S, I ) such that

S = α(σ)

� + α(σ)
and r(I ) = ηT (I ) in the case of system (T I), (3)

S = e

� + e
and r(I ) = ηP (I ) in the case of system (P I). (4)

In both systems, for each R0 > 1 there is at least one nontrivial equilibrium.
The bifurcation is backwards if

h′(0) >
1

α(σ)
in the case of system (T I), (5)

and if

h′(0) >
1 − σ

e
+ σ in the case of system (P I). (6)

Proof. The eigenvalues of the Jacobian matrix evaluated at the trivial equilibrium
are −α and R0 − 1 in the case of the (T I) model and −e and R0 − 1 in the case
of the (P I) model. Hence the first part of the result immediately follows.

The formulas which give implicitly the equilibria are easily obtained from the
differential equations. Note that as h(I) > 0 for each I > 0, if (S, I ) is an equilib-
rium then I ∈ [0, I 	[, where, in the case of system (T I) , I 	 = α and, in the case
of system (P I) , I 	 = e if σ = 0 and I 	 = 1 when 0 < σ ≤ 1.

The existence of at least a nontrivial equilibrium when R0 > 1 follows imme-
diately from the fact that when R0 > 1 the functions R0 + h(I) − ηP (I ) and
R0 + h(I) − ηT (I ) change sign when I ∈ [0, I 	[.

Note that in the branch of nontrivial equilibria R0 can be written as a function
R0(I ). Also when I → I 	, R0(I ) → +∞ and R′

0(I ) → +∞. Hence for R0
sufficiently large the branch can be written as a graph of a function I (R0) and thus
the nontrivial equilibrium is unique.

Moreover R′
0(0) = 1 − αh′(0)

α
in the case of system (T I) and R′

0(0) =
1 − σ

e
+ σ − h′(0) in the case of system (P I). Hence the theorem follows. ��

Corollary 1. For each 0 ≤ σ ≤ 1 the disease-free equilibrium (S = 1 and I = 0)
is globally asymptotically stable whenever it is the unique equilibrium of the system.

Proof. Under the conditions of the Corollary, R0 < 1 and the trivial equilibrium is
locally asymptotically stable. Now the result follows from the fact that in this case
as a consequence of the Poincaré-Bendixson theorem the trivial equilibrium is also
an attractor of all orbits. ��
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3. The temporary immunity model

In this section we will focus on system (T I). Figure 3 shows the branches of equi-
libria, as a function of R0. The three plots used a function h as in (2) with R1 = 2
and three values of k, namely k = 0, 2, 5. Within each plot five curves are rep-
resented corresponding to different values of σ . Here we can see an evidence for
backward bifurcations as the parameter k increases. We can also note that backward
bifurcation are more evident towards the SIS limit of this family of models. The
branch of nontrivial equilibria is more generally characterised as follows.

Theorem 2. Assume h′′(I ) < 0, ∀I. Then for each σ and R0 there are at most two
nontrivial equilibria of system (T I). Hence

i) if (5) is satisfied there exists R1 < 1 such that for each R0 satisfying R1 < R0 <

1 there are two nontrivial equilibria for system (T I) and if R0 = R1 or R0 ≥ 1
there is exactly one,

ii) otherwise for each R0 ≤ 1 there are no nontrivial equilibria for system (T I)

and for each R0 > 1 there is exactly one.

Proof. The result follows from the fact that as we assume r ′′ < 0, we have that for
each fixed R0 the function r(I )−ηT (I ) is strictly concave and hence it can assume
at most two zeros. ��

The existence of solutions which oscillate is one important characteristic of
the systems with nonlinear incidence. In the next result we prove that assuming
h′′(I ) < 0 and h′′′(I ) > 0 there is at least a limit cycle surrounding the nontrivial
equilibrium provided that h′(0) < 1/α and h′′(0) > 81/(4α) − 3h′(0)/α. More-
over, under our assumptions, if we consider an initial state with a positive number
of infectious, the corresponding solution will approach a limit cycle, that is, will
oscillate. As we assume rather general conditions on h at zero, our result applies to
a wide class of nonlinearities.

Theorem 3. Assume that h′′(I ) < 0 and h′′′(I ) > 0, ∀I. If h′(0) <
1

α
and

h′′(0) >
81

4α
− 3

α
h′(0) then there exist R1 and R2, 1 < R1 < R2, such that

Fig. 3. Equilibrium branches for the (T I) system. The transmission coefficient is r =
R0 + R1kI/(1 + kI) with R1 = 2 and three values of k: (a) k = 0; (b) k = 2; (c) k = 5.
The five curves within each plot correspond to different values of σ : from the lowest to the
highest curve, we have σ = 0, 0.006, 0.04, 0.25, 1
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for each R0 satisfying R1 < R0 < R2 system (T I) admits at least one limit cycle
surrounding the nontrivial equilibrium. Moreover each solution with initial condi-
tion (S0, I0) with I0 > 0 and different from the nontrivial equilibrium has a limit
cycle as ω-limit and hence oscillates.

Proof. First of all, we can prove that for each R0 > 1 the set I = 0 is a uniform
repeller from which follows that system (T I) is uniformly persistent (for the defi-
nitions see [7] and [16]). To prove this fact we can use the method explained in
[16] and based on the application of a theorem of Fonda [7] using as function
P(S, I ) = I .

Note that for each R0 > 1 there exists a unique nontrivial equilibrium. More-
over the determinant (det J ) and the trace (tr J ) of the Jacobian matrix evaluated
at the nontrivial equilibrium satisfy

det J > 0 ⇐⇒ r ′(I ) <
α

(α − I )2

and

tr J > 0 ⇐⇒ r ′(I ) >
α3

I (α − I )2 .

Under our assumptions, there are R1 and R2, 1 < R1 < R2, such that for each R0
satisfying R1 < R0 < R2 the Jacobian matrix evaluated at the nontrivial equilib-
rium satisfies det J > 0 and tr J > 0. Hence for each R0 satisfying R1 < R0 < R2
the nontrivial equilibrium is a repeller.

At this point the result is a consequence of the Poincaré-Bendixson theorem
taking into account that the system is uniformly persistent. ��

In what concerns the stability of the nontrivial equilibria we have the following
result where we set α = α(σ),

Theorem 4. Assume that we are in the conditions of Theorem 3. If h′′(I )− α3(3I−α)

I 2(α−I )3

admits at most one zero in the interval [0, α/3], then there exist I1 and I2 such that
the Jacobian matrix evaluated at the corresponding nontrivial equilibrium has two
pure imaginary eigenvalues ±βj i, j = 1, 2. Moreover let

σ(Ij ) = r ′′′(Ij )
Ij (α − Ij )

α
+ r ′′(Ij )

(
3(α − Ij )

α
− 2α − Ij

)

− 6
α4

I 2
j (α − Ij )2

+2
α3

I 2
j (α − Ij )

− α

β2
j

(
r ′′(Ij )Ij (α − Ij )

α
− 2α4

Ij (α − Ij )2

)2

+
(
βj

α
− α

βj

) (
α3

Ij (α − Ij )
+ α

Ij

) (
r ′′(Ij )Ij (α − Ij )

α
− 2α4

Ij (α − Ij )2

)

If σ(Ii) < 0, i = 1, 2 then letting Ri = R0(Ii) we have

i) for each 1 < R0 < R1 and for each R0 > R2 the nontrivial equilibrium is
locally asymptotically stable,
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ii) at R0 = R1 there is a supercritical Hopf bifurcation and at R0 = R2 there is a
backward supercritical Hopf bifurcation, hence at R0 = R1 a stable limit cycle
appears and at R0 = R2 a stable limit cycle disappears,

iii) for each R1 < R0 < R2 the nontrivial equilibrium is unstable.

Remark. We note that, as a consequence of the previous results, the existence of
backwards bifurcations or of oscillations is strongly related with the value of h′(0).
Moreover, even if theoretically possible, it is unlikely that backwards bifurcations
will be noticeable in the SIR model. In the case of the SIS model, oscillations
cannot appear and this agrees with the results previously obtained in [24].

Figure 4 shows the equilibrium surfaces for the (T I) system. There are two
principal observations. The first is a confirmation that for large regions of parame-
ter space (towards the SIS limit) there are backward bifurcations, and possibly two
alternative stable equilibria: endemic, and disease free. An unstable equilibrium
(coloured yellow) separates the two. The nonlinear force of infection is able to
create equilibria where high prevalence of infection is self-sustaining. This effect
is not seen where immunity is more protective against reinfection (towards the SIR

limit) because the maintenance of a high endemicity relies on an adequate supply
of susceptibles, leading to our second principal observation. Significant regions of
parameter space permit sustained oscillations (coloured green). Essentially this is
due to the additional time delay in recovery of the susceptible fraction of the pop-
ulation, which stabilises the otherwise damped oscillations (coloured blue). Note
that red and green areas do not directly abut.

The conditions for bistable equilibria dominate at the SIS extreme but appear
to be verified within a cusp-like region in the (R0, σ )-parameter space. This is
known as a cusp catastrophe [27]. In a similar manner, the conditions for sustained
oscillations dominate at the SIR extreme but also penetrate the (R0, σ )-parameter
space. The two areas (yellow and green) are expected to meet at the so-called Bod-
ganov-Takens (BT ) points [3]. Figure 5 shows an amplification of the equilibrium
surface in the area of greatest proximity between yellow and green regions. The
Figure was obtained with the function h is as in (2), with R1 = 2 and two values

Fig. 4. Equilibrium surfaces for the (T I) system. The transmission coefficient is r = R0 +
R1kI/(1 + kI) with R1 = 2 and three values of k: (a) k = 0; (b) k = 2; (c) k = 5. Blue
indicates that convergence takes the form of damped oscillations (the Jacobian has complex
eigenvalues with negative real part), red indicates linear decay (the Jacobian has real negative
eigenvalues), and yellow and green indicate that the equilibrium is unstable (the Jacobian
has eigenvalues with positive real part - real eigenvalues in yellow and complex in green).
Oscillatory dynamics are sustained around the green steady states
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Fig. 5. Equilibrium surfaces for the (T I) system showing the emergence of Bogdanov-Ta-
kens (BT ) points. The transmission coefficient is r = R0 +R1kI/(1 + kI) with R1 = 2 and
two values of k: (a) k = 5 as in figure 4(c) showing no BT points; (b) k = 7 revealing two
BT points

of k: k = 5 as in Figure 4(a) showing no BT points; and k = 7 as in Figure 4(b)
revealing two BT points (where the blue, green and yellow regions meet). In the
next theorem we give a condition for the existence of BT points.

Theorem 5. Assume that there is α∗ = α∗(σ ∗) such that r ′(α∗2
) = 1

α∗(1 − α∗)2 .

Then (S, I ) = (1 − α∗, α∗2) is a point of Bogdanov-Takens if

r ′′(α∗2
) �= 3α∗ − 1

α∗3(1 − α∗)3
and r ′′(α∗2

) �= (3α∗ − 1)(α∗2 − 6α∗ + 3)

α∗3(α∗2 + 3α∗ − 2)(α∗ − 1)3
. (7)

Proof. Under the conditions of the theorem we can apply the result in [3, Proposi-
tion 4.3.2].

Remark. Note that if (7) is not satisfied for r , it is satisfied for a perturbation of r ,

rε(I ) = r(I ) + ε

2
I (I − α∗2

)2, with ε sufficiently small.

If we choose h as in (2) with R1 = 2 and k = 7, for example, we find two
values of α for which Theorem 5 applies. Figure 6 is a schematic representation of
the dynamical behaviour of system (T I ) in vicinity of the BT points (this can be
viewed as a projection of Figure 5(b) onto the (R0, σ )-plane). Regions A, B, I, J, are
characterised by stable endemic steady states and correspond to blue or red areas of
the surface in Figure 5(b). Regions C, D, E, F, G, H, are characterised by epidemic
behaviour and constitute the green area of Figure 5(b). On entering the green area,
the endemic steady states loose stability to a periodic orbit (Hopf bifurcation) and
further in, the periodic orbit is destroyed by collapsing with a saddle point (homo-
clinic bifurcation). This generates a tendency for intermittent behaviour in regions
E, F: the system spends long periods of time near the disease-free equilibrium but,
unless the infection is stochastically extinct, there is a strong potential for recurrent
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Fig. 6. Schematic representation of the behaviour associated with the two Bogdanov-
Takens points (BT1 and BT2) detected in figure 5(b). The diagram illustrates the partition
of the (R0, σ ) space into regions of qualitatively distinct dynamics. In each region there is
a phase portrait representing the essential features of the dynamics. Full and open dots rep-
resent stable and unstable steady states respectively, crosses represent saddle points, closed
loops represent periodic orbits, and lines with arrows represent the flow. There is a steady
state on the right-bottom corner of each phase portrait corresponding to the disease-free
equilibrium (S, I ) = (1, 0). Note that this is stable for R0 < 1 and a saddle for R0 > 1. The
homoclinic bifurcations are known to emanate from the BT points as indicated, but their
exact path has not been followed by our analysis. For this reason they are marked as dashed
lines. Regions C, D, G, H are characterised by sustained periodic epidemics. As we move
towards regions E, F, the interepidemic periods increase until the infection is apparently
extinct. However, unless stochastic extinction occurs, recurrences are possible at any time

epidemics. These are expected to occur spontaneously when R0 > 1, and under
small peturbations when R0 < 1. Intermittent behaviour associated with homoclin-
ic cycles can have dramatic effects on the long term behaviour of epidemiological
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systems, and should be investigated in the context of emergent and re-emergent
diseases. Here this behaviour is linked to two BT points whose detection requires
a continuum of models between the SIR and SIS extremes. The BT points are
the organizing centres for the dynamics, but the practical implications spread over
large regions of parameter space.

4. The partial immunity model

In the case of system (P I), the branch of nontrivial equilibria is not described
analytically in the general case due to the complexity of the function ηP . Using the
nonlinear function h defined in (2) we have calculated the steady states numerically
as well as their stability. The results are shown in Figures 7 and 8 for R1 = 2 and
three values of k = 0, 2 and 5. As in system (T I), backward bifurcations occur
and this becomes more evident as k increases. Recall that a backward bifurcation
implies bistability of an endemic equilibrium and the disease-free equilibrium for
a range of R0 < 1. In addition, now we can have bistability of two endemic equi-
libria (high and low) and this is evident in Figures 7(c) and 8(c). Also as in system
(T I), we have the possibility of sustained oscillations as marked by the green area

Fig. 7. Equilibrium branches for the PI system. The transmission coefficient is r = R0 +
R1kI/(1 + kI) with R1 = 2 and three values of k: (a) k = 0; (b) k = 2; (c) k = 5. The five
curves within each plot correspond to different values of σ : from the lowest to the highest
curve, we have σ = 0, 0.24, 0.35, 0.6, 1

Fig. 8. Equilibrium surfaces for the PI system. The transmission coefficient is r = R0 +
R1kI/(1 + kI) with R1 = 2 and three values of k: (a) k = 0; (b) k = 2; (c) k = 5. Blue
indicates that convergence takes the form of damped oscillations (the Jacobian has complex
eigenvalues with negative real part), red indicates linear decay (the Jacobian has real negative
eigenvalues), and yellow and green indicate that the equilibrium is unstable (the Jacobian
has eigenvalues with positive real part - real eigenvalues in yellow and complex in green).
Oscillatory dynamics are sustained around the green steady states
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in Figure 8(b,c). Note the sharp rise in incidence across the reinfection threshold
([10]).

5. The SIR and SIS models with nonlinear incidence

In this section we analyse further the models previously introduced in the limit
cases when σ = 0 or σ = 1 assuming h′′(I ) < 0, ∀ 0 ≤ I ≤ 1. These models are
the SIR and SIS models with nonlinear incidence. In the case σ = 1 we can identify
the classes S and R and consider a one-dimensional model as we have S + I = 1.
The corresponding equations are

(SIR)






Ṡ = e − �S − eS

İ = �S − I

and

(SIS) İ = �(1 − I ) − I.

As previously demonstrated, the disease-free state (S = 1, I = 0) is an equi-
librium for both systems for all values of R0. Moreover this equilibrium is locally
asymptotically stable for R0 < 1 and unstable for R0 > 1. For endemic steady

states we have S = 1

r(I )
and I is a solution of an equation that is model dependent

(SIR model) : r(I ) = e

e − I

(SIS model) : r(I ) = 1

1 − I
.

In what concerns the SIR model, we can rewrite Theorems 3 and 4 replacing
α with e. For example, from Theorem 3 follows

Theorem 6. Consider the SIR model and assume that h′′′(I ) > 0, ∀I. If h′(0) <
1

e

and h′′(0) >
81

4e
− 3

e
h′(0) then there exist R1 and R2, 1 < R1 < R2, such that for

each R0 satisfying R1 < R0 < R2 the system admits at least one limit cycle sur-
rounding the nontrivial equilibrium. Moreover each solution with initial condition
(S0, I0) with I0 > 0 and different from the nontrivial equilibrium has a limit cycle
as ω-limit and hence oscillates.

With respect to the SIS model, and using the notations of Theorem 2, we have

Theorem 7. Consider the SIS model. If h′(0) > 1 then there exists R1 < 1 such
that for each R0 satisfying R1 < R0 < 1 the nontrivial equilibrium corresponding
to low prevalence of infection is unstable while for each R0 > R1 the one corre-
sponding to high prevalence is stable. If h′(0) < 1 then the nontrivial equilibrium
is stable.
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Proof. Note that g(I) := h′(I ) − 1

(1 − I )2 is a decreasing function of I .

First of all assume h′(0) > 1. Then g(0) > 0 and if I1 is such that R0(I1) = R1,
g(I1) = 0. Hence the determinant of the Jacobian matrix J evaluated at the low
prevalence nontrivial equilibrium is negative while it is positive at the one cor-
responding to high prevalence. Also at the high prevalence equilibrium r ′(I ) <

1

(1 − I )2 <
1

I (1 − I )2 and hence trJ < 0.

If h′(0) < 1, for all I > 0 we have h′(I ) <
1

(1 − I )2 <
1

I (1 − I )2 . Thus

the determinant of the Jacobian matrix J evaluated at the nontrivial equilibrium is
positive while the corresponding trace is negative. The nontrivial equilibrium is in
this case stable. ��

6. Discussion

Mathematical models with nonlinear force of infection have been studied by many
authors ([14,22,12,24,1]). In several of these papers (see for example [14,22])
simple models with a particular nonlinear force of infection are proposed and anal-
ysed. In [12], aSEIRS (susceptible-exposed-infectious-removed-susceptible) with
a general nonlinear incidence rate is analysed - a theorem about the existence of
multiple equilibria is given in the general case but the stability and the existence of
oscillations are obtained only in the case of the incidence R0I

p/(1 + αIq).
A SIV (susceptible-infectious-perfectly vaccinated) model with nonlinear inci-

dence and nonconstant population was analysed in [1]. The authors analyse the
model and give some examples in which backwards bifurcations or oscillations
appear. In [24] a SIS model with a general nonlinear incidence function is proposed
and it is proved the existence of multiple stable equilibria, backwards bifurcations
and hysteresis, but in this case oscillations do not exist. The model consists on a
Volterra integral equation which includes ordinary and delay differential equations
as special cases.

Here we increment the transmission coefficient, R0, with a strictly increasing
function h(I). Immunity spans the whole range of models from SIR to SIS by
means of one parameter families representing either temporary immunity (T I ) or
partial immunity (PI ). The results that we obtain should apply in a large num-
ber of situations. In particular, the existence of backwards bifurcations obtained
in Theorem 1 or the sustainability of oscillations in Theorem 3 are common in
models with nonlinear incidence. Hence it is natural to expect catastrophic phe-
nomena and sustained oscillations without external forcing (such as seasonality,
for example). Analytical results are illustrated and extended by numerical solu-
tions. For this purpose we specify a functional form for h which is controlled by
two parameters: R1 sets the magnitude of variation in the transmission coefficient
(between R0 and R0 + R1); and k sets the steepness at I = 0 (as h′(0) = R1k).
By numerical inspection we confirm that backward bifurcations are dominant at
the SIS limit while sustained oscillations strive at the SIR limit. Furthermore, we
find Bogdanov-Takens points and homoclinic bifurcations in both (T I) and (P I)

model families.
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The issue of averaging characteristics of transmission to incorporate the force
of infection is very subtle. Models based on standard mass-action transmission
assume that the ratio (force of infection / prevalence of infection) is insensitive
to changes in prevalence levels. However, if the probability of infection increases
with the intensity of exposure, then this ratio should increase with the prevalence
of infectious individuals. A wealth of mathematical models shows that the shape
of this relationship is an important determinant of qualitative and quantitative epi-
demiological properties, such as whether the system converges to stationary or
oscillatory equilibria and the level of such equilibria. Although the importance of
this relationship has been theoretically recognised for at least 20 years [14,5], appli-
cations to real disease problems are rare and, probably necessarily, disease specific
[11,17].

The estimation of a nonlinear relationship between prevalence of infection and
the transmission capacity (or coefficient) from epidemiological data is difficult.
This requires some form of data stratification [6] and involves a complex of factors.
For some infections data suggests that severity of disease increases with intimacy
of contact or, more generally, with the intensity of exposure to the infectious agent
(e.g. measles [26], polio [20], foot-and-mouth disease [8,2]). But dose of exposure
may also be important for subsequent infectiousness as suggested by experiments
on bovine tuberculosis [18,19]. Intensity and frequency of exposure is also likely
to affect the potency and duration of protective immunity.

There is also a circularity problem in terms of estimating model parameters [17].
If linearity in the force of infection is assumed, then, generally, in these frameworks
R0 = 1/S (the reciprocal of the proportion susceptible). Consequently, most cur-
rent estimates of R0 are outside the regions of complicated dynamics (i.e. > 3).
One consequence is that models including non-linear incidence are assumed to be
of mathematical, but not practical, interest. But, the relationships between the basic
reproduction number and prevalence of infection (Figs 3 and 7) are highly depen-
dent on the other parameters. The estimation of R0 is not model independent, so
that many current estimates of R0 may be incorrectly over-estimated (since they
implicitly assume k = 0).

We consider that the risk of infection increases with the intensity of exposure,
and that infection induces some protective immunity that reduces the risk of reinfec-
tion (by providing full protection temporarily, or partial protection permanently).
Extensions to this work should address more deeply the relationships between pat-
terns of infection and the resulting immunity, which would then affect the patterns
of reinfection, and so on. This issue is pertinent for several childhood diseases that
are being considerably reduced by vaccination programmes but persist at reduced
incidence.
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